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Living in an industrialized era, we are exposed to man-made chemicals including persistent
organic pollutants (POPs). Previous studies have shown associations of POP exposure
with adverse outcomes in humans, wildlife, and the environment, making it a global
concern. Exposure during sensitive windows of susceptibility such as fetal development is
of particular concern because of the potential increased risk of developing diseases in
childhood and adulthood. However, there are limited studies on the sexual dimorphism of
POP accumulation during the prenatal period. In this mini-review, we focus on differences
in POP concentrations in the placenta and fetal tissues between males and females. We
also show the sexually dimorphic adverse outcomes of prenatal exposure to POPs.
Overall, our summary shows that males may accumulate higher concentrations of POPs in
the placenta and fetal tissues compared to females, although studies are sparse and
inconsistent. In addition, there are differences in adverse health outcomes associated to
prenatal POP exposure according to sex. Hence, we highly urge researchers investigating
the health effects of POP exposure to consider sexual dimorphism in their studies.

Keywords: human fetal exposure, persisting organic pollutants, sex differences, chemical transfer, PCB, OCP,
PBDE, PFAS

INTRODUCTION

Our modern, industrialized society has developed countless improvements for everyday life.
Although these developments come with many benefits, they can also cause adverse health
effects in humans and wildlife. One important example is exposure to man-made industrial
chemicals such as persistent organic pollutants (POPs), which is now ubiquitous in day-to-day
life. POPs are halogenated organic chemicals, which means that they are carbon-based with either
chlorine, fluorine or bromine attached to the carbon. Due to their structure and high stability, they
are highly resistant to degradation. Their half-lives range from one to 30 years in humans (Trudel
et al., 2011; Bu et al., 2015; Li et al., 2018). They are persistent, toxic and bioaccumulate in living
organisms including humans. Some are volatile at certain temperatures, making them widely
distributed throughout the environment, and can be found even in areas thousands of
kilometers away from their sources (Stockholm Convention, 2008b).

These man-made chemicals have been found to disrupt endocrine activity and are thus named
endocrine-disrupting chemicals (EDCs). Studies of humans, wildlife, multiple experimental animals,
and epidemiological cohorts show associations between EDC exposure and adverse health effects,
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making this a global health concern (Bergman et al., 2013). These
derived effects of EDC exposure have a negative impact not only
on the health and well-being of humans and wildlife but also to
the economy. A recent estimate suggested that the European
countries alone spend 157 billion euros a year to treat health
disorders derived from EDC exposure (Trasande et al., 2015).
This estimate included only three health outcomes (reproductive
health, neurodevelopmental disorders, and metabolic disorders)
and were based on a limited selection of EDCs (brominated flame
retardants, pesticides, and phthalates and bisphenol A), implying
that the true cost of EDC exposure is expected to be even larger.
Therefore, EDC exposure is likely to contribute substantially to
burden of disease and costs.

The primary route of exposure to POPs in humans is through
ingestion, inhalation and absorption (Bergman et al., 2013; Gore
et al., 2015). Further exposure occurs through placental transfer
from mother to the fetus (Mamsen et al., 2017, 2019; Björvang
et al., 2021), and after birth through breastfeeding (Krysiak-
Baltyn et al., 2010). Because POPs are found almost
everywhere, exposure of the next generation starts even before
conception. Studies have shown that human oocytes are
extensively exposed to mixtures of these chemicals (Björvang
and Damdimopoulou, 2020; Björvang et al., 2021; Lefebvre et al.,
2021). Several studies have also found POPs to have a negative
effect on human spermatogenesis, though the pathophysiological
mechanisms are not fully elucidated (Toft et al., 2012; Sharma
et al., 2020).

This mini-review focuses on a subgroup of POPs including
organochlorine pesticides (OCPs), polychlorinated biphenyls
(PCBs), polybrominated diphenyl ethers (PBDEs), and
perfluoroalkyl substances (PFASs), which are still widely
distributed in our environment. OCPs, PCBs, and PBDEs are
lipophilic and deposit to adipose tissue (Mustieles and Arrebola,
2020) while PFASs are amphiphilic and predominantly bind to
proteins (Forsthuber et al., 2020). The OCPs, PCBs, and PBDEs
have been banned for several decades while the PFASs has just
been recently regulated (Stockholm Convention, 2008a).
Nonetheless, they are still present in the environment due to
their high resistance to degradation as well as unintentional
production as industrial by-products.

The negative impact of POPs on health is increasingly well-
documented and it is becoming clear that exposure to POPs
during critical windows of susceptibility such as fetal
development can have long-lasting consequences for the
exposed individual (Bergman et al., 2013; Gore et al., 2015).
Animal studies have revealed that prenatal exposure to POPs are
associated with reduced postnatal survival, low birth weight,
epigenetic alterations, disrupted thyroid function, birth defects
including cleft palate, anasarca, and heart disorders, and
compromised fertility (Thibodeaux et al., 2003; Lau et al.,
2004, 2006; Yu et al., 2009; Guo et al., 2014; Negri et al.,
2017). Human prenatal exposure to POPs have been
associated with reduced birth weight (Fei et al., 2007;
Maisonet et al., 2012; Johnson et al., 2014; Callan et al., 2016;
Lauritzen et al., 2016), though reports are inconsistent (Olsen
et al., 2009; Bach et al., 2015; Yang et al., 2021). In addition, an
increased risk for congenital cerebral palsy, retarded lung

maturation, and thyroid dysregulation have been reported
(Maervoet et al., 2007; Abdelouahab et al., 2013; Liew et al.,
2014; Luo et al., 2017; Sørli et al., 2020). While studies have
investigated associations between prenatal exposure and adverse
health outcomes, only few studies considered potential sex-
specific differences. In this mini-review, we focus on the sexual
dimorphism of prenatal POP exposure.

HumanMale FetusesMay BeMore Exposed
to POPs Than Female Fetuses
Since it is not possible to acquire fetal tissues in birth cohorts,
there are only a limited number of studies with the unique
opportunity to analyze the actual chemical concentrations in
human fetal tissues. The available data are from fetal tissues
obtained either from elective pregnancy terminations or
stillbirths (Curley et al., 1969; Nishimura et al., 1977; Schecter
et al., 2006; Doucet et al., 2009; Pusiol et al., 2016; Mamsen et al.,
2017, 2019; Zota et al., 2018; Björvang et al., 2021). Among these
nine studies, only three investigated the sexual dimorphism of
POP exposure (Nishimura et al., 1977; Mamsen et al., 2019;
Björvang et al., 2021) while Zota and colleagues (2018) only
adjusted for fetal sex when looking into the association between
fetal liver PBDEs and fetal cytochrome P450 gene expression.
Nishimura et al. (1977) did not find any relationship between fetal
sex and OCPs and PCBs in the fetal brain, heart, liver, kidneys,
and skin. Similarly, Mamsen et al. (2019) found no association
between fetal sex and PFASs in the fetal tissues including central
nervous system, heart, lung, liver, and adipose tissue. On the
other hand, Björvang et al. (2021) found higher concentrations of
OCPs and PCBs in the male fetal brain, heart, and lung. In
general, different subgroups of POPs accumulate to different fetal
organs. The highest fetal PFAS concentrations were detected in
liver and lung tissues, whereas the OCPs and PCBs primarily
accumulated to fetal adipose tissue (Mamsen et al. (2019);
Björvang et al., 2021). However, more studies are needed in
relation to sexual dimorphism. Taken together, male sex may be
associated with higher fetal concentrations of some POPs, though
data are sparse and inconsistent (Figure 1).

Higher Levels of POPs Accumulate in
Placentas With Male Fetuses Than
Placentas With Female Fetuses
Prenatal exposure to chemicals is commonly estimated through
surrogate matrices such as the placenta, among others. Studies
have detected higher concentrations of POPs including OCPs,
PBDEs, and PCBs in human placental tissues withmale newborns
compared to placentas with female newborns (Leonetti et al.,
2016; Kim et al., 2019). Higher concentrations of OCPs and PCBs
have been reported in human placentas with male fetuses in
second and third trimester of pregnancy (Björvang et al., 2021)
and higher placental PFASs concentrations can be detected in
pregnancies with male fetuses already during first trimester
(Mamsen et al., 2019), suggesting that the sex dimorphic
chemical transfer is established very early in fetal life and
throughout pregnancy (Figure 1).
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Sexually Dimorphic Placental Development
Rodent models have demonstrated a sexually dimorphic
development of the placenta, with a slower placental
development and more protective adaptive responses to
stressful environments in females compared to males
(Kalisch-Smith et al., 2017; Saoi et al., 2020). Transcriptome
analysis of human first- and second trimester placentas
confirm different expression patterns between the sexes
(Gonzalez et al., 2018; Braun et al., 2021), which can also
be detected in term placentas (Sood et al., 2006). When the
intrauterine environment is disturbed in rodents and humans,
placentas with male fetuses consume more energy to accelerate
its own growth as well as the fetus’, accelerating epigenetic
aging at the expense of adaptability and plasticity (Tekola-
Ayele et al., 2019; Yu et al., 2021). In contrast, placentas with
female fetuses respond to disturbances with protective
mechanisms such as slowing down growth and metabolism
to ensure fetal survival (Miller et al., 2020; Phuthong et al.,
2020; Saoi et al., 2020; Weinheimer et al., 2020). These
different growth strategies in response to disturbances may
place male fetuses at a greater risk when exposed to POPs or
other disturbing pollutants. In addition, sexually dimorphic
placental function has also been reported in humans, which
may facilitate a skewed accumulation of chemicals between the
sexes (Rosenfeld, 2015). Pregnancies with female fetuses have
higher placental vascular resistance compared to that of
pregnancies with male fetuses (Widnes et al., 2017), which
may affect the blood flow to the fetus and thereby, support a
different chemical transfer between sexes. Moreover,

epigenetic patterns in the placenta differed between the
sexes (Martin et al., 2017), which may also explain the
diverging susceptibility to chemicals and health outcomes.
For example, maternal exposure to OCPs, PCBs, and PBDEs
have been associated with sex-dimorphic epigenetic changes in
placental genes involved in the placental transfer of thyroid
hormones (Kim et al., 2019). The human fetal metabolizing
machinery has also been evaluated in relation to maternal use
of over-the-counter analgesics and found that some enzymes
involved in pharmacokinetic and pharmacodynamic pathways
are significantly affected by fetal sex and gestational age
(Zafeiri and Fowler, 2021). Taken together, these reports
implies that the higher accumulation of chemicals observed
in male fetuses than female fetuses may be caused by different
placental development, function, epigenetics, and metabolism
between the sexes.

Adverse Outcomes Differ According to Sex
Sexually dimorphic adverse outcomes of PFAS exposure have
been described in rodents, where prenatal exposure to PFOA
significantly affected fetal growth and development in males
but to a much lesser extent in females (Nakayama et al., 2005;
Negri et al., 2017). The higher sensitivity of male fetuses may
be related to a less efficient elimination of PFOA in males,
which have been observed in rodents (Vanden Heuvel et al.,
1991). In humans, in utero exposure to POPs has been
associated with reduced birth weight in some studies,
although results are inconsistent (Olsen et al., 2009; Tan
et al., 2009; Govarts et al., 2012; Bach et al., 2015; Casas

FIGURE 1 | Persistent organic pollutants (POPs) are transferred from the maternal circulation via the placenta to the fetus and accumulate in different fetal organs.
Concentrations of OCPs, PCBs, PBDEs, and PFASs are higher in human placentas withmale fetuses compared to placentas with female fetuses. Moreover, this sexually
dimorphic patten is reflected in the fetal organs where higher concentrations of OCPs accumulate in males’ in brain, lung and hearts tissues than those of females.
Concentrations of PCBs are also higher in male lungs and heart tissues than females. Similar concentrations of POPs are found in liver, fat, kidney, and skin tissues
frommale and female fetuses. Taken together, these findings suggest that male fetuses are overall more exposed to POPs than female fetuses, whichmay be associated
with sexual dimorphic risks.
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et al., 2015; Lauritzen et al., 2017). One study found the
reduced birth weight to be more pronounced in male
offspring (Lauritzen et al., 2017) while another study found
the correlation only in female offspring (Washino et al., 2009).
On the other hand, Covarts and colleagues (2012) did not find
any sex-specific effects.

Prenatal exposure to some OCPs has been associated with
higher body mass index (BMI) in girls up to two years after birth
(Mendez et al., 2011; Valvi et al., 2014; Coker et al., 2018; Yang
et al., 2021), implying that prenatal exposure may cause
physiological changes predisposing to later weight gain. In
addition, in utero exposure to PFAS has been positively
associated with BMI in females at 20 years of age (Halldorsson
et al., 2012). Exposure to EDCs has been associated with an
increased obesity risk, which may be due to disturbance in the
regulation of endocrine hormones or the hypothalamic-pituitary-
adrenal axis that regulate homeostatic mechanisms important to
weight control (Grün and Blumberg, 2009; Tang-Péronard et al.,
2011).

Prenatal exposure to OCPs and PBDEs have been associated
with reduced maternal supply of thyroid hormones to the
fetus, which may affect the thyroid hormone balance in
newborns (Maervoet et al., 2007; Abdelouahab et al., 2013;
Luo et al., 2017; Krönke et al., 2021). Prenatal exposure to
PCBs were positively associated with the level of thyroid
hormones in female children 6 months after birth, while
OCPs were negatively associated with the level of thyroid
hormones of male children 1 year after birth (Krönke et al.,
2021).

CONCLUSION

POPs accumulate at higher concentrations in humanmale fetuses
and their placentas than in female fetuses and their placentas.
This may be caused by a sexually dimorphic genetic and
epigenetic regulation, placental resistance, and protective
strategies to external stress. The sexual dimorphic fetal
accumulation may be caused by differences in placental
transfer and by differences in fetal pharmacokinetic, and
endocrine milieu. Prenatal exposure to POPs has been
associated with adverse health outcomes, though sex-specific
effects are sparse and inconsistent. Most exposure studies do
not monitor potential sex dimorphic outcomes, which leave us
with a research gap that merits consideration and highlight the
need for more studies including fetal sex as a potential covariate.
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