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Osteoporosis, femoral head necrosis, and congenital bone defects are orthopedic disorders characterized by reduced bone
generation and insufficient bone mass. Bone regenerative therapy primarily relies on the bone marrow mesenchymal stem cells
(BMSCs) and their ability to differentiate osteogenically. Icariin (ICA) is the active ingredient of Herba epimedii, a common
herb used in traditional Chinese medicine (TCM) formulations, and can effectively enhance BMSC proliferation and
osteogenesis. However, the underlying mechanism of ICA action in BMSCs is not completely clear. In this review, we provide
an overview of the studies on the role and mechanism of action of ICA in BMSCs, to provide greater insights into its potential
clinical use in bone regeneration.

1. Introduction

Conventional treatments for orthopedic disorders like osteo-
porosis, femoral head necrosis, bone defects, and nonunion
disorders [1–7] have poor clinical efficacy due to their inabil-
ity to ameliorate the loss in bone mass. Therefore, the current
focus of treating bone disorders is tissue regeneration using
bone marrow mesenchymal stem cells (BMSCs) [7, 8]. A
number of studies have investigated the effects of various
drugs, mechanical stress, physical stimuli, and scaffolds on
BMSCs [9–11], in order to clinically translate its regenerative
capacity [12]. Traditional Chinese medicine (TCM) has also
garnered considerable interest in recent years due to its min-
imal toxicity [13]. According to the principles of TCM, bone
function is closely associated with the balance of kidney yin
and yang. Herbs such as Herba epimedii, Fructus psoralea,
Drynaria fortunei, and Radix dipsaci are known to invigorate
the kidney and restore the balance and are therefore fre-
quently used to treat bone disease. Currently,Herba epimedii

is the most deeply studied among those herbs in the bone
regeneration field [14]. Icariin (ICA) is the main active ingre-
dient ofHerba epimedii, which has been used in TCM formu-
lations to strengthen the muscles and bones [15]. Although
Herba epimedii is still used to treat orthopedic disorders, its
mechanism of action remains unclear. Several studies have
analyzed the effects of ICA in BMSCs and other cells
and provided new insights into its therapeutic role in
orthopedic disorders. In this review, we have summarized
the recent findings on the role and mechanism of action
of ICA in BMSCs.

2. Basic Properties of ICA

Herba epimedii (Yin Yang Huo in Chinese) is the dried leaf of
Epimedium brevicornum Maxim as recorded in the Chinese
Pharmacopoeia [16–18], as well as the 400-year-old Chinese
medical classic Shennong Ben Cao Jing. It nourishes the
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kidney and significantly reinforces yang [18]. More than 20
flavonoids have been identified by chemical reaction and
spectral analysis and isolated from Herba epimedii by sys-
tematical separation technology [17]. ICA (C33H40O15,
molecular weight: 676.66, Figure 1) [17] is one of the primary
active constituents which is also considered as the chemical
marker for quality control components of Herba epimedii
[18]. Specifically, the contents of ICA and the total flavonoids
are no less than 0.5% and 5.0% of the components, respec-
tively [16]. The main isolation methods for ICA include
water boiling extraction, ethanol reflux extraction [19–22],
and an ultrasonic-assisted ethanol extraction method devel-
oped by Zhang et al. [21]. The optimum ultrasonic-assisted
extraction conditions were determined by an orthogonal test
as follows: 50% (v/v) ethanol solution, 30ml/g liquid-solid
ratio, ultrasonic duration for 30 minutes, 50°C extraction
temperature, and extraction for 3 times. Compared with the
traditional water boiling extraction method, this kind of
method has higher efficiency. In addition, microwave, high
pressure, and vacuum reflux extraction methods have also
been tested [17, 21, 23, 24]. Herba epimedii is widely used
for the treatment of osteoporosis in China [18, 25, 26],
and results from clinical trials [27, 28] show similar anti-
osteoporotic effects of its flavonoid extracts, as well as
those of Epimedium total flavone capsules. The effects of
ICA have largely been studied in animal or in vitro models
[2, 4, 5, 9, 29, 30], and its potential clinical applications
are rarely reported.

3. Role of BMSCs in Bone Regenerative Therapy

The common culture method of mouse BMSCs was as
described in several studies [31–34]. Bone marrow is
extracted from the femur and tibia of mice using an aseptic
technique. The bone marrow is then cultured in vitro and
subcultured to the third passage. As for human BMSCs, the
proximal femur or posterior iliac crest is the common part

from which to extract human bone marrow [30, 32, 33, 35].
The bone marrow is cultured in vitro and usually cultured
to the third passage [33]. It should be noted that the cell phe-
notype identification is important in BMSC culture processes
[32]. The sorted mouse CD29+Sca-1+CD45-CD11b- BMSCs
and human CD146+STRO-1+CD45- BMSCs are cultured
for 1-2 weeks to reach 80%-85% confluence [32, 33]. Then,
first-passage BMSCs are detached and seeded in culture
flasks for enrichment of cell populations.

The bone is a kind of mineralized connective tissue
which exhibits four types of cells: osteoclasts, osteoblasts,
osteocytes, and bone lining cells. Osteoblasts, which com-
prise 4-6% of the total bone cells, are located along the
bone surface and are widely known for their role in bone
formation [36]. The osteocytes accounting for 90-95% of
the total bone cells are located within lacunae surrounded
by a mineralized bone matrix wherein they exhibit a den-
dritic morphology [37]. The morphology of embedded
osteocytes varies independently of bone types. Osteoclasts
derive from mononuclear cells of the hematopoietic stem
lineage which are multinucleated and terminally differenti-
ated. Though it exhibits an inert appearance, bone tissue is
constantly resorbed by osteoclasts and reformed by osteo-
blasts in a highly dynamic way. The process of bone remod-
eling is greatly complicated which is in a cycle comprising
three stages: (1) initiation of bone resorption by osteoclasts,
(2) transition between resorption and reformation, and
(3) formation of new bone by osteoblasts. This bone
remodeling process requires coordinated actions of osteo-
cytes, osteoclasts, osteoblasts, and bone lining cells which
together form the temporary anatomical structure called
the basic multicellular unit [38, 39]. Osteoblasts are the
main functional cells of bone formation, which are mainly
responsible for the synthesis, secretion, and mineralization
of the bone matrix. Osteoblasts can produce extracellular
matrix proteins and mineralization regulators [38], during
which period it undergoes significant proliferation and
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Figure 1: Chemical structure of ICA.
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differentiation. Osteoclasts are the only cells with bone
resorption function. Many cytokines such as interleukin-6
(IL-6), tumor necrosis factor-α (TNF-α), and cathepsin K
can provide signals for osteoclast differentiation and bone
resorption, promote the recruitment of osteoclast precur-
sors, and drive osteoclast differentiation and bone resorp-
tion [40–43]. The osteoblasts and the differentiation of
osteoclasts are regulated by many signaling pathways,
among which the bone morphogenetic protein-drosophila
mothers against decapentaplegic protein (BMP-Smad) sig-
naling is important [44]. The bone mass can be increased
by promoting the directional differentiation of BMSCs into
osteoblasts, which is driven by the runt-related transcrip-
tion factor 2 (Runx2) and Osterix (Osx) [36, 38, 45, 46].
Since osteocytes are derived from the BMSC lineage
through osteoblast differentiation [38], so finding potential
drugs prompting the differentiation of BMSCs into osteo-
blasts may be a promising strategy for bone regeneration.

Hematopoietic stem cells (HSCs) and BMSCs are the two
pluripotent cell types found in the bone matrix [47, 48].
BMSCs were first isolated from the adult bone marrow [49]
and can differentiate into the adipocytes, chondrocytes, oste-
oblasts, and myoblasts [29, 50, 51]. Therefore, BMSCs are a
highly promising therapeutic option for cardiovascular,
orthopedic, and joint degenerative diseases [52–57]. Several
studies have examined the ability of BMSCs to improve bone
formation and prevent bone loss and necrosis, in addition
to ameliorating congenital bone defects and osteoporosis
[58, 59]. However, the engrafted BMSCs have poor survival
and a low rate of differentiation at the site of transplantation,
which significantly reduce the efficacy of BMSC-based regen-
erative therapy. Therefore, it is essential to develop new drugs
to enhance BMSC proliferation and differentiation.

BMSC osteogenesis is the key step in bone regenera-
tion and is affected by several factors including hormones,
growth factors, environmental factors, and microRNAs
[11]. BMSCs not only give rise to bone tissues but can also
differentiate into adipose cells or osteoblasts [60]. Under
physiological conditions, a dynamic balance exists between
the osteogenic and the adipogenic potential of BMSCs
[61–63] and is primarily regulated by Runx2 and the per-
oxisomal proliferator-activated receptor gamma (PPARγ)
[30, 64]. Runx2 is regulated by BMP-2 and is a key modula-
tor of osteogenic differentiation, whereas PPARγ promotes
adipogenesis and inhibits osteogenesis [65–67]. Both signal-
ing pathways concurrently regulate different cytokines to
determine the fate of BMSC differentiation [68, 69]. The
extracellular signal-regulated kinase-mitogen-activated pro-
tein kinase (ERK-MAPK) signaling pathway is also a key
player in regulating BMSC differentiation [70], whereas
the platelet-derived growth factor (PDGF) pathway is an
essential proosteogenic pathway [71]. Cao et al. showed
that Notch and BMP-9/Smad signaling synergistically
enhanced osteogenic differentiation [72], and Li et al.
found that miR-21 directly acted on Smad7 in the
Smad7-Smad1/5/8-Runx2 pathway to modulate osteogenic
differentiation [73]. Long et al. demonstrated that miR-
139-5p regulated osteogenic differentiation of BMSCs via
the Wnt/β-catenin pathway [74]. Furthermore, the

transforming growth factor-β/bone morphogenetic protein
(TGF-β/BMP) [73], phosphatidylinositol 3-kinase/protein
kinase B/glycogen synthase kinase-3 (PI3K/Akt/GSK-3)
[9], extracellular regulated kinase (ERK), PI3K/Akt [75],
and insulin-like growth factor 1 (IGF1) [76] pathways also
play important roles in osteogenic differentiation and
bone formation (Figure 2). Since the two differentiation
pathways are competing [68, 69], interregulatory, and
interconvertible, certain growth factors can be used to
promote the osteogenic differentiation of BMSCs ex vivo
for bone tissue engineering.

Migration of BMSCs to the site of bone defect is a crit-
ical step in the treatment of orthopedic disorders [77].
Previous studies [78–81] have shown that the C-X-C motif
chemokine ligand 12/C-X-C chemokine receptor type 4
(CXCL12/CXCR4) axis modulates BMSC homing and pro-
motes angiogenesis, and the BMP-2/Smads/Runx2/Osterix
axis modulates BMSC osteoblastic differentiation. The
crosstalk between these two signaling axes is mediated by
CXCR4, which modulates the migration [82] and osteo-
genic differentiation of BMSCs. Some studies have demon-
strated that BMSC migration can also occur via the BMP-
Smad1/5/8-twist-related protein 1/activating transcription
factor 4 (Twist1/Atf4) [83, 84] and CXCR4/stromal-
derived factor 1 (SDF-1) [85–87] axes and the Smad path-
way [88].

4. Mechanisms of BMSC Regulation by ICA

4.1. BMSC Proliferation and Osteogenesis Promoted by ICA.
ICA has multiple pharmacological activities, including hor-
mone-like, antitumor, immunomodulatory, and antioxida-
tive effects [89–94]. Studies [95, 96] show that ICA-
mediated osteogenesis is associated with its hormone-like
function. It can induce BMP-2 and BMP-4 mRNA expres-
sion in osteoblasts and significantly upregulates Osx at low
doses [97, 98]. In addition, ICA facilitates bone formation
by inducing proosteoblastic genes like Osx, Runx2, alkaline
phosphatase (ALP), and collagen type I. It also inhibits bone
resorption by regulating the osteoprotegerin/receptor activa-
tor of nuclear factor-κb ligand (OPG/RANKL) signaling in
the osteoclasts [99]. Zhang et al. found that ICA inhibits
the adipogenic differentiation of BMSCs and promotes
osteoblastic differentiation [100]. Fan et al. found that ICA
promoted not only BMSC proliferation in vitro in a dose-
dependent manner but also osteoblastic differentiation at
very low doses (10-9M to 10-6M). However, a higher concen-
tration of 10-5M was toxic and suppressed osteoblastic differ-
entiation [30]. Using a rat model of bone fracture, Cao et al.
[2] showed that intragastric administration of ICA signifi-
cantly increased osteotylus formation and accelerated bone
healing within 5 months of treatment. These findings dem-
onstrate that ICA administration following bone fracture
can accelerate mineralization and osteogenesis and signifi-
cantly improve bone healing. Therefore, ICA can also be an
alternative treatment for postmenopausal osteoporosis and
bone fracture.

The imbalance between BMSC adipogenesis and osteo-
genesis is considered the primary cause of femoral head
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necrosis [101]. The two processes are normally at an equilib-
rium under physiological conditions, which can be disrupted
by external factors such as steroids and alcohol. Huang et al.
[4] showed that ICA can effectively prevent femoral head
necrosis, improve prednisolone-induced BMSC prolifera-
tion, enhance osteoblastic differentiation, and inhibit adi-
pogenic differentiation. In addition, low concentrations of
ICA (10-9M to 10-5M) significantly increased BMSC pro-
liferation, especially at 10-6M [4, 30].

Sun et al. [29] found that ICA restored the balance
between osteogenic and adipogenic differentiation of mes-
enchymal stem cells in patients with osteonecrosis of the
femoral head via ATP-binding cassette subfamily B member
1- (ABCB1-) promoter demethylation. In addition, ICA
inhibited the differentiation of mesenchymal stem cells into
adipocytes by inhibiting PPARγ, CCAAT/enhancer binding
protein α (C/EBPα), and fatty acid-binding protein 4
(FABP4) mRNA via the Notch signaling pathway [102].
Zheng et al. [103] also found that daily oral administration
of ICA (0.3mg/g) to osteoprotegerin knockout male mice
for 8 weeks increased the trabecular bone volume and trabec-
ular number, indicating an important role of osteoprotegerin
in ICA-mediated osteogenic effects. In addition, osteocalcin
and osteopontin also mediate ICA-induced osteogenic
differentiation by increasing ALP activity and collagen type
I levels [104]. These results [29, 102–104] indicated that
ICA plays an important role in bone synthesis and

metabolism. Furthermore, ICA significantly promoted bone
healing by increasing BMSC proliferation and osteoblastic
differentiation in a New Zealand rabbit model of bone defect
[105]. ICA can also induce BMSC osteoblastic differentiation
under various pathological conditions such as osteoporosis
[5] and bone necrosis [29]. Estrogen and epigenetic regulation
are currently the research focus of ICA-induced osteogenesis
under pathological conditions [5, 29]. Sun et al. showed that
ICA improved BMSC viability and osteoblastic differentiation
by upregulating ABCB1, indicating a demethylating function
as well [29]. In addition to promoting osteogenic differentia-
tion of BMSCs, ICA can also promote bone regeneration by
promoting angiogenesis [106], since vascularization is a key
step in bone regeneration which recruits the BMSCs and
essential factors to the site of trauma [107].

Icaritin is a biologically active metabolite of ICA [108]
and can be easily extracted from various sources. Wu et al.
[12] showed positive effects of icaritin on BMSC osteoblastic
differentiation in vitro. It promotes osteogenic differentiation
and inhibits adipogenic differentiation of BMSCs by inacti-
vating GSK-3β and suppressing PPARγ expression [102,
109, 110]. In addition, the BMPs (BMP-2, BMP-4, and
BMP-7) and the MAPK/ERK pathway are also involved
in icaritin-mediated osteogenic differentiation [12, 110].

Taken together, ICA promotes BMSC proliferation and
osteoblastic differentiation and inhibits adipogenic differen-
tiation, indicating its potential as a bone regenerative drug.
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Figure 2: Signaling pathways involved in osteogenesis, adipogenesis, and migration regulation of BMSCs.
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4.2. Signaling Pathways Involved in ICA-Mediated BMSC
Proliferation and Osteogenesis. The MAPK pathway consists
of the ERK, p38 kinase (p38), and Jun amino-terminal kina-
ses/stress-activated protein kinase (JNK) factors. It regulates
essential cellular functions, such as growth, proliferation, dif-
ferentiation, and apoptosis. In addition, MAPKs also mediate
the biological functions of ICA [111], indicating a possible
role in BMSC proliferation as well. Qin et al. [112] found that
ICA-induced rat BMSC proliferation in vitro was positively
correlated with ERK levels and p38 phosphorylation and sig-
nificantly upregulated Elk1 and c-Myc, the transcription fac-
tors downstream of the MAPK pathway.

A study using BMSCs extracted from SD rat bone mar-
row showed that 0.05-2.0mg/l ICA significantly facilitated
BMSC proliferation by activating the Wnt/β-catenin path-
way [113]. Ye et al. [114] found that low doses of ICA (10-
8M to 10-6M) promoted the proliferation and osteoblastic
differentiation of rat adipose-derived stem cells (ADSCs),
and 10-7M ICA significantly upregulated RhoA (ras homolog
gene family, member A) and p-MYPT1 (a ROCK or Rho-
associated protein kinase substrate). This indicates that ICA
promotes rat ADSC proliferation and osteoblastic differenti-
ation by activating the RhoA-transcriptional coactivator with
the PDZ-binding motif (TAZ) signaling pathway. Further-
more, Zhai et al. [115] showed the involvement of the
PI3K/Akt/eNOS/NO/cGMP/PKG signaling pathway in the
ICA-mediated osteogenesis of BMSCs. As already men-
tioned, any imbalance between BMSC osteoblastic and adi-
pogenic differentiation impairs bone stability and leads to
bone loss and increased bone marrow adipogenesis [116],
resulting in osteoporosis and bone necrosis [117, 118]. TAZ
is a β-catenin-like transcriptional coactivator involved in
modulating this balance [119, 120]. It activates Runx2-
mediated transcription to regulate BMSC differentiation
and stimulate osteoblastic differentiation and also interacts
with PPARγ to suppress adipogenic differentiation. Further-
more, Wei et al. [121] demonstrated that ICA promotes

BMSC proliferation and osteogenesis via activation of the
estrogen receptor (ER)α-Wnt/β-catenin signaling pathway.
There is considerable ambiguity regarding the interaction
between TAZ andWnt/β-catenin. One study [122] indicated
an upstream regulatory role of TAZ, while another study
[123] showed that TAZ lies downstream of the Wnt/β-
catenin cascade. Nevertheless, TAZ is an important regulator
of ICA-mediated BMSC osteoblastic differentiation.

Kammerer et al. [124] reported that the ERα signaling
pathway transcriptionally regulates Runx2, while Cai et al.
[125] showed that the Wnt/β-catenin pathway directly tar-
geted Runx2 to promote osteoblastic differentiation and the
calcification of vascular smooth muscle cells. Both studies
indicated a close association of the ERα and Wnt/β-catenin
signaling pathways with the Runx2 expression. Another
study [126] found that ICA stimulated BMSC osteoblastic
differentiation by upregulating TAZ and the downstream
osteogenic genes, and blocking the aforementioned pathways
abrogated ICA-induced TAZ upregulation (Figure 3). These
findings point to a TAZ/ERα/Wnt/β-catenin axis that medi-
ates ICA-induced BMSC osteoblastic differentiation. In one
study, Wu et al. [104] demonstrated the involvement of the
JNK pathway in the osteoblastic differentiation of BMSCs
or periodontal ligament stem cells [127, 128].

Multiple signaling pathways, including the BMP, nitric
oxide (NO), MAPK, and Wnt/β-catenin pathways, are
likely activated in the osteoblasts due to the estrogen-like
properties of ICA and ICA-induced estrogen production
[90, 129, 130]. Shi et al. [131] showed that ICA promoted
osteogenesis in rat cranial osteoblasts and in an in vivo rat
model of bone growth by activating the cAMP/PKA/CREB
signaling pathway.

4.3. ICA Promotes BMSC Migration and Angiogenesis. ICA
not only activates endothelial angiogenesis in vitro but also
directly stimulates angiogenesis in vivo, through the
PI3K/Akt/eNOS-dependent signaling pathways [106]. ICA

Icariin

RhoA-TAZ, JNK, Wnt/�훽-catenin,
ER�훼-Wnt/�훽-catenin, and
PI3K/Akt/eNOS/NO/cGMP/PKG

MAPK, ERK, p38, Wnt/�훽-catenin,
RhoA-TAZ, and ER�훼-Wnt/�훽-catenin

PI3K/Akt/eNOS, EGF-EGFR, PI3K
signaling, and ERK1/2

MAPK signaling

BMSCs

Osteogenesis

Proliferation

Angiogenesis

Migration

Migration

Angiogenesis

Proliferation

Osteogenesis
C33H40O15

Figure 3: Signaling pathways involved in ICA-mediated BMSC proliferation, osteogenesis, angiogenesis, and migration. ICA promotes
proliferation of BMSCs through signaling pathways such as MAPK, ERK, p38, Wnt/β-catenin, RhoA-TAZ, and ERα-Wnt/β-catenin. ICA
promotes BMSC osteogenesis via signaling pathways such as RhoA-TAZ, JNK, Wnt/β-catenin, ERα-Wnt/β-catenin, and
PI3K/Akt/eNOS/NO/cGMP/PKG. ICA promotes BMSC angiogenesis via PI3K/Akt/eNOS, EGF-EGFR, PI3K, and ERK1/2 signaling
pathways. ICA promotes migration of BMSCs through the MAPK signaling pathway.
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can activate the epidermal growth factor-epidermal growth
factor receptor (EGF-EGFR) pathway to promote endothelial
NOS synthesis, thereby facilitating vascular regeneration
[132]. In addition, ICA can directly stimulate angiogenesis
by activating various angiogenic factors like ERK, PI3K,
and Akt [133, 134]. An in vitro study by Liu et al. [135]
showed that ICA upregulated angiogenesis-related genes like
vascular endothelial growth factor (VEGF) and fibroblast
growth factors (FGF). In addition, ICA upregulated brain-
derived neurotrophic factor (BDNF) and VEGF via the
PI3K and ERK1/2 signaling pathways [134], which in turn
promoted the angiogenic differentiation of BMSCs. Further-
more, Jiao et al. [136] found that ICA enhanced the migra-
tory ability of BMSCs in vitro and in vivo, via the MAPK
signaling pathway.

In summary, the primary effects of ICA in BMSCs are to
promote proliferation and osteogenesis and are mediated by
multiple signaling pathways including the MAPK/ERK/p38,
Wnt/β-catenin, PI3K/Akt/eNOS/NO/cGMP/PKG, RhoA-
TAZ, and ERα-Wnt/β-catenin pathways. In addition, ICA
can also act on osteoblasts through the BMP/Runx2, NO,
MAPK, Wnt/β-catenin, cAMP/PKA/CREB, and JNK path-
ways. Furthermore, ICA promotes angiogenesis via the
PI3K, ERK1/2, and EGF-EGFR pathways and BMSC migra-
tion via the MAPK pathway. The angiogenic effect of ICA
is favorable for osteogenesis, although their exact relation-
ship as well as that between angiogenesis and migration still
needs to be elucidated.

5. Prospects

ICA can significantly promote BMSC proliferation and oste-
oblastic differentiation and inhibit adipogenic differentiation,
making it a reliable option for bone regenerative therapy.
Mechanistic studies show that multiple signaling pathways
mediate these processes, indicating the potential of multiple
therapeutic targets. Above all, ICA could be made into a
liquid state at suitable concentration in the future and be
applied in bone regeneration. Besides, the evidence indicated
that the optimal concentration for ICA which can perform
better effects in BMSCs is 1μM [4, 30], while others reported
0.1μM [114, 121, 126]. However, further studies are needed
to figure out both a safe and an effective concentration of
ICA [14]. For patients with fractures, bone defects, nonunion
disorders, and osteonecrosis of the femoral head, a mixture of
ICA and autologous BMSCs can be injected locally into the
lesion to facilitate bone regeneration. For patients with
osteoporosis, ICA can be delivered through intravenous
administration. Since ALP (an early marker of osteogenic dif-
ferentiation) levels peak on the 14th day of the in vitro BMSC
culture with ICA [121, 126, 135], it is reasonable to consider
14 days of intravenous ICA administration for the treatment
regimen. ICA also promotes the regeneration of periodontal
tissue [137], peripheral nerves [138], neural stem cells
[139], and endometrium [140], although the optimal concen-
tration of ICA differs across tissues.

There are still several questions that need to be
addressed in future studies. For example, although the
pathways involved in BMSC migration are well-known,

the mechanism(s) underlying ICA-mediated BMSC migra-
tion remain to be elucidated. At present, it is not clear
whether there is a synergistic or antagonistic crosstalk or
upstream and downstream relationship among the signaling
pathways involved in ICA-mediated osteogenic differentia-
tion of BMSCs. Most studies on BMSC osteogenesis and
migration have been carried out under normoxic conditions.
The oxygen levels in ischemic lesions, such as in femoral head
necrosis, can be less than 1% [141], and severe hypoxia affects
the osteogenic differentiation and migration of BMSCs
in vivo and in vitro [142, 143]. Therefore, it is necessary to
simulate the hypoxic conditions in the in vitro studies.

In conclusion, a better understanding of the role and
mechanism of action of ICA in BMSCs can provide new ther-
apeutic strategies for various orthopedic disorders such as
osteoporosis, femoral head necrosis, and bone defects.
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