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Abstract: Background and Objectives: The relationship between vascular damage and diabetes 
mellitus was exploited using avocado seed extracts. The purpose of the study was to understand the 
therapeutic relevance of glycosides compared to standard vascular and anti-diabetic drugs. 
Constituent Avocado Seed Glycosides (ASG) were analysed and administered to rats with 
Diabetes-Induced Vascular Damage (DIVD). 

Methods: The rats were first administered with streptozotocin and screened after seven days for 
alterations in blood glucose, insulin, vascular cell adhesion molecule (VCAM-1), Von Willebrand 
factor (VWF), Renin-Angiotensin-Aldosterone System (RAS), eNOx, and endothelin-1 (ET-1). 
Only rats that satisfied these criteria were recruited and treated with either glibenclamide, met.su + 
losart, or 200 mg/kg body weight ASG for 28 days. 

Results: There was an abundance of digitoxin (13.41 mg/100g), digoxin (17.98 mg/100g), 
avicularin (165.85 mg/100g), and hyperoside (282.51 mg/100g). ASG or met.su + losart exhibited 
slight modulatory properties on glucose homeostasis. Rats with DIVD showed elevated renin, 
angiotensin, VCAM-1 and Lp-PLA2 levels but slightly decreased with glibenclamide treatment and 
normalized with ASG or met.su + losart administration. All treatments normalized Hcy levels. 
DIVD caused the overproduction of CnT, LDH, Crt-K, LDL-c, TG, and TC and suppressed HDL-c 
but was completely normalized by the ASG. Water intake remained altered in treated rats. 

Conclusion: The ASG had no relevant effect on glucose homeostasis during DIVD but showed 
significant vasoprotective properties. 

Keywords: Vascular damage, endothelium, avocado seed, glycosides, cardiac integrity, diabetes. 

1. INTRODUCTION 

 The worldwide prevalence of diabetes stretches over 100 
million persons, whereby up to 95 % are incidences of non-
insulin dependent (Type 2) diabetes mellitus (NIDDM) [1]. 
NIDDM features a two tofourfold susceptibility to cardio- 
vascular dysfunction attributable to the adverse effects of 
free radicals and hyperglycemia on the vascular system [2]. 
According to Creager et al. [1], vascular complications are 
the primary causes of death and disability in diabetic 
subjects.The complications initiate from abnormal glucose 
homeostasis to a continuum that eventually impairs the 
cardiovascular system. However, it is thought that the first 
incidence preceding vascular complications is the loss of 
endothelial functional integrity [3]. The vascular endothelium 
is integral to the maintenance of vascular biology and serves 
as a structural barrier between the lumen and vessel wall. 
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 Endothelial dysfunction implies a condition where the 
endothelium can no longer effectively promote vasodilation, 
anti-aggregation, fibrinolysis, and other physiological effects. 
The endothelial cells achieve these physiological effects 
through the secretion of several mediators, which are either 
vasodilators such as endothelium-derived hyperpolarizing 
factor, prostacyclin, and nitric oxide, or vasoconstrictors, e.g., 
thromboxane A2 and endothelin-1.Among these mediators 
secreted by the endothelium, nitric oxide (NO) is of utmost 
importance. The bioavailability of NO is crucial to vascular 
health as it regulates vasodilation, averts endogenous injury 
to blood vessels, as well as preventing migration and 
proliferation of vascular smooth muscle cells [4]. 

 Endothelial perturbations as a function of impaired 
secretion of NO is well documented in clinical and experimental 
diabetes [5]. However, not all previous clinical studies 
associated type 2 diabetes with abnormal endothelium-
dependent vasodilation [6, 7]. Several experimental findings 
support the view that endothelial NO synthesis is suppressed 
on account of hyperglycemia as a result of oxygen-derived free 
radicals [8]. In addition, endothelium-dependent vasodilation 
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is suppressed during insulin resistance, a hallmark of type 2 
diabetes mellitus [9]. Insulin is a stimulant of NO synthase 
responsible for the synthesis of NO, thereby mediating 
endothelium-dependent vasodilation. Furthermore, insulin 
sensitivity is greatly affected by endothelin-1 (ET-1), which 
is one of the most potent vasoconstrictors [10]. ET-1 is the 
endothelin’s primary cardiovascular isoform involved in the 
aetiology of cardiovascular dysfunction. Ithas been reportedly 
over-secreted during type 2 diabetes mellitus. During 
diabetes mellitus, an alteration in ET-1 synthesis is regarded 
as an initial outcome rather than a late-stage occurrence of 
the disease [11]. Some other mediators of the vascular 
endothelial system affected by insulin resistance and 
hyperglycemia are the Von Willebrand Factor (VWF) [12], 
renin-angiotensin system [13], cardiac troponin [14], 
lipoprotein-associated phospholipase A2 [15], and vascular 
cell adhesion molecule [16]. Thus, the pharmacotherapy of 
vasoprotective drugs is established, at least in part, based on 
their modulatory effects on these mediators. 

 Many plant constituents have been identified for their 
potent antidiabetic effect. Among these constituents are 
glycosides, terpenoids, alkaloids, and flavonoids [17]. 
Glycosides presently recognized for their antidiabetic effects 
include hederagenin, jamboline, myrciacitrins, pelargonidin 
3-O-�-L rhamnoside, vitexin, isovitexin, and isohamnetin 
[17]. The vasoprotective properties of ouabain, digoxin, and 
digitoxin are also well documented [18]. Avocados 
(Perseaamericana) have been used since time immemorial 
for nutritional and ethnomedicinal purposes [19]. The seeds 
are rich in phytochemicals, and have been applied for the 
treatment of various diseases, including diabetes [20], 
hypertension [21], and hypercholesterolemia [22]. 
Phytochemical analysis of the avocado seeds has shown 
various constituent phenols, flavonoids, phytosterols, and 
terpenoids [23]. However, a detailed characterization of 
constituent glycosides in the avocado seeds is yet to be 
carried out.This study proceeded to determine the constituent 
glycosides in the avocado seeds, and evaluated their effects 
on circulating markers of vascular and endothelial damage 
under streptozotocin-induced diabetes mellitus. 

2. METHODOLOGY 

 The ripe avocado fruit (Persea americana) was 
purchased from the local markets in Owerri Imo State 
Nigeria and taken to the Department of Plant Science and 
Biotechnology, Imo State University, Owerri, Imo State, 
Nigeria for identification. 

 The seeds were harvested, pulverized in an electric 
grinder and sundried for 72 hrs.The seeds were further 
ground repeatedly into finer particles (0.05mm) before the 
extraction of its glycosides. The procedure described by 
Morsy et al. [24] was adopted for the extraction of the 
avocado seed glycosides (ASG). An amount of 100g ground 
seeds was immersed for 3 days in 200 ml toluene at 37°C, 
filtered with a Whatman 50 filter paper and transferred into 
100 ml lead hydroxide for the precipitation of phenolic and 
tannic acids. The extract was filtered again with a Sigma 
Aldrich Hyflo® Super-Cel®.The pH of the extract was then 
adjusted to 6. A rotary evaporator under a vacuum was then 
used to concentrate the filtrate to 5ml. The filtrate was then 

subjected tofractionation,using10 ml each of ether, 
chloroform, and a mixture of chloroform and alcohol in a 
ratio of 3:2. The fractionated extractswere mixed all together 
and concentrated to 1ml. The extract was further analyzed 
for glycoside composition using gas chromatography under 
the following conditions; the chromatograph was an HP6890 
GC powered with an HP Chemstation Rev A09.01[1206] 
software coupled to a flame ionization detector operating at a 
temperature of 320oC. An AC-5 capillary column of 
dimension 30m x 0.25mm x 0.25µm, using nitrogen as the 
column gas at 28 psi and 40psi compressed air, was used. A 
split injection mode was applied with a ratio of 20:1 and an 
inlet temperature of 250oC. The oven program was set at 
700C initial temperature for 5 mins for 120C/min ramping for 
20 min. The relative peak percentage areas shown by the 
detector were used to obtain the concentrations of the 
components while the identification of the constituents was 
carried out with the aid of the database of the National 
Institute of Science and Technology (NIST). 

2.1. Experimental Design 

 Handling of micealigned with Principles of Laboratory 
Animal Care (NIH Publication No. 85-23). Ethical approval 
was granted by the Department of Biochemistry, Imo State 
University Ethics Committee (IMSU/BCM/ETS/20180619). 
An LD50 for the avocado seed glycosides was carried out on 
mice according to the method described by Amadi et al. [25] 
and was >400 mg/kg b.w. The environment for the experiment 
was maintained with a 12-hour light/ dark cycle at a 
moderate temperature of 24±2°C. Eighty (80) inbred male 
rats between 200-220 g were subjected to overnight fasting and 
afterwards, diabetes was induced by injecting intraperitoneally 
once, 60 mg/kg b.w freshly prepared streptozotocin (Sigma 
Aldrich) in citrate buffer (0.1M). After 7 days, blood 
samples were collected from the tail vein and analysed. Rats 
with > 250 mg/dl blood glucose and altered levels of 
insulin,eNOx, RAS, VCAM-1, VWF, and ET-1 were 
recruited as rats with diabetes-induced vascular dysfunction. 

 The recruited rats (60) were randomly grouped into six 
equal groups.The first group comprised of control non-
diabetic rats only. These had been administered with rat 
chow and water. Group two, three and four were untreated 
diabetic rats, treated with 5 mg/kg b.wglibenclamide (Sigma 
Aldrich), and treated with 5 mg/kg b.w metoprolol succinate 
(met.su) and losartan (Sigma Aldrich), respectively. Group 
five and six were non-diabetic and diabetic rats administered 
with 200 mg/kg b.w ASG, respectively. All rats had free 
access to normal rat chow and water. The heartbeat, water 
intake and feed intakes were monitored daily. After 28 days, 
the animals were anesthetized with 2% isoflurane and 1 ml 
blood samples collected with disposable syringes and 
separated by centrifugation for parameters requiring sera. 
The pancreas histology was obtained after immediate 
excision from the anesthesized animalsand fixing with 
formalin -80°C. 

2.2. Determination of Indicators of Glucose Homeostasis 

 Blood glucose was estimated using the colorimetric 
glucose oxidase method. Plasma insulin and glucagon were 
obtained following the instruction on their respective ELISA 
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kits (Sigma Aldrich Chemical, St. Louis, MO, USA). C-
peptide was determined using rat C-peptide ELISA kit 
(MybiosourceSan Diego, USA). 

2.3. Determination of Vascular and Endothelium 

Dysfunction Indicators 

 The renin and angiotensin activities were determined 
using ELISA kits (MybiosourceSan Diego, USA). The Lp-
PLA2 was determined with Rat lipoprotein-associated 
phospholipase A2, Lp-PLA2 ELISA Kit (MybiosourceSan 
Diego, USA), while the VCAM-1 was assayed using ELISA 
assay kits (Rat VCAM-1) (MybiosourceSan Diego, USA). 
The eNOx was examined by colorimetric determination with 
NOx kit (Cayman ChemicalAnn Arbor, MI, USA) at 530 nm 
while the respective rat ELISA kits from MyBioSource (San 
Diego, USA) were used for the determination of Von 
Willebrand Factor (VWF), Endothelin 1 (ET-1), and 
Homocysteine (Hcy). 

2.4. Determination of Indicators of Cardiac Integrity 

 Diagnostic ELISA kits (Eastbiopharm , Hangzhou, 
China) were used for troponin determination, while lactate 
dehydrogenase (LDH) colorimetric kit (Sigma Aldrich, St. 
Louis, MO, USA) was used for the estimation of LDH. 
Creatinine kinase was determined with a spectrophotometer 
according to the procedure illustrated by Horder et al. [26], 
while aBT-3000 auto-analyzer (Diamond Diagnostics Inc, 
Holliston, MA, USA) was used for the estimation of high-
density lipoprotein cholesterol, triglycerides, and total 
cholesterol. Low density lipoproteins cholesterol (LDL-c) 
was obtained by formula (LDL-c = total cholesterol - high 
density lipoprotein cholesterol – (triglycerides / 5)). 

2.5. Statistical Analysis 

 The data was presented as mean ± standard deviation of 
triplicates. The data was compared using Least Standard 
Deviation of statistical package for sciences and social 
sciences (SPSS) with one way ANOVA and considered 
significant at 95 % confidence interval (p < 0.05). 

3. RESULTS 

 Fourteen glycosides from seeds of avocado pear were 
detected, as shown in Table 1. Arbutin, linamarin and salicin 
were the first three isolated compounds at 17.361, 18.052, 
and 18.859 mins retention times. The 4th, 5th, and 6th 
compounds were respectively isolated at 19.100, 19.518, 
20.472 mins retention times, and identified as artemetin, 
amygdalin, and ouabain. Dhurrin, prunasin, digitoxin, and 
digoxin were identified as the 7th, 8th, 9th, and 10th isolated 
compounds at 21.266, 21.501, 23.362, and 23.232 minutes 
retention times.Lotaustralin, avicularin, hyperoside, and 
maysin at 23.968, 24.791, 25.867, and 26.355 mins retention 
times, were the last four isolated glycosides from the 
avocado seeds. 

 Under diabetic conditions, as shown in Table 2, untreated 
rats produced elevated blood glucose and glucagon. The 
result showed that treatment with glibenclamideunder 
diabetic conditions produced blood glucose, and glucagon 
levels comparable to the normal control.Similar to metsu + 
losartan, ASG did not completely reverse the effect of 
streptozotocin on blood glucose, and glucagon, after 28 days. 
The production of insulin and C-peptide was suppressed 
following administration of streptozotocin, and treatment 
with either metsu + losart or ASG produced no complete 
modulation. We further observed that under normal 

Table 1. Glycoside composition of pear seed. 

Ret.Time Area (pA*s) Amt/Area Amount (mg/100g) Name 

17.361 41.39084 5.44e-8 2.25e-6 Arbutin 

18.052 101.11646 2.06e-10 2.08e-8 Linamarin 

18.589 43.48333 1.04e-6 4.52e-5 Salicin 

19.100 168.46451 3.93e-3 6.63e-1 Artemetin 

19.518 107.93012 7.70e-3 8.31e-1 Amygdalin 

20.472 308.83080 4.35e-6 9.09e-4 Ouabain 

21.266 41.56594 5.76e-7 2.39e-5 Dhurrin 

21.501 58.08210 3.40e-7 1.97e-5 Prunasin 

22.362 56.23954 2.38e-1 13.41 Digitoxin 

23.232 77.68143 2.31e-1 17.98 Digoxin 

23.968 75.31078 5.70e-6 4.29e-4 Lotaustralin 

24.791 28.65691 5.78 165.83 Avicularin 

25.867 23.27950 12.13 282.51 Hyperoside 

26.355 61.95982 1.32e-5 8.23e-4 Maysin 
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conditions, ASG does not alter any of blood glucose, insulin, 
glucagon, or C-peptide levels. 

 The activities of renin and angiotensin, vascular cell 
adhesion molecule 1 (VCAM-1), and lipopolysaccharide 
phospholipase A2 levels during DIVD and consequent 
treatment with eitherglibenclamide, metsu + losart, and ASG 
are shown in Table 3. Under normal conditions, the ASG 
produced significantly lower renin and angiotensin levels 
than the control. The plasma renin activities and angiotensin 
levels after 28 days of DIVD remained higher than those of 
the control group while treatment with glibenclamide 

produced a slight lowering effect. The results showed that 
the application of ASG or metsu + losart under DIVD 
normalized the plasma renin and angiotensin levels. Both 
VCAM-1 and Lp-PLA2 were significantly elevated during 
DIVD, and remained elevated after 28 days. Glibenclamide 
treatment produced a slight lowering effect on the VCAM-1 
and Lp-PLA2 levels, whereas treatment using either metsu + 
losart or ASG produced equivalent levels to those of the 
control group. 

 Further assessment of the activities of the Von 
Willebrand Factor, endothelial nitric oxide, endothelin, and 

Table 2. Indicators of glucose homeostasis. 

Groups Blood Glucose (mg/dl) Insulin (ng/ml) Glucagon (pg/ml) C-peptide (ng/ml) 

Ctrl 82.4±4.9a 2.7±0.5a 107.1±9.2a 0.9±0.1a 

Diabetic 286.6±13.8b 1.2±0.1b 159.2±7.1b 0.4±0.03b 

Diab + glib 85.7±6.2a 2.4±0.4a 116.3±5.3a 0.8±0.07a 

Diab + metsu + losart 201.5±11.5c 1.4±0.2b 141.9±10.4c 0.6±0.04c 

ASG 79.5±2.6a 2.9±0.7a 111.6±8.2a 0.8±0.04a 

Diab + ASG 189.2±8.3d 1.8±0.1c 137.4±9.0c 0.5±0.03d 

Note: Values are means ± S.D of triplicates. Values bearing different superscript letter(s) (a-d) are significantly different (p < 0.05). Glib – glibenclamide, 
metsu – metoprolol succinate, losart – losartan, ASG -avocado seed glycosides. 

Table 3. Circulating markers of vascular dysfunction during diabetes-induced vascular dysfunction. 

Groups Renin (ng/ml) Angiotensin (pg/ml) VCAM-1 (ng/ml) Lp-PLA2 (ng/ml) 

Ctrl 51.3±3.8ae 82.4±2.5a 45.9±2.2a 50.9±2.4ae 

Diabetic 73.8±4.6b 109.6±3.9b 63.1±2.8b 116.2±3.7b 

Diabetic + glib 65.3±2.9c 96.4±4.1c 53.6±3.2c 85.8±3.9c 

Diabetic + metsu+losart 49.1±3.3ad 84.2±3.4a 42.9±2.5ad 53.1±2.9a 

ASG 45.7±2.7d 76.6±2.6d 40.8±2.8d 46.6±2.1e 

Diab+ASG 54.7±2.1e 81.1±3.7a 43.4±2.1ad 55.2±3.2a 

Note: Values are means ± S.D of triplicates. Values bearing different superscript letter(s) (a-e) are significantly different (p < 0.05). Glib – glibenclamide, 
metsu – metoprolol succinate, losart – losartan, ASG – avocado seed glycosides. 

Table 4. Circulating markers of endothelial integrity during diabetes-induced vascular dysfunction. 

Groups VWF (ng/ml) eNOx (µM/L) Endoth (pg/ml) Homocysteine (µM/L) 

Ctrl 26.8±1.7a 32.5±3.3a 16.2±1.1ad 48.2±2.9ac 

Diabetic 41.9±2.6b 20.6±1.4b 29.3±1.9b 57.8±3.4b 

Diabetic + glib 35.0±1.9c 26.4±1.7c 24.7±2.7c 50.9±2.1a 

Diabetic + metsu+losart 25.3±2.2a 30.7±2.8a 18.6±2.3a 47.3±2.6ac 

ASG 27.5±2.1a 33.9±2.0a 14.3±2.1d 45.8±2.4c 

Diabetic +ASG 30.6±3.8a 29.4±1.5ac 17.4±2.4ad 49.0±2.2a 

Note: Values are means ± S.D of triplicates. Values bearing different superscript letter(s) (a-d) are significantly different (p < 0.05). Glib – glibenclamide, 
metsu – metoprolol succinate, losart – losartan, ASG – avocado seed glycosides. 
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homocysteine during normoglycemic and hyperglycaemic 
conditions with treatment using glibenclamide, metsu + 
losart, or ASG is presented in Table 4. The study showed 
that consequent to DIVD, the VWF, endothelin, and 
homocysteine remained over-secreted. The streptozotocin 
administration also caused the suppression of eNOx 
synthesis. During DIVD, the reversal of the VWF, eNOx, 
and endothelin alterations was not achieved using the 
standard antidiabetic agent, glibenclamide, whereas 
treatment using metsu + losart or ASG during DIVD, 
produced equivalent VWF, eNOx, endothelin, and 
homocysteine levels to those of control rats. The results also 
showed that the ASG under normoglycemic conditions 
produced no alterations on the examined markers of 
endothelial dysfunction. 
 

 

Fig. (1). Water intake levels. (A higher resolution / colour version 
of this figure is available in the electronic copy of the article). 

 In Table 5, after treatment with glibenclamide, metsu + 
losart, or ASG, some circulating markers of cardiac integrity, 

cardiac troponin, lactate dehydrogenase, and creatinine 
kinase and the lipid profile were examined during DIVD.The 
results showed elevated CnT, Crt-k, and LDH levels in 
untreated DIVD animals. Treatment using glibenclamide 
during DIVD, produced equivalent CnT levels to control, 
metsu+losart treated or ASG treated rats but was ineffective 
in the restoration of crt-k and LDH. Treatment of DIVD 
using metsu+losart significantly lowered the LDH and crt-k 
levels, but only ASG treatment produced equivalent levels to 
the normal rats. The result for the lipid profile showed 
elevations in TC, TG and LDL levels after 28 days of 
untreated DIVD. Treatment with glibenclamide only 
normalized the HDL levels, whereas the metsu + losart and 
ASG completely reversed the altered lipid profile. 

 

Fig. (2). Feed intake. (A higher resolution / colour version of this 
figure is available in the electronic copy of the article). 

 Water and feed intake per 7days after DIVDfollowed by 
treatment with either glibenclamide, metsu + losart or the 
ASG, untreated rats and rats treated withlosart + met.su after 
two weeks showed significantly higher water and feed intake 

Table 5. Cardiac integrity during diabetes-induced vascular dysfunction. 

Groups CnT (ng/ml) LDH (U/L) Crt-K TC HDL TG LDL 

Ctrl 5.3±0.6a 175.8±8.1ae 365.5±7.1ae 67.0±3.1a 35.4±1.0a 50.6±2.7a 21.4±3.6a 

Diabetic 6.7±0.4b 272.1±7.3b 477.4±12.3b 83.7±3.8b 19.8±1.7b 71.6±3.6b 49.5±2.7b 

Diabetic + glib 5.9±0.4a 233.8±9.3c 426.6±10.1c 75.8±1.9c 32.8±3.3a 57.1±1.6c 31.6±5.6c 

Diabetic + metsu+losart 5.2±0.5a 187.4±5.0d 388.0±10.9d 69.4±3.1a 33.8±1.5a 48.3±3.1a 25.9±4.0a 

ASG 5.0±0.7a 168.1±8.4a 352.4±9.3a 67.7±1.9a 35.0±1.8a 51.7±3.3a 22.4±4.4a 

Diabetic + ASG 5.6±0.3a 180.8±6.5e 371.5±8.2e 65.9±4.1a 33.1±2.1a 50.8±3.5a 22.6±5.5a 

Note: Values are means ± S.D of triplicates. Values bearing different superscript letter(s) (a-d) are significantly different (p < 0.05). Glib – glibenclamide, 
metsu – metoprolol succinate, losart – losartan, ASG – avocado seed glycosides. 
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(Figs. 1 & 2). Treatment with glibenclamide and ASG 
significantly lowered the water intake levels as compared 
with untreated rats, but not equivalent to the water 
consumption rate of normal rats. After 4 weeks, only 
glibenclamide proved effective in normalizing the alterations 
in water consumption capacities of the rats with DIVD. At 
both the 2 and 4 weeks, treatment of DIVD normalized the 
feed intake amounts. The results showed asignificant 
decrease in pancreas weight after the 2nd and 4th weeks 
following DIVD, but was normalized with glibenclamide 

treatment. None of the metsu + losart or ASG treatments 
reversed the loss of pancreas weight during DIVD. The 
heartbeat of the untreated rats was slightly elevated during 
DIVD, but normalized after four weeks. Treatment with 
metsu + losart and ASG after 2 weeks reversed the altered 
heartbeat while we found that after 4 weeks, DIVD and 
treatments with glibenclamide, metsu + losart or ASG produced 
no effects on the heartbeat. Moreover, under normoglycemic 
conditions, ASG was shown not to obstruct feed and water 
intake, heartbeat, and pancreas weight (Figs. 3, 4 & 5). 

 

 

 

Fig. (3). Pancreas weight. (A higher resolution / colour version 
of this figure is available in the electronic copy of the article). 

 Fig. (4). Heart beat. (A higher resolution / colour version of this 
figure is available in the electronic copy of the article). 

 

Fig. (5). a: Histologic slide from the pancreas of control rats showing intact islet cell mass. b: Histologic slide from the pancreas of group 2 
rats showing extensively reduced islet cell mass. c: Histologic slide from the pancreas of group 3 rats showing intact islet cell mass.  
d: Histologic slide from the pancreas of group 4 rats showing recovering islet cell mass. e: Histologic slide from the pancreas of group 5 rats 
showing intact islet cell mass. f: Histologic slide from the pancreas of group 6 rats showing recovering islet cell mass. (A higher resolution / 
colour version of this figure is available in the electronic copy of the article). 
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4. DISCUSSION 

 The chromatographic detection of glycosides from 
avocado seeds yielded minute amounts of arbutin, linamarin, 
salicin, ouabain, dhurrin, prunasin, lotaustralin, and maysin, 
which make their contribution to the overall medicinal 
properties of the avocado seeds unlikely. However, we 
observed that the avocado seeds produced abundant amounts 
of artemetin, amygdalin, digitoxin, digoxin, avicularin, and 
hyperoside. Thus, the therapeutic effects of the avocado seed 
glycosides could initiate from these predominant glycosides. 
Notwithstanding the paucity of information on the medicinal 
applications of artemetin, it has found applications in 
amelioration of endothelium via its modulatory effects of 
nitric oxide synthesis [27], anti-edematogenic [28], anti-
inflammatory, and free radical scavenging properties [29, 
30]. Though its vascular effects have been identified [31], no 
report as of date suggests possible anti-diabetic effects. 
Amygdalin, another glycoside found in elevated quantity in 
the avocado seeds, has a report suggesting possible anti-
diabetic effect. Further angiogenic and antitumor effects of 
amygdalin have been reported elsewhere [32, 33]. Similar to 
artemetin, digitoxin has no reported antidiabetic effects, 
rather, numerous studies have pointed out potent cardio- 
protective and anticancer potentials [33, 34]. Studies on 
digoxin suggest a possible ameliorative effect of glucose 
intolerance during type II diabetes mellitus as well as 
attenuates hypoglycemia [35, 36], in addition to cardiovascular 
effects [37, 38]. In addition, avicularin has been associated 
with potent antidiabetic and vascular effects [39, 40] while 
hyperoside has been applied for reversal of endothelial 
dysfunction and hypoglycemia [41, 42]. With the obvious 
lack of low reportage of any antidiabetic potency of these 
predominant glycosides, our study supports the proposition 
that these glycosides may be more suitable for reversal  
of dysfunctional vascular system and endothelium rather 
than any anti-diabetic effects. Excessive glucose secretion 
has been the hallmark of Type 2 diabetes mellitus which 
features suppressed insulin activities following altered β-cell 
integrity and insulin resistance. In our study, neither metsu + 
losartan nor ASG was as effective as glibenclamide in 
normalizing blood glucose levels after streptozotocin-
induced hyperglycemia and vascular damage. This may be 
related to the difference in mechanisms of actions of the 
compounds. Glibenclamide is insulinogenic through cellular 
depolarization and as well produces extra-pancreatic effects 
[43] whereas metoprolol succinate and losartan both widely 
recognised drugs with vascular effects, have no effect on 
insulin sensitivity [44, 45]. This observation correlates with 
our present findings during diabetes, showing no change in 
insulin levels after treatment with met.su + losart. However, 
we envisage that during diabetic conditions, the ASG, having 
induced elevated insulin secretion, produces slight insulinogenic 
effects more than the standard vascular drugs. There are 
experimental suggestions supporting excessive glucagon 
production during diabetes [46], which are consequently 
normalized on applications of glucagon-suppressing agents 
like glibenclaminde [47]. Our results showed that the 
standard vascular drug has no effect on the glucagon levels 
during DIVD. Furthermore, we found glibenclamide potent 
enough to reverse alterations in C-peptide and Hb1Ac levels  
 

during DIVD. Treatment using losart + metsu produced 
significant modulatory properties on C-peptide and Hb1Ac, 
which corresponds with similar reports byJin and Pan, [48]. 
In the proinsulin molecule, C-peptide connects insulin A and 
B chain and is of immense use in clinical testing for diabetes. 
As C-peptide correlates with the intrinsic potentials of cells 
to produce insulin, our results thus indicate that the ASG and 
vascular drugs, during diabetes, potentiate the synthesis of 
insulin by the pancreas without a complete restoration. 

 Macrovascular complications during diabetes occur as a 
sequence of numerous processesthat proceed from 
atherosclerosis and thrombosis and by relating diabetes with 
cardiovascular diseases such as hypertension and 
atherosclerosis implicate the role of the renin-angiotensin 
system (RAS) in the onset and diseaseprogression. The 
stimulation of RAS is thus regarded as the main etiologic 
event in the initiation and progression of vascular damage in 
diabetic patients [49]. This view aligns with our findings 
showing prolonged activated renin and angiotensin levels 
following the administration of streptozotocin. Numerous 
clinical trials have upheld the finding that RAS blockers 
regress vascular complications in diabetic subjects, which 
explain why metsu + losart in this study completely normalized 
the RAS compared to slight modulation by glibenclamide, a 
standard anti-diabetic drug. Furthermore, this clearly 
elucidates the mechanism of action of the ASG patterns 
towards the standard vascular drug; metsu+losart rather than 
glibenclamide, the standard antidiabetic agent [50, 51]. 

 Studies elsewhere have established that cellular adhesion 
moleculescould serve as reliableindicators of vascular 
dysfunctionduring diabetic conditions [52, 53]. In line with 
similar reports elsewhere [54, 55], our study showed 
significant alterations in VCAM-1 levels during DIVD, while 
the mild modulatory effect of glibenclamide corroborates 
with the reports of Papanas et al., [56]. As we observed, 
treatment of diabetes-induced vascular dysfunction with 
angiotensin receptor blockers portends greater potentials to 
normalize adhesion molecules compared to sulphonylureas such 
as glibenclamide. Song et al. [57] suggested that angiotensin 
receptor blockers such as telmisartan, but not losartan, 
modulate hyperglycemia-induced dysfunctional VCAM-1 
expression by suppressing the phosphorylation of NF-�B, 
p65-Ser(536) and expression of I�B kinase �. Since the 
ASG produced an equivalent modulatory effect on the 
VCAM-1 levels during DIVD, we propose that the mechanism 
of the predominant glycosides in the ASG may occur by 
blockade of angiotensin receptors. Lp-PLA2 activities positively 
correlate with increased proneness to atherosclerosis and 
other cardiovascular diseases. The elevated Lp-PLA2 
activities we observed during DIVD is supported by the 
reports of Nelson et al. [58] and Jackisch et al. [59]. However, 
in contrast to our findings, Basu et al., [60] reported that 
potent sulphynylureas lacked any effect on Lp-PLA2 
activities during diabetes. Also, the complete restoration of 
Lp-PLA2 by the metsu+losart may have resulted due to the 
combination of angiotensin receptor blockers with inhibitors 
of β1 adrenergic receptors as Rizos et al. [61] reported that 
Eprosartan, an angiotensin receptor blocker, had no effect on 
the Lp-PLA2 activities during vascular damage. Thus, this 
could imply that the predominant glycosides in the avocado 



Vascular Effects of Avocado Seed Glycosides during Diabetes-induced Cardiovascular & Haematological Disorders-Drug Targets, 2020, Vol. 20, No. 3    209 

seeds could achieve vascular restoration following several 
mechanisms in synergy. 

 According to HadiandJassim [62], established experimental 
and clinical views, the endothelial perturbations arise from 
both diabetes and insulin resistance which undermines the 
vasoprotective roles of the vascular endothelium. More so, 
various degrees of disruptions in circulating markers of 
endothelial dysfunction have been identified in streptozotocin-
induced-diabetes-associated vascular damage [63]. In this 
study, steady elevations in VWF, eNOx, endothelin, and 
homocysteine after streptozotocin administration after 28 
days are confirmatory of diabetes-induced endothelial 
dysfunction [64-66]. In our study, we found that treatment 
using glibenclamide slightly inhibited the VWF production 
after vascular damage, which contradicts the reports of 
Yngen et al., [67]. Few or no reports have been found 
evaluating the effect of losartan or other standard vascular 
drugs on VWF activities during diabetes-induced vascular 
disease. However, in our study, we observed that similar to 
the combined effect of losartan and metoprolol succinate, the 
ASG normalized the VWF activities after diabetes-induced 
alterations suggesting that these predominant glycosides 
potentiate endothelium repair. The maintenance of eNOx 
activities is particularly crucial during diabetic conditions 
due to its central role in stabilizing the vascular tone. The 
perceived hyperglycemia-induced NOx alterations are 
consequent to influence on protein kinase-c activities [68], 
which are modulated with glibenclamide treatment [69]. 
Another study noted that glibenclamide stimulates the 
endothelium by potentiating nitric oxide release [70], 
however, we establish from our study, the preference of 
standard vascular drugs for complete restoration of eNOx 
production during DIVD, rather than antidiabetic agents. 
Endothelin peptides are widely distributed in numerous 
tissues and perform various vascular functions. Hence, 
endothelin antagonists are agents of recent research interest 
to prevent vascular damage during diabetes. We observed 
that the ASG treatment inhibited endothelin similar vascular 
damaged rats treated with metsu + losart. Though the mechanism 
behind the suppression of endothelin-1 production by both 
the standard drug and ASG has not been fully investigated, 
we relate the ASG activities to those of standard endothelin 
receptor blockers. Yegnanarayan et al. [71] reported the 
relevance of sulfonylureas in the treatment of type 2 diabetic 
subjects with hyperhomocysteinemia. In our study, we 
confirm that the antidiabetic agent, glibenclamide, completely 
normalized the diabetes-induced hyperhomocysteinemia. 
Similarly, diabetic rats that received metsu+losart or ASG 
also showed a complete reversal of diabetes-induced elevated 
homocysteine levels. In contrast to our findings, Zhu et al. 
[72] found no correlation between losartan administration 
and homocysteine activities while Li et al. [73] demonstrated 
that supplementation of telmisartan abrogated hyper- 
homocysteinemia-induced vascular damages. 

 Established interrelationships exist between lipoprotein 
abnormalities and type 2 diabetes mellitus [74]. Characteristic 
dyslipidemia during diabetes, features suppressed HDL-c, 
predominance of triglycerides and LDL-c [75], which are 
predictive indicators of cardiovascular diseases. We found 
glibenclamide as a mild cardiomodulatory agent during 

DIVD, which corroborates with the reports of Derosa et al. 
(2011), and the complete restoration of the HDL-c agrees 
with the reports of Mughal et al. [76]. Shad et al. [77] 
suggested that losartan alone produced insignificant effects 
on lipoproteins meaning that the normalized lipoprotein 
levels in this study resulting from the combinatorial 
administration of losartan and metoprolol succinate were 
mostly due to metoprolol succinate. Our study showed that 
the ASG produced cardiomodulatory properties during 
diabetic conditions comparable to the effect of combinatorial 
treatment with losartan and metoprolol succinate, implying 
that the predominant glycosides in avocado seed could 
possess β� receptor blocker type properties. This is validated 
by the predominance of digoxin in the ASG, which is well 
documented for triglyceride, total cholesterol, and LDL 
reductions [78]. The cardiac troponin has been identified to 
be of substantial utility in the prediction of cardiovascular 
risks during diabetes mellitus [79-81] and for this reason, 
recent pharmaceutical interventions on cardiovascular 
diseases, target the troponin activities. Losartan has a potent 
lowering effect on troponin [82], whereas metoprolol 
succinate portends no change in CnT rise [83]. With this, 
troponin suppression during DIVD progressed via blockade 
of angiotensin receptors and could be a similar mechanism 
behind the restoration of normal troponin activities by the 
ASG. Lactate dehydrogenase and creatinine kinase are 
always elevated in streptozotocin-induced diabetic rats [84, 
85] and mildly modulated by glibenclamide [86, 87]. Shi et 
al. [88] and Dianat et al. [89] showed the effectiveness of 
losartan in decreasing creatine kinase and LDH levels during 
cardiovascular dysfunction. Digoxin under mocarditis, 
significantly decreases LDH levels [90], whereas Kim et al. 
[91] demonstrated that avicularin significantly suppresses 
LDH release from cardiac cells, while Li et al. [92] reported 
that administration of hyperosides after cardiovascular 
disorder attenuates leakages of creatine kinase and LDH 
from cardiac tissues. We thus propose that our observed 
modulatory effect of ASG on LDH and CK during DIVD, 
relates to the predominance of hyperoside, avicularin and 
digoxin. 

CONCLUSION 

 The avocado seed glycosides under normoglycemic 
conditions showed mildly negative vasoactive effects. Under 
diabetic induced vascular damage, the glycosides in avocado 
seeds or the combinatorial administration of the standard 
vascular drugs were ineffective in normalizing glucose 
homeostasis as compared to standard hypoglycaemic agents. 
Reversal of vascular damage during diabetic conditions was 
achieved with the ASG and showed equivalent potency with 
combinatorial administration of metoprolol succinate and 
losartan. We propose that thevasoprotective effect of the 
ASG is attributable to the synergistic effects of these 
predominant glycosides. 
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