working to establish clear criteria, based on available data, and expert consensus through Delphi survey methods, and plan to have this completed in the fall of 2022.

Radiotherapy

P091: EARLY ANALYSIS OF THE PRO-HODGKIN STUDY: CLINICAL INVESTIGATION OF PENCIL BEAM SCANNING PRO-TON TREATMENT IN HODGKIN LYMPHOMA PATIENTS

Christina Goldkuhl¹, Alexandru Dasu^{2;3}, Anna Bäck⁴, Gunilla Enblad⁵, Ingrid Glimelius⁵, Annika Hall², Lotta Hansson^{6;7}, Urban Jerlström.⁸, Ann-Sofie Johansson⁹, Jenny Kahlmeter-Brandell⁸, Johan Linderoth¹⁰, Marzia Palma^{6;7}, Hillevi Rylander², Marika Enmark^{2;11}, Daniel Molin⁵

¹Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden, ²The Skandion Clinic, Uppsala, Sweden, ³Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden, ⁴Department of Therapeutic Radiation Physics, Sahlgrenska University Hospital, Göteborg, Sweden., ⁵Experimental and Clinical Oncology, Department of immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden, ⁶Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden, ⁷Department of Hematology, Karolinska University Hospital, Stockholm, Sweden, ⁸Department of Oncology, Faculty of Medicine and Health, Örebro University Hospital, Örebro, Sweden, ⁹Department of Radiation Sciences, Oncology. Umeå University, Sweden, ¹⁰Department of Clinical Sciences, Division of Oncology and Pathology, Und University, Lund, Sweden, ¹¹Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Sweden

Background: Most stage I-IIA classical Hodgkin lymphoma (cHL) patients are cured with limited chemotherapy followed by radiotherapy (RT), with a risk of late toxicity from RT. The dose to normal tissue can be minimized with proton therapy (PT) due to the finite range in tissue and the rapid dose-drop beyond that. This study reports preliminary results of the PRO-Hodgkin study.

Method: The first 19 patients included (median age 31 (19–53)) are analysed. They received 2–4 cycles of ABVD followed by involved-node/ site PT to 29.75 Gy (RBE; relative biological effectiveness)/17 fractions for patients with risk factors, and 20 Gy (RBE)/10 fractions for those without risk factors. Planning CT in deep inspiration breath hold was recommended; if not feasible, a 4DCT was performed to ensure motion amplitudes within 5 mm. Patients were typically treated by pencil beam scanning with two anterior oblique fields, sometimes with a complementary posterior field. All treatment plans were robustly optimized.

Results: All patients were in complete remission at end of therapy. Acute toxicity was generally limited and similar to photon treatment, except slightly more skin reaction, which occurred in all patients (1 grade 3, 1 grade 2 and 17 grade 1).

Surprisingly 4 patients (age 26–45), previously healthy and non-smokers, presented with skin hyperesthesia radiating from the neck or the scapula/ chest wall area towards the axilla and upper arm, starting weeks or a few months after RT. The symptoms mostly resolved within a month, but one patient had symptoms gradually improving for 4 months. None of the patients had skin rash during symptoms and none had motor affection.

Analysis of the dose plans showed that the brachial nerve plexus was frequently located in or close to the target, and often had a modest overdosage (max 5% over the prescribed dose). Thoracic nerve roots and the spinal cord were usually located in the dose drop-off. Even assuming slightly higher RBE towards the end of the proton range, the dose to spinal cord/peripheral nerves was well within tolerance.

Conclusion: PT was generally well tolerated, except for an unexpected, transient neurological toxicity in 4 out of 19 patients. This could not be explained by an overdosage, and the potential mechanism has not yet been identified. Radiation- induced inflammation and cytokine release could be a possible cause. Further analyses are warranted and neurological toxicity will be reported for future patients.

P092: ESTIMATING THE DOSIMETRIC BENEFIT OF INVOLVED-NODE RADIOTHERAPY IN COMPARISON TO INVOLVED-FIELD RADIOTHERAPY - IMPLICATIONS FROM THE GHSG HD 17 TRIAL

Michael Oertel¹, Dominik Hering¹, Nina Nacke¹, Christopher Kittel¹, Kai Kröger¹, Jan Kriz², Michael Fuchs³, Christian Baues⁴, Dirk Vordermark⁵, Rita Engenhart-Cabillic⁶, Klaus Herfarth⁷, Peter Lukas⁸, Heinz Schmidberger⁹, Simone Marnitz⁴, Peter Borchmann³, Andreas Engert³, Uwe Haverkamp¹, Hans Theodor Eich¹

¹Department of Radiation Oncology, University Hospital Muenster, Muenster, Germany, ²Department of Radiation Oncology, Alexianer Clemenshospital Muenster, Muenster, Germany, ³Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University Hospital of Cologne, Cologne, Germany, ⁴Department of Radiation Oncology and Cyberknife Center, University Hospital of Cologne, Cologne, Germany, ⁵Department of Radiation Oncology, University Hospital Halle (Saale), Halle (Saale), Germany, ⁶Department of Radiotherapy and Radiation Oncology, University Hospital Giessen-Marburg, Marburg, Germany, ⁷Department of Radiation Oncology, Heidelberg University Inspruck, Innsbruck, Austria, ⁹Department of Radiotherapy and Radiation Oncology, University Hospital Mainz, Mainz, Germany

Question: The HD17 trial of the German Hodgkin Study Group evaluated the value of consolidative involved-node (IN)RT for patients with PET-positivity after chemotherapy and enabled a comparison between INRT and involved-field (IF)RT [1]. The present work analyzes the organs at risk (OAR) exposure of the performed RT.

Methods/Material: For dosimetric evaluation, all INRT-plans in the HD 17 trial were requested and compared to a random selection of IFRT-cases in the standard arm. Dose-volume histograms (DVH), either paper-based or digital, were analyzed using SPSS (version 28, IBM, Armonk, NY, USA). For comparisons between the two RT concepts, a two-sided t-test or a Mann-Whitney U test was used with a p-value < 0.05 considered as significant.

Results: In total, 148 DVH (INRT: 112, IFRT: 36) could be evaluated. Details on planning target volume (PTV) size and OAR exposure are shown in table 1. The introduction of INRT decreased the PTV size without reaching statistical significance. There was a consistent decrease in OAR-doses with INRT except for V5 in both lungs and V10 and Dmean in the right lung. Despite the dosimetric advantages, significant differences in favor of INRT could only be found for the spinal cord and thyroid.

Conclusion: INRT, in comparison to IFRT, decreases PTV-size and OAR exposure and may help to comply with modern dose constraints [2].

	Total cohort	IFRT	INRT	р
PTV (ml)	1265.2 (86.7-	1438.1 (97.6-	1181.6 (86.7-	0.082
	5125.3)	4238.0)	5125.3)	
Lung right D _{mean} (Gy)	9.8 (0.3-20.0)	9.5 (4.0-17.8)	10.1 (0.3-20.0)	0.861
V5 (%)	54.6 (0.0-100.0)	48.0 (0.0-98.0)	57.5 (0.0-1.0)	0.141
V ₁₀ (%)	37.0 (0.0-86.0)	32.0 (0.0-86.0)	38.0 (0.0-83.0)	0.538
V ₂₀ (%)	20.0 (0.0-48.0)	21.0 (0.0-46.0)	19.1 (0.0-48.0)	0.509
V ₂₅ (%)	13.0 (0.0-42.0)	16.0 (0.0-40.0)	11.9 (0.0-42.0)	0.197
V ₃₀ (%)	2.0 (0.0-32.0)	2.0 (0.0-30.0)	1.5 (0.0-32.0)	0.477
Lung left D _{mean} (Gy)	10.5 (0.2-26.5)	11.6 (1.0-23.5)	10.1 (0.21-26.5)	0.291
V5 (%)	55.1 (0.0-99.0)	50.0 (0.0-99.0)	58.0 (0.0-99)	0.527
V ₁₀ (%)	37.8 (0.0-92.0)	39.5 (0.0-90.0)	37.5 (0.0-92.0)	0.981
V ₂₀ (%)	20.0 (0.0-85.0)	22.3 (0.0-70.0)	19.2 (0.0-0.85)	0.403
V ₂₅ (%)	13.3 (0.0-80.0)	16.0 (0.0-62.0)	12.0 (0.0-80.0)	0.136
V ₃₀ (%)	2.0 (0.0-60.0)	3.0 (0.0-30.0)	2.0 (0.0-60.0)	0.426
Spinal cord D _{max} (Gy)	29.6 (6.9-34.2)	31.2 (15.6-34.2)	28.8 (6.9-32.6)	<0.001
Esophagus D _{mean} (Gy)	21.4 (8.9-30)	23.4 (10.1-27.9)	20.5 (8.9-30.0)	0.164
Heart D _{mean} (Gy)	13.1 (0.5-30.4)	14.4 (0.62-30.4)	12.4 (0.5-26.9)	0.691
Thyroid D _{mean} (Gy)	26.5 (13.9-33.3)	31.1 (29.4-33.3)	24.2 (13.9-31.3)	0.023
Thyroid V ₂₅ (%)	49.5 (0-100)	100 (98-100)	43.6 (0-100)	0.036
Breast left D _{mean} (Gy)	3.6 (0.5-9.3)	3.9 (2.1-10.9)	3.5 (0.5-9.3)	0.476
Breast right D _{mean} (Gy)	3.7 (0.4-15.6)	4.3 (1.0-6.8)	3.7 (0.4-15.6)	0.935

Table 1: Size of the planning targe volume (PTV) and dose exposure to organs at risks in comparison between involved-field (IFRT) radiotherapy and involved-node radiotherapy (INRT). Gy: Gray

Literature

1. Lancet Oncol. 2021 Feb;22(2):223-234.

2. Blood. 2019 Mar 21;133(12):1384-1385.

P093: FROM INVOLVED- FIELD TO INVOLVED-NODE – QUALITY ANALYSIS OF THE RADIATION THERAPY IN HD 17 BY THE EXPERT PANEL OF THE GERMAN HODGKIN STUDY GROUP

Michael Oertel¹, Dominik Hering¹, Nina Nacke¹, Christopher Kittel¹, Kai Kröger¹, Jan Kriz², Michael Fuchs³, Christian Baues⁴, Dirk Vordermark⁵, Rita Engenhart-Cabillic⁶, Klaus Herfarth⁷,