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Significance

 Major histocompatibility complex 
(MHC-I) proteins select 
repertoires of epitopic peptides 
to display on the cell surface for 
T cell surveillance, against a vast 
background of possible decoys. 
However, the molecular 
mechanism of this selection, or 
proofreading, process has 
remained unclear. Here, we 
capture a structural snapshot of 
an MHC-I molecule caught in the 
act of scrutinizing a potential 
peptide antigen under the 
guidance of its molecular 
chaperone, TAPBPR. The 
structure shows how conserved 
MHC-I residues capture the 
peptide backbone, to enable 
rapid screening of peptide 
decoys. TAPBPR facilitates 
peptide selection by stabilizing 
this intermediate state rather 
than directly competing with 
peptides. These findings advance 
our understanding of 
immunogenic epitope selection, 
with implications for vaccine 
development and T cell–based 
therapies.
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Class I major histocompatibility complex (MHC- I) proteins play a pivotal role in adap-
tive immunity by displaying epitopic peptides to CD8+ T cells. The chaperones tapa-
sin and TAPBPR promote the selection of immunogenic antigens from a large pool 
of intracellular peptides. Interactions of chaperoned MHC- I molecules with incom-
ing peptides are transient in nature, and as a result, the precise antigen proofreading 
mechanism remains elusive. Here, we leverage a high- fidelity TAPBPR variant and 
conformationally stabilized MHC- I, to determine the solution structure of the human 
antigen editing complex bound to a peptide decoy by cryogenic electron microscopy 
(cryo- EM) at an average resolution of 3.0 Å. Antigen proofreading is mediated by tran-
sient interactions formed between the nascent peptide binding groove with the P2/P3 
peptide anchors, where conserved MHC- I residues stabilize incoming peptides through 
backbone- focused contacts. Finally, using our high- fidelity chaperone, we demonstrate 
robust peptide exchange on the cell surface across multiple clinically relevant human 
MHC- I allomorphs. Our work has important ramifications for understanding the selec-
tion of immunogenic epitopes for T cell screening and vaccine design applications.

MHC- I | molecular chaperone | NMR | cryoEM | antigen repertoire

 Class I major histocompatibility complex (MHC-I) proteins display the intracellular 
proteome onto the cell surface for immunosurveillance by sampling a large pool of peptide 
fragments ( 1   – 3 ). Optimal high-affinity-peptide-loaded MHC-I (pMHC-I) molecules are 
recognized by T cell receptors and natural killer receptors, triggering downstream cellular 
activation and clonal expansion and resulting in the clearance of infected, or aberrant cells 
( 4   – 6 ). While the immunogenic peptide repertoires of the Class I Human Leukocyte 
Antigen (HLA, human MHC-I) proteins are defined by their extremely polymorphic 
grooves ( 7   – 9 ), selection and optimization of the repertoires in the cellular pathway are 
mediated by two dedicated molecular chaperones, tapasin ( 10     – 13 ) and TAP binding 
protein-related (TAPBPR) ( 14 ,  15 ). TAPBPR is a homolog of tapasin that is not part of 
the peptide loading complex. These chaperones serve as an essential quality control check-
point for pMHC-I molecules, optimizing the peptide cargo en route to the cell surface 
( 16 ,  17 ). Polymorphic residues at the MHC-I groove A-F “pockets” and at the direct 
interaction surfaces confer a wide range of dependence on chaperones for peptide loading 
and cell surface expression across various HLA allotypes, with important ramifications 
for viral control among different individuals ( 18       – 22 ). In addition, chaperones have recently 
emerged as key components for the presentation of metabolite ligands on MHC-related 
1 (MR1) molecules ( 23   – 25 ), and have provided powerful tools for in vitro applications, 
including the generation of pMHC-I libraries encompassing different peptide specificities 
or the loading of antigens on cells independently of the endogenous processing pathway 
( 19 ,  26   – 28 ).

 Two independently solved crystal structures of mouse MHC-I bound to human 
TAPBPR ( 29 ,  30 ), together with studies of TAPBPR and tapasin in complex with human 
MHC-I and MR1 molecules by X-ray crystallography, NMR spectroscopy, and cryogenic 
electron microscopy (cryo-EM) ( 23 ,  31         – 36 ) have provided key insights into the chaper-
oning mechanism. Empty MHC-I adopts an open, peptide-receptive conformation where 
the short α2-1  helix shifted outward by 3 Å to induce a widened peptide binding groove ( 29 , 
 30 ). Based on these structures obtained for the empty, resting state of the complex, it has 
been proposed that the binding of high-affinity peptides triggers the closure of the MHC-I 
groove, which allosterically promotes the release of pMHC-I from the chaperone ( 29 ,  30 ,  32 ). 
A range of biophysical and biochemical studies have also demonstrated that the affinity 
of TAPBPR for MHC-I is negatively correlated with peptide occupancy ( 19 ,  32 ,  37 ,  38 ). 
TAPBPR preferentially interacts with nascent empty or suboptimal peptide-loaded 
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MHC-I molecules, exchanging low- for high-affinity peptides 
( 22 ). The precise molecular mechanism of MHC-I antigen selec-
tion by TAPBPR remains enigmatic ( 39 ,  40 ) due to the transient 
nature of the peptide/MHC-I/TAPBPR complex, resulting in no 
structural visualization and precluding a detailed understanding 
of how TAPBPR edits the peptide repertoire.

 To examine the editing function of TAPBPR and capture the 
biologically relevant peptide-bound state of its MHC-I complex, 
we have leveraged protein engineering to enhance the stability of 
MHC-I molecules that are loaded with suboptimal peptides ( 41 ), 
as well as deep scanning mutagenesis of MHC-I binding surfaces 
on TAPBPR ( 19 ). Here, we characterize a high-fidelity chaperone, 
named TAPBPRHiFi , which shows enhanced binding to peptide- 
loaded MHC-I molecules and peptide exchange function in vitro. 
We determine the cryoEM structure of TAPBPRHiFi /HLA- 
A*02:01/β2 m loaded with a heptameric peptide decoy, revealing 
a key intermediate of the peptide exchange process. We find that 
the transient proofreading complex utilizes 1) conserved groove 
residues to capture the backbone of incoming peptides in a 
native-like conformation, 2) properly conformed hydrophobic 
A-, B-, and D-pockets to dock the peptide P2 and P3 anchors, 
and 3) a conformationally heterogenous F-pocket that folds upon 
binding to high-affinity peptides, allosterically triggering the dis-
sociation of TAPBPR. Finally, we show that TAPBPRHiFi  signifi-
cantly enhances peptide exchange across multiple HLA-A allotypes 
expressed on a cellular membrane to promote antigen loading 
independently of the endogenous pathway, which involves tapasin 
and the peptide-loading complex. These results have important 
applications in screening for and eliciting T cell responses in var-
ious experimental and therapeutic settings. Taken together, our 
combined structural, biochemical, and functional studies provide 
a complete mechanism of MHC-I antigen proofreading and pep-
tide repertoire selection. 

Results

Enhanced Editing of MHC- I Antigens Using an Engineered 
Molecular Chaperone. While contradictory peptide unloading/
levering (30, 42, 43) or trapping (38) mechanisms have been 
proposed involving the G24- R36 loop of TAPBPR, whether the 
loop actively participates in cargo editing of the peptide- loaded 
MHC- I molecules remains unclear (39). We sought to resolve 
this controversy and identify TAPBPR regions that promote 
interactions with peptide- loaded molecules for antigen editing. 
Toward this, we used either wildtype TAPBPR, TAPBPRWT, or 
our engineered version high- fidelity TAPBPRHiFi, containing 3 
mutations S104F, K211L, and R270Q outside the loop region 
(19), to directly measure binding to a high- affinity peptide 
TAX9 loaded HLA- A*02:01 by surface plasmon resonance 
(SPR). Experiments were run in the presence of TAX9 peptide 
in molar excess to prevent peptide dissociation upon binding to 
TAPBPR. We also compared different mutants of TAPBPRHiFi and 
TAPBPRWT, containing partial (A29- S32 deletion, TAPBPR∆ALAS) 
or complete loop deletions (G24- R36 deletion, TAPBPR∆G24- R36, 
and TAPBPRHiFi∆G24- R36) as well as TAPBPRTN6 (E205K, R207E, 
Q209S, and Q272S), which does not interact with peptide- 
loaded MHC- I (Fig. 1A and SI Appendix, Fig. S1) (27, 37, 44). 
Our results showed that TAX9- loaded HLA- A*02:01 exhibited 
an enhanced affinity (reduced KD by one order of magnitude) 
for TAPBPRHiFi, relative to TAPBPRWT (Fig.  1 B and C and 
SI Appendix, Fig. S2). Meanwhile, loop deletions exhibited no 
significant effect for TAPBPRHiFi but an approximately threefold 
decrease in KD for TAPBPRWT on binding to peptide- loaded 
MHC- I (Fig. 1 B and C and SI Appendix, Fig. S2), likely due to 

the loss of hydrophobic interactions with the rim of the MHC- I α1 
and α2 helices, in agreement with our previous solution mapping 
studies (38). These observations demonstrate that, by enhancing 
its interactions with MHC- I surfaces, TAPBPRHiFi improves the 
recognition of peptide- loaded MHC- I molecules and tolerates 
loop deletions, compared to the wild type.

 We hypothesized that enhanced TAPBPR binding to peptide- 
loaded MHC-I molecules should correlate with a promotion of 
peptide dissociation in vitro. We then applied a fluorescence polar-
ization (FP) assay employing HLA-A*02:01 refolded with a TAMRA- 
labeled TAX9 peptide to directly assess peptide unloading from the 
MHC-I ( 41 ). We found that TAPBPRWT  and its loop deletion 
mutant, TAPBPR∆G24-R36 , demonstrated a similarly low level of 
peptide unloading, relative to the negative controls ( Fig. 1 D  and 
 E  ). Notably, both TAPBPRHiFi  and TAPBPRHiFi∆G24-R36  significantly 
improved peptide unloading function ( Fig. 1 D  and E  ). However, 
introducing the G24-R36 loop deletion on either TAPBPRWT  or 
TAPBPRHiFi  had no functional impact on MHC-I peptide editing 
in vitro ( Fig. 1E  ). Taken together, our results confirm that, while 
the G24-R36 loop plays a role in maintaining TAPBPR’s structural 
integrity for pMHC-I recognition, surfaces outside the loop are 
essential for promoting interactions with peptide-loaded MHC-I 
and enhancing the editing capability of TAPBPR ( 19 ).

 To determine the MHC-I allelic interaction landscape of 
TAPBPRHiFi , we applied a SAB assay encompassing 97 common 
HLA allotypes ( 19 ,  46 ,  47 ). We measured the phycoerythrin (PE) 
mean fluorescent intensity (MFI) of SABs upon incubation with 
TAPBPRHiFi  or TAPBPRWT  PE-tetramers. The levels of nonspe-
cific background binding to HLAs are controled by the corre-
sponding TAPBPR PE-tetramer staining of SABs that are 
preincubated with W6/32, a pan-allelic HLA monoclonal anti-
body, which blocks the TAPBPR interaction surface on MHC-I, 
and further compared to the staining of TAPBPRTN6  PE-tetramer 
(SI Appendix, Fig. S3 A and B ). Analysis of MFI ratios for 
TAPBPRHiFi  revealed enhanced interactions with multiple HLA 
allotypes, including HLA-A*02:01, A*02:03, A*02:06, A*69:01, 
A*68:01, A*23:01, A*24:02, and A*24:03, relative to TAPBPRWT  
( Fig. 1F   and SI Appendix, Fig. S3C and D ). Together, these results 
demonstrate that a broad range of HLA-A* allotypes are prone to 
enhanced recognition by TAPBPRHiFi , which can further promote 
peptide editing, indicating its potential as an exogenous peptide 
exchange catalyst ( 27 ).  

Solution Mapping of TAPBPRHiFi Interactions with Peptide- 
Loaded MHC- I. We, therefore, ask how TAPBPRHiFi acts on properly 
conformed, peptide- loaded MHC- I compared to TAPBPRWT 
in a solution environment to achieve enhanced binding affinity 
and editing function. We used methyl- based NMR spectroscopy 
to map TAPBPRHiFi interactions with high- affinity peptide 
TAX9- loaded HLA- A*02:01, as established previously (22, 32, 
48). By titrating unlabeled TAPBPRHiFi on isotopically methyl- 
labeled (AILV) HLA- A*02:01 using established methods (22, 
32, 38), 42 out of 96 resonances undergo chemical shift changes 
in the slow exchange regime, which is similar to the changes 
observed upon binding to TAPBPRWT (Fig. 2A and SI Appendix, 
Fig. S4A). We observed a complete shift in the population to a 
chaperone- bound form for nearly all resonances at a three- fold 
molar excess of TAPBPRHiFi (Fig. 2B and SI Appendix, Fig. S4 
A and B), indicating the presence of a high- affinity complex. 
Analysis of methyl 13C ∕1

H   chemical shift deviations (CSDs) 
captures the residues that experience significant conformational 
changes (≥ 0.5SD) based on the difference in the local magnetic 
environment (Fig. 2C). Comparing the CSDs of TAX9- loaded 
HLA- A*02:01 induced by binding to TAPBPRHiFi relative to 
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TAPBPRWT results in a Pearson correlation coefficient of 0.93 
(Fig. 2D), suggesting that TAX9/HLA*02:01 shifts to a similar 
conformational state when bound to TAPBPRHiFi or TAPBPRWT. 
Taken together, TAPBPRHiFi docks on MHC- I using an overall 
similar binding mode, in comparison to our previous solution 
mapping of interactions between TAX9/HLA- A*02:01 with 
wildtype TAPBPR (22, 38).

 Our NMR data showed that residues, such as A117, A125, and 
L126, located near the TAPBPR interface demonstrated significant 
CSDs ( Fig. 2E  ). Multiple residues like I23 and V34 that are located 
more than 10 Å away from the interface or within the peptide 
binding groove also exhibited significant CSDs ( Fig. 2E  ), indicating 
allosteric, long-range effects on pMHC-I by TAPBPRHiFi , consist-
ently with previous studies ( 22 ,  32 ). Next, we used a line shape 
analysis of our 2D methyl HSQC spectra to determine the affinity 
between TAPBPRHiFi  and high-affinity peptide-loaded HLA-A*02:01. 
Consistent with our previous SPR measurements, TAPBPRHiFi  
demonstrated a low micromolar-range affinity (KD  = 13.9 μM) 

(SI Appendix, Table S1 ) when fitting the resonances that undergo 
conformational changes to a two-state binding model (SI Appendix, 
Fig. S4C ). Together, these observations indicated that pMHC-I mol-
ecules experience similar structural changes upon binding to 
TAPBPRHiFi  or TAPBPRWT.  This motivated us to use TAPBPRHiFi  
to stabilize MHC-I in its peptide editing state, and visualize the 
MHC-I/TAPBPR proofreading complex.  

CryoEM Structure of the MHC- I/TAPBPR Complex Bound to 
a Peptide Decoy. We reasoned that the enhanced affinity of 
TAPBPRHiFi for pMHC- I could capture transient, unstable peptide- 
editing complexes. To define the structural basis of peptide antigen 
proofreading and selection by TAPBPR, we leveraged our enhanced 
peptide editor, TAPBPRHiFi, to isolate a tertiary complex prepared 
with open HLA- A*02:01 (G120C) refolded with β2m (H31C) 
(41) and a photocleavable peptide (KILGFVFJV, J = 3- amino- 3- 
(2- nitrophenyl)- propionic acid) used as a conditional ligand (49, 50). 
Upon UV irradiation, we purified soluble TAPBPRHiFi in complexes 
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Fig. 1.   A high- fidelity TAPBPR variant TAPBPRHiFi enhances peptide editing on peptide- loaded MHC- I. (A) Structural model of TAPBPRHiFi in complex with 
peptide- free HLA- A*02:01/β2m generated using RosettaCM (45). The G24- R36 loop is colored orange, and the A29- S32 loop segment is shown as spheres. The 
sidechains of mutations S104F, K211L, and R270Q are shown as magenta sticks. (B) Representative SPR sensorgram of graded concentrations of TAPBPRHiFi 
flown over a streptavidin chip coupled with TAX9/HLA- A*02:01 in excess TAX9 peptide. (C) Log- scale comparison of KD values between TAX9/HLA- A*02:01 
and TAPBPR. Results of three independent experiments (mean ± SD) are shown as scatter plots. (D) Peptide dissociation kinetics of fluorophore- labeled 
TAMRA- TAX9- (TAMRA- KLFGYPVYV)- peptide- loaded HLA- A*02:01 in the presence of excess unlabeled TAX9 peptide with buffer (light purple), TAPBPRTN6 (green), 
TAPBPRWT (magenta), TAPBPR∆G24- R36 (purple), TAPBPRHiFi (light blue), and TAPBPRHiFi∆G24- R36 (black). Data are means for n = 3 independent experiments. (E) 
Relative peptide dissociation of TAMRA- TAX9 from HLA- A*02:01 by TAPBPR relative to no TAPBPR. The relative dissociation was calculated using the equation 

%relativedissociation=
Plateau

bufferonly−Plateauchaperone

Plateau
buffer only

 , and the plateau for each dissociation was individually extracted by fitting one phase decay. Error bars 

(SD) were propagated from three independent experiments. (F) Comparison of binding profiles for TAPBPRWT and TAPBPRHiFi against a panel of 97 common 
HLA allotypes using single antigen beads (SABs). Two- sample unequal variance Student’s t- test was performed, P > 0.12 (not significant, ns), P < 0.033(*),  
P < 0.002(**), and P < 0.001(***). SI Appendix, Figs. S1–S3.
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with open HLA- A*02:01/β2m by size exclusion chromatography 
(SEC) (Fig. 3A). Further analysis by LC–MS revealed that a 7- mer 
peptide decoy (KILGFVF) was captured within the TAPBPR/
MHC- I complex (Fig. 3B and SI Appendix, Fig. S5). We solved 
the structure of this purified 90 kDa complex using cryoEM 
(SI  Appendix, Table  S2). Briefly, purified peptide- loaded open 
HLA- A*02:01/TAPBPRHiFi was used to screen grids, and more than 
5,000 micrographs were collected (SI Appendix, Fig. S6). This dataset 
revealed a fully assembled MHC- I/TAPBPR complex with a well- 
defined peptide binding groove, though with some heterogeneity in 
peptide occupancy. We sorted the dataset to obtain a set of particles 
with the best occupancy of the first residues of our peptide decoy, 
obtaining a structure at an overall resolution of 3.0 Å (SI Appendix, 
Figs. S7 and S8).

 Inspection of our structural model built into well-defined regions 
of the electron density reveals key chaperoning interactions between 
peptide-loaded MHC-I and TAPBPR ( Fig. 3C  ). In agreement with 
previous studies ( 29 ,  30 ), we observe that the N-terminal immuno-
globulin V (IgV)–like domain of TAPBPRHiFi  cradles the pMHC-I 
peptide binding groove, while the C-terminal IgC domain nestles 
between the pMHC-I α3  and β2 m domains to create a pseudo-3-fold 
symmetric arrangement ( Fig. 3C  ). The overall binding mode of 
TAPBPR is polarized toward the α2  helix of the pMHC-I peptide 
binding groove ( Fig. 3C  ), consistent with the crystal structures of 

empty mouse MHC-I/TAPBPR complexes ( 29 ,  30 ) as well as exten-
sive mapping of human MHC-I/TAPBPR interactions by NMR, 
hydrogen–deuterium exchange, and deep scanning mutagenesis ( 19 , 
 22 ,  32 ). Interactions between TAPBPR and the groove of pMHC-I 
are mediated through G212 and T259, forming polar contacts with 
Q115, K121, and D122 on strands β7 and β8, located under the 
peptide binding groove ( Fig. 3D  ). We also observe interactions 
between TAPBPR residues Q336 and F331 with L231 from α3  and 
residues I92-K94 from β2 m, while D309 of TAPBPR forms a hydro-
gen bond with the T4 sidechain from β2 m ( Fig. 3E  ). These results 
are in good overall agreement with the CSDs obtained from our 
solution NMR mapping of the complex ( Fig. 2 ). In summary, a triad 
of domain interactions between β2 m, pMHC-I α3,  and C terminal 
TAPBPR mediate stable docking, and allow TAPBPR to stabilize 
the floor and α2-1  helix of the peptide binding groove of peptide-loaded 
MHC-I molecules, setting the stage for peptide editing to proceed.  

Peptide- Loaded MHC- I/TAPBPR Complex Reveals Unexpected 
Structural Alterations. To understand the molecular mechanism 
of peptide editing and conformational changes induced by 
peptide binding to the MHC- I/TAPBPR proofreading complex, 
we performed a structural comparison of our partially loaded 
KILGFVF/HLA- A*02:01/TAPBPR cryoEM structure relative 
to the fully loaded HLA- A*02:01/GILGFVFTL X- ray structure 
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conformational exchange between the free and TAPBPRHiFi- bound states. The HLA- A*02:01: TAPBPRHiFi molar ratios for the different titration points were 1: 0, 
1: 0.55, 1: 1.10, 1: 1.65, 1: 2.75, and 1: 3.31. (C) Methyl groups of residues undergoing significant CSD upon binding of TAPBPRHiFi are mapped onto the structure 
of the HLA- A*02:01 (gray)/TAPBPRHiFi (pink) complex. The structure is a RosettaCM (45) homology model obtained using the H2- Dd/TAPBPR crystal structure as a 
template (PDB ID: 5WER). CSDs are plotted using a heat- map scale shown on the Right. (D) Correlation plot of CSDs observed for the titration of HLA- A*02:01 with 
TAPBPRWT21,41 versus TAPBPRHiFi. The Pearson correlation coefficient (r) is shown on the plot (P value < 0.0001). (E) Close- up of the peptide- binding groove with the 
TAX9 peptide (shown as green sticks). Select residues distributed throughout the MHC- I groove and their methyl CSDs are labeled. The three mutation sites on 
TAPBPRHiFi are denoted with pink sticks, and the approximate location of the unstructured G24- R36 loop region is highlighted in dark purple. SI Appendix, Fig. S4.
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(Fig. 4A and Movie S1) (51). We find that the α2- 1 helix, comprising 
residues E148- H151, adopts a conformation that is widened by 
approximately 3 Å in the TAPBPR- bound complex relative to the 
fully loaded pMHC- I structure (measured at the Cα atom of A150, 
Fig. 4B), in line with the observations made on the basis of empty 
MHC- I/TAPBPR complexes (29, 30). Notably, in contrast to the 
previous empty TAPBPR/MHC- I crystal structures as well as the 
fully loaded pMHC- I structure, our cryoEM structure reveals a 
significant alteration of the α1 helix and adjacent loop (residues 
S71- G91) (Fig. 4B and Movie S2), where a lack of clear electron 

density indicates the presence of conformational heterogeneity 
impacting the F- pocket of the peptide- binding groove (SI Appendix, 
Fig. S8). This finding reflects the dynamic transitions of the F- 
pocket between peptide- deficient and peptide- bound states in a 
solution environment (Movie S2), in agreement with our previous 
NMR studies of MHC- I/TAPBPR complexes (32).

 Compared to the original influenza epitope GILGFVFTL, the 
heptamer peptide decoy (KILGFVF) within the TAPBPR editing 
complex exhibits a native-like backbone conformation and sidechain 
rotamer placement ( Fig. 4 A  and C   and Movie S1 ). Despite the 

120

35

85

50

25

20

TAPBPRHiFi

R

Complex
TAPBPRHiFi

open HLA-A2 HC

β2m

10 15 20
0

20

40

60

80

100

Retention Volume (mL)

N
or

m
al

iz
ed

 m
A

U

TAPBPR
HiFi

open HLA-A2

Complex
NRkDa

A

0 1 2 3 4 5 6 7 8 9 10
Time (min)

0
10
20
30
40
50
60
70
80
90

100

R
el

at
iv

e
A

bu
nd

an
ce

5.77

5.74

Lys-Ile-Leu-Gly-Phe-Val-Phe

Exact Mass: 821.52
Expected m/z: 822.52 

0
10
20
30
40
50
60
70
80
90

100

R
el

at
iv

e
A

bu
nd

an
ce

*  822.52 KILGFVF

UV-irradiated KILGFVFJV/open HLA-A*02:01/TAPBPRHiFi complex

200 600 1000 1400 1800
m/z

*  5.78

0
20
40
60
80

100

0 2 4 6 8 10
Time (min)

B

0 1 2 3 4 5 6 7 8
Time (min)

C D

TAPBPR

Peptide

MHC-I

β2m

N

IgV

IgC

Peptide 
binding groove

α3

α1

α2

α2-1

β2m

TAPBPR

MHC-I

D309

F331

Q336 - L231 

T4

C31
C120

I92
V93K94

G212

T259
Q115

D122

K121

E

180o

90o

C

TAPBPRTT

P tid

MHC-I

β2m

bin

180o

O

NH2

NH2

O

NH

O

NH

O

NH

O

NH

O

NH

O

NH
NH2

m/z=
822.89-
823.89

Fig. 3.   Isolation and cryoEM structure of an MHC- I/TAPBPR complex bound to a peptide decoy. (A) SEC purification of a recombinant open HLA- A*02:01/TAPBPRHiFi 
complex prepared by UV- irradiation of KILGFVFJV/HLA- A*02:01 preincubated with TAPBPRHiFi at 1:1.3 molar ratio. J = 3- amino- 3- (2- nitrophenyl)- propionic acid. 
Sodium dodecyl sulfate/polyacrylamide gel electrophoresis analysis confirms the identity of the TAPBPRHiFi/open HLA- A*02:01 complex peak under nonreducing 
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highly polymorphic character of the MHC-I peptide binding 
groove, a relatively conserved cluster of residues (Y7, E63, K66, 
Y99, Y159, and Y171) located within the A-, B-, and D-pockets 
mediate stable docking interactions with the peptide backbone 
( Fig. 4C   and SI Appendix, Fig. S9  and Movie S1 ) ( 54 ). Additional 
groove residues, including W167, F9, H70, L156, and Y159, with 
hydrophobic sidechain anchors the N-terminus of the peptide, par-
ticularly at the P2 and P3 positions ( Fig. 4D   and Movie S1 ). While 
some amino acid polymorphisms across common HLA allotypes 
can be observed at positions 63 and 66 (E63 and K66 for 
HLA-A*02:01), with the exception of I66, all other possible amino 
acid polymorphisms have the potential to serve as hydrogen bond 
donors to the carbonyl oxygen of the peptide at P3 ( Fig. 4D  ). 
However, the dynamic character of the S71-G91 region in the edit-
ing complex leads to missing interactions between the C-terminus 
of the peptide with residues D77, Y84, T143, and W147 of the 
E- and F-pockets (SI Appendix, Fig. S9  and Movie S1 ). It is worth 
noting that our observed MHC-I structural adaptations are induced 
by binding to TAPBPR, rather than a loss of the two C-terminal 
peptide residues in our decoy model. This is highlighted by a struc-
tural superposition of our chaperoned pMHC-I relative to a previ-
ously determined X-ray structure of HLA-A*02:01 bound to a 
4-residue N-terminal peptide fragment ( 55 ), which consistently 
shows a widening of the α2-1  helix at Ala 150, and induced disrup-
tion of the structural environment in the MHC-I F-pocket 
(SI Appendix, Fig. S10 ). This suggests that the inherent flexibility 
of the F-pocket, in agreement with previous studies ( 22 ,  32 ,  56 , 

 57 ), can provide an additional filter to select high-affinity interac-
tions with the C-terminus of candidate peptides.

 Placing in the context of previous NMR and X-ray studies 
( 22 ,  29 ,  30 ,  32 ,  38 ), our cryo-EM structure demonstrates that 
the initial capture of peptides for proofreading by TAPBPR 
occurs through native-like interactions with conserved MHC-I 
residues within the A-, B-, and D-pockets that are properly 
conformed to receive the peptide. The F-pocket is partially 
formed in this intermediate state of the complex and folds upon 
annealing of peptide C-terminus for high-affinity ligands with 
robust P9 anchors, allosterically shifting the groove inward via 
α2-1  helix and promoting the dissociation of TAPBPR from the 
pMHC-I complex ( 32 ). These functional and structural results 
altogether suggest that peptide-loaded MHC-I can form 
high-affinity, stable proofreading complexes with TAPBPR for 
antigen selection.  

TAPBPRHiFi Enhances Loading of Exogenous Antigens on the Cell 
Surface. We hypothesized that TAPBPRHiFi could enhance the 
exchange of peptides on different HLA- A allotypes expressed on a 
cellular surface. Using a flow cytometry- based method, we assessed 
the loading of fluorophore- labeled peptides upon incubation 
with soluble TAPBPR variants, TAPBPRHiFi, TAPBPRWT, 
and TAPBPRTN6, at different concentrations for monoallelic 
722.211 cell lines (58) expressing either HLA- A*02:01, 24:02, 
23:01, 03:01, 68:01, 01:01, or 11:01 (Fig. 5A and SI Appendix, 
Fig. S11). Consistent with our bead- based binding data, we found 
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that a nanomolar- range concentration of TAPBPRHiFi can readily 
exchange peptides on membrane- bound HLA- A*02:01, relative to 
the negative control TAPBPRTN6, whereas TAPBPRWT shows no 
significant enhancement in exchanging for targeted fluorophore- 
labeled peptides (Fig. 5B and SI Appendix, Fig. S12A). Similarly, 
using monoallelic HLA- A*24:02 and HLA- A*23:01 cell lines, 
we observed that TAPBPRHiFi can promote robust peptide 
exchange at a concentration that is two orders of magnitude lower 
than TAPBPRWT (Fig. 5B and SI Appendix, Fig. S12 B and C). 
Despite showing lower levels of binding to MHC- I coated beads 
in our assay (Fig. 1F), TAPBPRHiFi can readily load exogenous 
peptides on HLA- A*03:01, HLA- A*68:01, HLA- A*01:01, 
and HLA- A*11:01 (Fig.  5B and SI  Appendix, Fig.  S12 D–G). 
Generally, we observe that the capability of TAPBPR variants to 
catalyze peptide exchange on monoallelic cells is correlated to their 
binding levels on pHLA molecules as measured by our SAB assay 
(Fig. 1F). These results demonstrate that TAPBPR HiFi can readily 
load exogenous peptides on multiple HLA- A allotypes via direct 
interactions on the cell surface.

 We next evaluated whether TAPBPRHiFi -TM, a version of 
TAPBPR containing the TM and cytosolic tail from HLA-G 
( 19 ,  22 ) expressed on the cell surface of TAP transporter deficient 
T2 cells ( 59 ,  60 ) that lack the endogenous antigen processing 
machinery can directly enhance the loading of exogenous, flu-
orescently labeled peptides ( Fig. 5C   and SI Appendix, Fig. S13A ). 
Our results showed that TAPBPRHiFi -TM can significantly 
enhance the level of peptide loading at low peptide concentra-
tions relative to T2 cells expressing TAPBPRTN6  -TM or 
TAPBPRWT -TM ( Fig. 5D   and SI Appendix, Fig. S13 B and C ). 
We further demonstrate that surface-expressed TAPBPRHiFi -TM 
increases the expression level of HLA-A*02:01 on the T2 cell 
surface, as measured by staining with the allele-specific BB7.2 
anti-HLA A2 antibody (SI Appendix, Fig. S13D ). HLA-A*02:01 
molecules on T2 cells expressing TAPBPRHiFi -TM are receptive 
to peptide binding at a picomolar-range concentration ( Fig. 5D   
and SI Appendix, Fig. S13D ). Taken together, our results demon-
strate that our engineered high-fidelity TAPBPR variant 
TAPBPRHiFi  can have a wide range of applications in promoting 
peptide exchange and participating in antigen selection across 
different HLA-A* allotypes, directly on the cell surface.   

Discussion

 The molecular chaperones tapasin and TAPBPR play important 
roles in stabilizing nascent MHC-I molecules, optimizing the 
repertoire of bound peptide cargo, and mediating quality control of 
peptide-loaded molecules, in tandem with other components of the 
MHC-I antigen processing pathway ( 1 ,  2 ,  61   – 63 ). Advances in 
sample preparation and the use of complementary structural tech-
niques have provided multiple resting-state (empty) MHC-I/chap-
erone complex structures, which have established the basis of tapasin 
and TAPBPR recognition of peptide-deficient MHC-I molecules ( 64 , 
 65 ). Notwithstanding, the molecular mechanism of peptide editing 
is enigmatic and highly controversial in the literature ( 39 ). In previous 
work, we used solution NMR methyl probes to study a peptide-
bound MHC-I/TAPBPR intermediate and showed that it involves 
a transient conformational state (approximately 200 millisecond life-
time) ( 32 ). A large body of work has established that dynamics at 
residues distributed throughout the MHC-I peptide binding groove 
are dampened upon binding of high-affinity peptides, and allosteri-
cally coupled to the TAPBPR binding surfaces on the underside and 
α2-1  helix of the groove to promote chaperone release from the 
pMHC-I ( 22 ,  32 ,  38 ). Recent X-ray structures of HLA-B*08:01 
bound to 20 mer peptides with protruding N-terminus have provided 
clues into the peptide-bound intermediate of the loading process ( 66 ). 
Despite these insights, a high-resolution structure of the transient 
peptide-bound chaperoned MHC-I has been missing due to its tran-
sient nature and dynamic complexity, hindering structure determi-
nation by X-ray crystallography or cryoEM.

 We here leverage recent advances in protein engineering of the 
individual components, a high-fidelity TAPBPRHiFi  variant ( 19 ), 
and an ultrastable, open HLA-A*02:01 molecule ( 41 ) prepared 
using a photocleavable conditional peptide ligand ( 67 ), to isolate a 
TAPBPR/MHC-I intermediate bound to a heptamer peptide decoy. 
The insights gained from our peptide-loaded MHC-I/TAPBPR 
cryoEM structure allow us to propose the following mechanism for 
peptide proofreading on MHC-I ( Fig. 6 ). Empty MHC-I is pref-
erentially recognized and stabilized by TAPBPR in a peptide-receptive, 
“open” state. Chaperoned MHC-I molecules screen the large pep-
tide pool within the endoplasmic reticulum, via transient 
peptide/MHC-I/TAPBPR complexes. Meanwhile, TABBPR widens 
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the peptide binding groove via the α2-1  helix and enhances dynamic 
movements alongside the α1  helix and F-pocket. This inherent plas-
ticity of the α2-1  helix has been revealed in previous studies address-
ing interactions with chaperones by NMR ( 32 ,  68 ), and shown to 
be important for the sampling of a sparse, open MHC-I state which 
is recognized with high-affinity by TAPBPR ( 22 ). As a result, key 
peptide-coordinating residues within the E- and F-pockets show a 
reduced potential for interactions with the peptide C-terminus. 
Therefore, TAPBPR-bound MHC-I exhibits an overall lower affin-
ity toward incoming peptides, and promotes the dissociation of 
transiently bound peptide decoys. When chaperoned MHC-I proof-
reads a high-affinity peptide, it interacts with the N terminal peptide 
through native-like contacts formed within the A-, B-, and 
D-pockets. The C-terminus of high-affinity peptides interacts with 
peptide-coordinating residues in the E- and F- pockets to stabilize 
and close the peptide binding groove, which allosterically triggers the 
release of TAPBPR ( 32 ). The resulting high-affinity peptide-loaded 
MHC-I that has been proofread by TAPBPR can traffic to the cell 
surface for antigen presentation ( Fig. 6 ).        

 The persistence of class I MHC molecules on the cell surface 
is determined by their thermodynamic and kinetic stability. Loss 
of the bound peptide results in destabilization of the complex and 
disassembly of β2 m, which triggers internalization and endosomal 
recycling or lysosomal degradation of unfolded molecules via an 
unknown mechanism ( 69 ,  70 ). Thus, MHC-I molecules bound 
to low affinity peptides have a shorter plasma membrane half-life, 
and are less likely to trigger a CD8 T cell response ( 71 ,  72 ). 
Notwithstanding, this model has been challenged by recent studies 
showing in vivo responses to low affinity peptide neoantigens in 
murine models, in discordance with in vitro peptide binding 
assays ( 73 ,  74 ). Our structural findings suggest that low-affinity 
peptides could in principle still associate with nascent MHC-I 
molecules, under chaperone assistance, so long as they have a 
favorable P2 anchor and interactions with conserved MHC-I res-
idues in the A-, B-, and C- pockets. While this model remains to 
be validated in vivo, our results provide a plausible explanation 
for the observed immunogenicity of suboptimal peptides in func-
tional T cell activation studies.

 The TAPBPR G24-R36 loop has been previously suggested to 
directly mediate peptide editing by competing with the peptide 
C-terminus for binding to the MHC-I F-pocket ( 30 ,  42 ,  43 ). More 
recent studies using solution NMR have challenged this “scooping/
levering” mechanism by explicitly showing that the TAPBPR loop 
adopts a disordered conformation, which forms hydrophobic con-
tacts with the rim of the α2-1  helix, instead of entering the empty 
MHC-I groove in a solution environment ( 32 ,  38 ). Our engineered 
high-affinity TAPBPRHiFi  corroborates this model, by showing that 
the S104F mutation on the edge of the TAPBPR loop contributes 
to enhanced binding on peptide-loaded MHC-I molecules. In fur-
ther agreement with our previous NMR studies ( 38 ) and the lack 
of clear electron density in the structure of both MHC-I/TAPBPR 
complexes ( 29 ,  30 ), we find that, even though the F-pocket of the 
MHC-I groove in complex with the heptamer peptide decoy is 
completely empty, electron density for the loop residues G24-R36 
is completely lacking in our data, supporting a more disordered 
ensemble of conformations, which does not enter the MHC-I 
groove. Taken together, our results support that TAPBPR promotes 
peptide editing by perturbing the regular structure of the MHC-I 
F-pocket, including a widened α2-1  and a partially unfolded α1  helix, 
rather than by directly competing with the peptide C terminus.

 Our solution structure, biophysical and biochemical insights 
now provide a complete view of how TAPBPR, and by extension 
tapasin, can proofread the intracellular peptide pool to select an 
optimized repertoire of epitopes for MHC-I antigen presentation 
on the cell surface. The extreme polymorphism of HLAs results 
in a wide range of dependencies on molecular chaperones for 
peptide loading and repertoire optimization. It is plausible that 
different MHC-I molecules employ a similar proofreading mech-
anism to select their presented ligands irrespective of their associ-
ations with tapasin, or TAPBPR. This view aligns with biophysical 
studies showing that chaperones act by manipulating existing 
states of a relatively malleable MHC-I structure, rather than by 
inducing drastically new structures ( 22 ,  32 ). The extent to which 
these findings carry over to chaperone-independent peptide load-
ing must be characterized using analogous solution experiments 
employing stabilized MHC-I molecules with partial ligands.  

Materials and Methods

Specific details about protein expression and purification, mass spectrometry, SPR, 
NMR, cryoEM data processing, FP anisotropy, single- antigen HLA bead assays, 
and functional peptide exchange experiments in cells, are outlined in detail in 
SI  Appendix (75). Briefly, recombinant peptide/MHC- I (41) and TAPBPR (32) 
proteins were produced using established expression protocols in Escherichia 
coli and Drosophila S2 cells, respectively. NMR chemical shift mapping for the 
TAX9/HLA- A*02:01 molecule upon binding to TAPBPRHiFi was performed in an 
analogous fashion to TAPBPRWT, described in our previous work (22). The open 
peptide- loaded HLA- A*02:01/TAPBPRHiFi complex was obtained by mixing open 
HLA- A*02:02/TAX9 and TAPBPRHiFi at a 1:1.3 molar ratio. The mixture was incu-
bated at 4 °C for 1 h and followed by 40- min UV irradiation, and the complex 
was purified by size- exclusion chromatography. The peak fraction at 0.2 mg/mL 
concentration was used for grid preparation. The sample was applied to freshly 
plasma cleaned Quantifoil Cu 300 2/2 (Quantifoil) grids and was plunge frozen 
in liquid ethane using the Vitroblot Mark IV (Thermo Fisher) operated at 4 °C and 
100% humidity. The dataset was collected on a Titan Krios G3i 300 kV electron 
microscope (Thermo Fisher Scientific) with a 20 eV energy filter and equipped with 
a K3 Summit camera (Gatan). Superresolution images were collected over thirty- 
five frames with a dose of 40.5 e − /Å2 at a nominal magnification of x105,000, 
resulting in a pixel size of 0.418 Å/pixel. The defocus range was set from −0.8 
to −3.0 μm. The model of the MHC- I/TAPBPR complex was built iteratively in 
ISOLDE (76), Coot (77), and PHENIX (78), using PDB 2VLL as the starting model. 
Images of the models and maps for figures were rendered using ChimeraX (79) 
and Pymol (80).

TAPBPR proofreading

Transient
chaperoned
suboptimal
pMHC-I

High-affinity
pMHC-I  

Stable
chaperoned
MHC-I

Transient
chaperoned
high-affinity
pMHC-I

ER/Golgi Membrane

Trafficking to
the cell surface  

Peptide
Decoy

High-affinity
Peptide

Peptide
Pool

Fig. 6.   Structural mechanism of peptide antigen proofreading by TAPBPR. 
Empty MHC- I is preferentially recognized by TAPBPR in a peptide- receptive, 
open conformation. Chaperoned MHC- I screens a large peptide pool in the 
endoplasmic reticulum through transient complexes. TABBPR widens the α2- 1 
helix of the peptide binding groove, enhances the dynamics of the α1 helix, 
and induces an unstructured F- pocket. Thus, chaperone MHC- I exhibits a 
lower affinity toward incoming peptides and promotes the dissociation of 
suboptimal peptide decoys. When chaperoned MHC- I proofreads a high- 
affinity peptide, the N terminal peptide forms native- like contacts with its 
A-  and B- pockets. The peptide C- terminus interacts with peptide- coordinating 
MHC- I residues in the F- pocket to stabilize the peptide binding groove in a 
closed conformation, which allosterically promotes the release of TAPBPR.

http://www.pnas.org/lookup/doi/10.1073/pnas.2416992122#supplementary-materials
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Data, Materials, and Software Availability. All structures and cryoEM density 
data associated with this study have been deposited in the PDB and EMDB, under 
PDB ID 9C96 and EMDB entry ID EMD-45360. NMR assignments have been 
deposited in the BMRB, under code 52520. All other data relating to this paper 
are deposited in Dryad via https://doi.org/10.5061/dryad.prr4xgxvv.
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