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Self-supervised learning-enhanced deep
learning method for identifying myopic
maculopathy in high myopia patients

Juzhao Zhang,1,2,3,4,7 Fan Xiao,5,6,7 Haidong Zou,1,2,3,4 Rui Feng,4,5,6,* and Jiangnan He1,4,8,*
SUMMARY

Accurate detection and timely care for patientswith highmyopia present significant challenges.Wedevel-
oped a deep learning (DL) system enhanced by a self-supervised learning (SSL) approach to improve the
automatic diagnosis of myopic maculopathy (MM). Using a dataset of 7,906 images from the Shanghai
High Myopia Screening Project and a public validation set of 1,391 images fromMMAC2023, our method
significantly outperformed conventional techniques. Internally, it achieved 96.8% accuracy, 83.1% sensi-
tivity, and 95.6% specificity, with AUC values of 0.982 and 0.999. Externally, it maintained 89.0% accu-
racy, 71.7% sensitivity, and 87.8% specificity, with AUC values of 0.978 and 0.973. The model’s Cohen’s
kappa values exceeded 0.8, indicating substantial agreement with retinal experts. Our SSL-enhanced DL
approach offers high accuracy and potential to enhance large-scale myopia screenings, demonstrating
broader significance in improving early detection and treatment of MM.

INTRODUCTION

Myopia is a severe global health concern.1–3 It is estimated that by 2050, the global prevalence of myopia will reach 49.8% (4.758 billion), with

9.8% (938million) suffering from highmyopia.4 Asmyopia advances, a subset of patients experience significant elongation of the eye axis and

show various ocular tissue abnormalities, known as pathologicmyopia (PM).5 In cases of PM, themacular region often presentsmultiple retinal

and choroidal lesions, referred to as myopic maculopathy (MM).6 If current intervention strategies remain unchanged, the number of individ-

uals with vision impairment due to MM will increase to 55.7 million by 2050, making it one of the leading causes of vision impairment and

blindness worldwide.7–9 Effective detection and timely intervention for this population is a significant public health challenge.10 However,

the vastness of the population in need of screening and the scarcity of ophthalmic resources render the task of large-scale fundus image

acquisition and analysis a formidable challenge.11 Moreover, the heterogeneity in image-based MM grading systems, coupled with the

ambiguous nature of lesion morphological features, results in inconsistent interpretations among clinicians.12–14 Therefore, there is an urgent

need to integrate automated systems into the retinal imaging workflow, which will improve both efficiency and accuracy of diagnosis.

In recent years, deep learning techniques have reached a level of diagnostic precision equivalent to human experts in certain clinical tasks

related to ophthalmology. This includes diseases, such as diabetic retinopathy (DR),15 cataract,16 age-relatedmacular degeneration (AMD),17

and glaucoma.18 While deep learning presents a promising approach for analyzing fundus images, its success to date predominantly de-

pends on supervised learning (SL) frameworks. These frameworks require extensive annotated datasets for optimal performance. Addition-

ally, many models demonstrate limited generalization when extended to other institutions or different tasks.19 These limitations likely stem

from the SL training methodology, which promotes the creation of ‘‘specialist models’’ focused on label-specific features rather than on fea-

tures that broadly represent data distribution. Therefore, developing strategies for trainingmedical artificial intelligence (AI) models becomes

critically important.

Self-supervised learning (SSL) is a trainingmethodology that leverages unlabeled data to generatemeaningful representations. Unlike SL,

SSL facilitates the creation of ‘‘generalist models’’ capable of adapting to a variety of downstream tasks, thereby reducing dependence on

extensive annotated datasets. Initially achieving significant success in the field of natural language processing (NLP), recent studies have

demonstrated the advantages of SSL in the area of image processing.20 On September 13, 2023, Zhou et al. published a research report

wherein they employed SSL techniques on 1.6 million unlabeled fundus images to train a vision transformer (ViT).21 This effort resulted in
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the creation of RETFound, the first foundational model in ophthalmology. Within their investigation, RETFound could be rapidly deployed to

downstream tasks through transfer learning, and its accuracy surpassed traditional models trained via SL on ImageNet. This marks a funda-

mental departure from traditional technological pathways. Thus, to what extent can the accuracy of MM screenings be enhanced by employ-

ing deep learning models enhanced by SSL? What value could RETFound framework potentially bring to MM screenings? The key questions

concerning the extended application of the RETFound framework are yet to be clarified.

The aim of this research is to assess the possible benefits of integrating SSL with DL techniques for the precise diagnosis of MM. We spe-

cifically investigate the capacity of SSL-augmented DL models to boost MM diagnostic and screening accuracy, along with their applicability

in clinical practice. Additionally, as a pioneering effort in this field, this study will employ decision curve analysis (DCA) to assess the net benefit

and impact of these models when implemented in large-scale high myopia screening.

RESULTS

Performance evaluation and comparison

Evaluation metrics of our proposed method

The test outcomes on our internal testing set (Figure 1; Table 1), show that our method achieved a general classification accuracy of 96.8%,

with a sensitivity of 83.1%, specificity of 95.6%, and an F1 score of 0.842 in the five-category classification task. It achieved area under the

receiver operating characteristic curve (AUROC) of 0.982 for normal versus other fundus types and 0.999 for macular atrophy versus others.

On the external testing set, our approach demonstrated strong generalization capability, achieving an overall classification accuracy of 89.0%,

sensitivity of 71.7%, specificity of 87.8%, and an F1 score of 0.683. The AUROCs for separating normal fundus from other types and macular

atrophy from others were 0.978 and 0.973, respectively. Additionally, Cohen’s kappa values exceeding 0.8 on both datasets indicate a high

degree of concordance with expert-labeled results.

Comparison between different models

In the internal testing set, the classification accuracies across a variety of models in the five-category classification task demonstrated a range

from 0.946 to 0.969. Sensitivity varied from 0.599 to 0.831, while specificity was recorded between 0.929 and 0.968, and AUROC ranged from

0.961 to 0.986, as delineated in Table 2. Models that were trained utilizing SL methods exhibited performances that were on par with those

trained through SSL. The ViT-B/16 model achieved the better accuracy and AUROC compared to those of the RETFound-enhanced model.

This marginal disparity in performance might be attributed to the larger parameter space of the latter, which potentially remained under-

trained (Figures S2 and S3).

In the external testing set, differentmodels demonstrated diverse generalization capabilities as summarized in Table 3.Within the scope of

a five-category classification task, accuracy spanned from 0.831 to 0.890, sensitivity from 0.575 to 0.717, specificity from 0.832 to 0.897, and

AUROC from 0.888 to 0.951. Models trained using SSL methods generally outperformed those trained through SL (Figures S4 and S5).

Notably, our RETFound-enhanced model emerged as the leader, underscoring its satisfactory generalizability. Our methodology achieved

an approximate 4% enhancement in accuracy compared to CNN-based models and a 2% improvement over models that utilized SL training

methods and transformer architectures. It is pertinent to note that while some models, such as EfficientNet-B3 and Vgg16, achieved high

specificity, this was at the potential expense of reduced sensitivity.

Detailed prediction results

To further analyze the performance of our models, we meticulously recorded the predictive outcomes for each fundus image in both testing

datasets, as illustrated in Figure 2. For the predominantly high myopia categories C0 and C1, our approach reached sensitivities of 0.85 and

0.94 on the internal testing set. However, the external testing showed a notable misclassification of C0 as C1, significantly contributing to the

performance decline in this dataset. This indicates a propensity of themodel for more cautious predictions. Additionally, themodel exhibited

sensitivity below 0.6 in identifyingC3, with 0.56 sensitivity in the internal testing set and 0.5 in the external testing set. This pattern of confusing

C3 with C2 and C4 corresponds to the clinical findings observed by ophthalmologists.

Visualization of the prediction process

Using an illustrative true positive example from the testing dataset (Figure 3A), it was observed that most models effectively identified and

highlighted the atrophic areas. Notably, our proposedmethod produced heatmaps (Figure 3B) that displayed deeper reds in lesion regions,

indicating a more precise localization and concentrated model attention on these critical areas. However, the EfficientNet-B3 model ap-

peared to distribute attention also to areas not directly associated with the lesions (Figure 3F), which could suggest a tendency toward over-

fitting, warranting further investigation.

Net benefit of our proposed method and other models

Decision curves for different strategies on the external testing set are depicted in Figure 4. For risk-averse doctors or patients (e.g., Pt below

20%), themost effective clinical strategy for balancing the number of unnecessary follow-up treatments against the detection ofMMwould be

to forgo fundus examination results and immediately initiate further interventions, including more frequent follow-ups, medication, or sur-

gery. The decision curves that exclude TestHarm, as presented in Figure 4B, may be more applicable to real-world scenarios. This is because
2 iScience 27, 110566, August 16, 2024



Figure 1. Performance evaluation of our proposed method using confusion matrix, ROC and PRC

(A) and (D) show the ROC curves and their AUROCs for binary classifications on internal and external datasets, respectively.

(B) and (E) depict the PRCs and corresponding AUPRCs for these tasks.

(C) and (F) present the confusion matrices for internal and external datasets, respectively. ROC, recipient operation curve; PRC, precision-recall curve; AUROC,

area under recipient operation curve.
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Table 1. Classification results of our proposed method

Dataset Accuracy Sensitivity Specificity Precision F1 Score AUROC Kappa

Internal

testing set

0.968(0.9664,

0.9733)

0.831(0.7945,

0.8901)

0.956(0.9547,

0.9649)

0.854(0.8018,

0.8916)

0.842(0.7979,

0.8849)

0.983(0.9843,

0.9889)

0.968

External

testing set

0.890(0.8823,

0.8977)

0.717(0.6791,

0.7565)

0.878(0.8708,

0.8848)

0.691(0.6525,

0.7257)

0.683(0.6436,

0.7208)

0.951(0.9448,

0.9561)

0.819
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the implementation of a CADx system for auxiliary reading in clinical practice primarily incurs economic costs. The results show that the net

benefits of using SL-pretrained DenseNet121 and MMSSL-trained ResNet18 models are consistently lower, indicating these are suboptimal

choices. Other models have similar and higher net benefits than treat-all, especially within a certain probability threshold range (45%–65%),

where our model consistently offers the highest net benefit. This implies that when clinicians consider a risk level between 45% and 65% for

highmyopia as a threshold for further intervention, the use of ourmodel in highmyopia screening—taking into consideration the costs, incon-

venience, side effects, and other adverse aspects of screening tests—offers the greatest net benefit.
DISCUSSION

In this study, we have for the first-time applied SSL pre-trainingmethod and ViT to the automated diagnosis and grading ofMM. This research

also represents one of the first evaluations of the RETFound foundation model in real-world screening scenarios. Our results suggest that our

model achieves satisfactory performance in classification tasks according to META-PM criteria and remains stable in external testing. The im-

plementation of our CADx system could improve both the accuracy and cost-efficiency of high myopia screenings in community hospitals.

Our developed model demonstrated satisfactory performance on an external testing set previously unseen by it. This can partly be attrib-

utable to our development dataset, which comprises 7,906 high-quality, well-annotated color fundus photographs sourced from community

eye disease screenings in Shanghai (Table 4). These real-world data encompass heterogeneous image quality and diverse population sour-

ces, enhancing their representativeness. In contrast, previous studies have typically employed idealized datasets, either publicly accessible or

sourced from clinical environments, for training and testing. However, these datasets frequently fail to encapsulate the complexities of
Table 2. Classification results of different models on internal testing set

Training Method Model Accuracy Sensitivity Specificity Precision F1 Score AUROC

SSL

MAE RETFound

(proposed

method)

0.968(0.9664,

0.9733)

0.831(0.7945,

0.8901)

0.956(0.9547,

0.9649)

0.854(0.8018,

0.8916)

0.842(0.7979,

0.8849)

0.983(0.9843,

0.9889)

Uni4eye ViT-L/16 0.946(0.9405,

0.9497)

0.677(0.6167,

0.7483)

0.929(0.9191,

0.9328)

0.756(0.6788,

0.8141)

0.713(0.6436,

0.7647)

0.961(0.9573,

0.9661)

Lesion-based CL ResNet50 0.959(0.9562,

0.9640)

0.628(0.5782,

0.6980)

0.963(0.9599,

0.9696)

0.683(0.6051,

0.7530)

0.648(0.5823,

0.7043)

0.980(0.9777,

0.9835)

Multi-modal SSL ResNet18 0.960(0.9557,

0.9638)

0.607(0.5382,

0.6682)

0.958(0.9554,

0.9656)

0.705(0.5853,

0.7610)

0.619(0.5479,

0.6752)

0.978(0.9751,

0.9813)

Rotation-Oriented ResNet18 0.959(0.9570,

0.9647)

0.599(0.5371,

0.6692)

0.959(0.9576,

0.9676)

0.655(0.6070,

0.7541)

0.624(0.5711,

0.6974)

0.980(0.9779,

0.9836)

SL

ImageNet ViT-B/16 0.969(0.9651,

0.9722)

0.800(0.7410,

0.8592)

0.958(0.9527,

0.9633)

0.877(0.8475,

0.9086)

0.830(0.7767,

0.8769)

0.986(0.9835,

0.9883)

ImageNet ViT-L/16 0.964(0.9601,

0.9677)

0.787(0.7293,

0.8389)

0.968(0.9627,

0.9723)

0.822(0.7612,

0.8725)

0.800(0.7423,

0.8460)

0.984(0.9809,

0.9862)

ImageNet DenseNet-121 0.967(0.9635,

0.9708)

0.719(0.6564,

0.7862)

0.953(0.9477,

0.9589)

0.815(0.7457,

0.8685)

0.747(0.6734,

0.8107)

0.982(0.9782,

0.9849)

ImageNet EfficientNet-B3 0.967(0.9639,

0.971)

0.778(0.7151,

0.8415)

0.957(0.9516,

0.9625)

0.863(0.8303,

0.8966)

0.809(0.7463,

0.8634)

0.985(0.9820,

0.987)

ImageNet Vgg16 0.969(0.9649,

0.9723)

0.829(0.7704,

0.8790)

0.965(0.9597,

0.9699)

0.847(0.7875,

0.8960)

0.838(0.7783,

0.8817)

0.985(0.9819,

0.9870)

ImageNet ResNet50 0.971(0.9670,

0.9739)

0.854(0.7970,

0.9034)

0.966(0.9612,

0.9712)

0.899(0.8701,

0.9261)

0.873(0.8279,

0.9107)

0.986(0.9841,

0.9887)
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Table 3. Classification results of different models on external testing set

Training Method Model Accuracy Sensitivity Specificity Precision F1 Score AUROC

SSL

MAE RETFound

(proposed

method)

0.890(0.8823,

0.8977)

0.717 (0.6791,

0.7565

0.878(0.8708,

0.8848)

0.691(0.6525,

0.7257)

0.683(0.6436,

0.7208)

0.951(0.9448,

0.9561)

Uni4eye ViT-L/16 0.885(0.8767,

0.8934)

0.595(0.5575,

0.6346)

0.893(0.8863,

0.9000)

0.594(0.5497,

0.6401)

0.582(0.5418,

0.6228)

0.923(0.9151,

0.9330)

Lesion-based CL ResNet50 0.866(0.8575,

0.8737)

0.611(0.5773,

0.6460)

0.862(0.8553,

0.8685)

0.543(0.5055,

0.5790)

0.543(0.5246,

0.5916)

0.921(0.9123,

0.9289)

Multi-modal SSL ResNet18 0.863(0.8548,

0.8710)

0.575(0.5393,

0.6135)

0.851(0.8448,

0.8578)

0.577(0.5261,

0.6247)

0.546(0.5059,

0.5848)

0.909(0.8983,

0.9182)

Rotation-Oriented ResNet18 0.863(0.8582,

0.8744)

0.575(0.5221,

0.5952)

0.851(0.8515,

0.8652)

0.577(0.5583,

0.6643)

0.546(0.4858,

0.5700)

0.913(0.9013,

0.9233)

SL

ImageNet ViT-B/16 0.831(0.8221,

0.8393)

0.608(0.5729,

0.6469)

0.832(0.8251,

0.8388)

0.504(0.4653,

0.5419)

0.529(0.4935,

0.5655)

0.888(0.8774,

0.899)

ImageNet ViT-L/16 0.874(0.8656,

0.8825)

0.651(0.6139,

0.6900)

0.880(0.8723,

0.8868)

0.589(0.5471,

0.6311)

0.611(0.5725,

0.6489)

0.927(0.9198,

0.9340)

ImageNet DenseNet-121 0.845(0.8361,

0.8533)

0.652(0.6114,

0.6936)

0.834(0.8277,

0.8401)

0.612(0.5744,

0.6504)

0.574(0.5331,

0.6102)

0.899(0.8889,

0.9085)

ImageNet EfficientNet-B3 0.876(0.8674,

0.8835)

0.662(0.6261,

0.6972)

0.865(0.8581,

0.8721)

0.670(0.6289,

0.7077)

0.612(0.5691,

0.6522)

0.936(0.9287,

0.9430)

ImageNet Vgg16 0.877(0.8684,

0.885)

0.679(0.6386,

0.7191)

0.871(0.8636,

0.8777)

0.615(0.5754,

0.6543)

0.627(0.5867,

0.6654)

0.923(0.9147,

0.9299)

ImageNet ResNet50 0.888(0.8794,

0.8959)

0.649(0.6130,

0.6916)

0.897(0.8902,

0.9039)

0.579(0.5420,

0.6160)

0.605(0.5693,

0.6410)

0.929(0.9212,

0.9369)
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real-world conditions, often resulting in significant performance degradation during external testing or practical application.22–24 Further-

more, while some studies have reported favorable outcomes,25,26 their classification criteria do not strictly adhere to theMETA-PM standards

(Table 5). A significant factor is the low prevalence of high-grade lesions, resulting in a scarcity of corresponding images, which hampers

adequate model training. By aggregatingmultiple high-grade lesions into a single category, performance can be effectively enhanced; how-

ever, this approach compromises the clinical utility of the model.

On the other hand, this success can also be attributed to the more advanced methods used in this study. It is well-known that CNNs have

been the standard for automated medical image diagnosis in the last decade.27 Transformers, notably the ViT, have started to gain promi-

nence recently.28–30 Unlike CNNs, which utilize local connections and shared parameters, Transformers can learn the relationships between

various image segments and handling long-distance dependencies. This is particularly advantageous for fundus lesions, which typically

exhibit alterations in multiple regions or structures. By exploiting the pathological links between these lesions, transformers have already

demonstrated excellent results in DR tasks31 and have been used in retinal blood vessel segmentation,32 detection of retinal injuries,33 pre-

diction of visual field changes,34 and analysis of choroidal structures.33 MM typically presents as diverse alterations across the fundus,

including stretching of retinal and choroidal regions along with vascular changes. Prior studies by Lu et al.35 andDaniel et al.36 have effectively

utilized ResNet, a CNN-based architecture, and achieved notable results. Additionally, Du et al.37 employed the more recent EfficientNet

model, achieving an accuracy of 92.08% in a binary classification task for detecting pathologic myopia. In contrast, our research not only con-

firms the feasibility of utilizing transformer-based deep learning models for this task but also underscores the transformer’s aptitude for

analyzing MM fundus images. This effectiveness is largely attributable to its superior capability in modeling global image dependencies,

which is critical for detecting the complex patterns inherent in MM.

Asmentioned previously, the remarkable performance of our model can also be attributed to the application of advanced SSL pre-training

methods. Traditional AI model development relies on pre-training with extensively annotated data, often limited in dataset size.38 In contrast,

the RETFound foundation model used in our study underwent self-supervised training on 1.6 million unlabeled fundus images. By leveraging

generalized representations learned from these unlabeled retinal images, our method could unearth potential information across a broader

range of data. This superior performance of the SSL model can be ascribed to its ability to learn without the limitations imposed by restricted

and potentially biased annotated datasets, effectively harnessing the Transformer’s self-attention mechanism for a more thorough capture of

crucial image features. Such an attribute is particularly vital in processing images of MM, which are characterized by their high complexity and

rich detail. Practically, in ophthalmic clinical practice filled with opportunities for automation, it is almost impossible to gather well-annotated
iScience 27, 110566, August 16, 2024 5



Figure 2. Analysis of prediction results using our proposed method

(A) and (B) show the distribution of various categories within the actual datasets on internal and external datasets, respectively. The x axis represents the true

categories of the samples, and each bar represents the category into which that class of samples has been predicted.
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datasets for all tasks to train supervised models. Thus, the approach adopted in our study, involving an initial phase of SSL pre-training fol-

lowed by targeted fine-tuning for a specific downstream task, appears to be a more viable strategy. For ophthalmologists, this approach is

less challenging to implement and offers higher label efficiency. In this context, our study extends beyond the development of a CADx system

for the automatic diagnosis of MM. It also showcases the exceptional performance that foundational models like RETFound can achieve in

specific downstream tasks. Following themethodology of our study, employing a foundational model to develop a specializedmodel for any

automated task involving color fundus images or optical coherence tomography (OCT) fundus images becomes a streamlined process.

This is the first study that used DCA to evaluate DL models for automatic myopia screening, especially for MM screening. DCA has

distinctive advantages in providing practical insights for clinical decision processes, especially when evaluating the potential benefits

and risks of diagnostic tests. From the DCA results of our study, it was observed that our method had a higher net benefit in MM

screening than other models, with the accuracy of screening being crucial. Our earlier research pointed out that in developing coun-

tries, AI-based community eye disease screening may not always be more cost-effective than tele-screening technologies due to
6 iScience 27, 110566, August 16, 2024



Figure 3. The typical ‘‘true positive’’ example, and the corresponding heatmaps of different models

(A) is the original picture, which does not involve any model.

(B–G) correspond to the following models: our proposed SSL-enhanced model, multi-modal SSL model, Rotation-oriented model, Lesion-based CL model,

EfficientNet-B3 model, DenseNet-121 model. The color gradients utilized in the saliency maps serve to illustrate the magnitude of significance attributed to

the corresponding regions within the fundus image in relation to the prediction. Areas exhibiting warmer colors denote heightened importance, whereas

cooler colors signify diminished importance.
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lower human resource costs for medical personnel.39 However, this study demonstrates that the use of the free, open-source

RETFound framework in community high myopia screening not only enhances accuracy but also increases net benefits. Future

research should assess the health economic impact of the RETFound framework in real-world scenarios to further support and vali-

date our results. Nonetheless, our study did not account for patient refusal rates, a common and inevitable factor in screening pro-

cesses, due to the lack of available estimation data. Moreover, TestHarm is a generalized estimate based on clinicians’ subjective

assessments, which may vary across different contexts and populations. This variability implies that if TestHarm or refusal rates

change significantly, conclusions might differ. For example, in communities more open to automated screening systems, the use

of advanced CADx systems might be more welcomed. Conversely, a certain level of expert physician involvement could gain greater

acceptance. Addressing this estimation challenge could involve conducting sensitivity analyses. However, current methodologies do

not provide for such analyses using DCA, indicating a need for future research.
Limitations of the study

Despite the outstanding performance of our proposed model, there are still some limitations. First, while significant efforts have been made

to expand our dataset, the real-world data are primarily sourced from Shanghai, China and does not describe features, such as posterior

scleral staphyloma or ‘‘Plus’’ lesions (Fuchs spots, lacquer cracks, and choroidal neovascularization). More images of high myopia patients

will be collected in future studies. Second, our approach did not utilize multimodal data. The growing use of OCT and ultra-wide-field fundus

photography in examining high myopia patients underscores the importance of exploring the integration of diverse examination results and

even textual medical records. Third, the presence of diseases other than myopic macular lesions, which is typical in practical use, was not

accounted for. There is existing research showcasing the possibility of detecting multiple ocular diseases from fundus photographs, which

is an avenue for future exploration.
Figure 4. Comparison of using our proposed method and other models on the external testing set

(A) with TestHarm set as 0.02 (B) regardless of TestHarm.

iScience 27, 110566, August 16, 2024 7



Table 4. Detailed definition of MM classification criteria

Category Definition

C0 No macular lesions

C1 Tessellated fundus

C2 Diffuse chorioretinal atrophy

C3 Patchy chorioretinal atrophy

C4 Macular atrophy
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

RETFound foundation model Zhou et al.21 https://github.com/rmaphoh/RETFound_MAE

Gradient-weighted Class

Activation Mapping (Grad-CAM)

Selvaraju et al.40 https://github.com/ramprs/grad-cam/

PyTorch Version 1.8.1 https://pytorch.org/blog/pytorch-1.8-released/

Matplotlib Version 3.6.3 https://matplotlib.org/3.6.3/

Scikit-learn Version 0.24.2 https://pypi.org/project/scikit-learn/0.24.2/

SAS Version 9.4 https://www.sas.com/zh_cn/home.html

Python Version 3.9.17 https://www.python.org/downloads/release/

python-3917/

Our SSL-DL method for automatic

identification of MM

The code for fine tuning

and validation of our model.

https://github.com/Akemimadokami/ssl-enhanced-

DL-for-MM-in-High-Myopia

Deposited data

MMAC2023 The 26th International Conference on

Medical Image Computing and

Computer Assisted Intervention (MICCAI)

https://codalab.lisn.upsaclay.fr/competitions/12441
RESOURCE AVAILABILITY

Lead contact

Further information and requests should be directed to the lead contact, Dr. Jiangnan He (hejiangnan85@126.com).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� SHMSP dataset contain human-related data, which is governed by the Ministry of Science and Technology of China (MOST) in accor-

dance with the Regulations of the People’s Republic of China on Administration of Human Genetic Resources (State Council No.717).

Request for the non-profit use of the fundus images in the SHMSP should be sent to the lead contact.

� All original code can be found in GitHub as of the date of publication. DOIs are listed in the key resources table.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

This research incorporated 9,297 color fundus photographs (Figure S1). The development dataset was sourced from the Shanghai High

Myopia Screening Project, while the external testing set was derived from the MMAC2023 public dataset (https://codalab.lisn.upsaclay.fr/

competitions/12441). Both datasets were manually reviewed by professional ophthalmologists using uniform classification criteria, thereby

ensuring consistency of the results. Detailed characteristics of the data are presented in Table 5.

The development dataset comprised color fundus photographs collected between 2016 and 2018 from the aforementioned screening

program. Images were captured using the TOPCON DRI Triton device, centering on the macula. All images were independently classified

and annotated by three ophthalmologists, with discrepancies resolved through group discussions involving the ophthalmologists and a se-

nior retinal specialist. All images were re-evaluated based on specific criteria, excluding those that did not meet the following standards:

incomplete visibility of the fovea or more than 50% obscuration, blurriness, significant artifacts, low contrast, uneven illumination, and exces-

sive reflection. Ultimately, the development dataset consisted of 7,906 images from 5,879 patients (Figure S1). We randomly divided the

development dataset into a training set (80%) and an internal testing set (20%), ensuring that the proportions of different categories were

maintained consistently across both subsets and that there was no image-level overlap.

To evaluate the generalizability of our model, we further conducted external testing with the MMAC2023 (Myopic Maculopathy Analysis

Challenge 2023) public dataset. The MMAC2023, a competition for myopic maculopathy image analysis, was released at the 26th
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International Conference onMedical Image Computing and Computer Assisted Intervention. The dataset comprises 1,391 color fundus pho-

tographs annotated by experts. Each image conforms to the META-PM criteria for labeling, ensuring standardization across the dataset.

METHOD DETAILS

Study design

This study is a cross-sectional analysis using data from the Shanghai HighMyopia Screening Project (SHMSP), carried out by the Shanghai Eye

Disease Prevention and Control Center. As a leading ophthalmology specialty hospital in Shanghai, the center is in charge of several com-

munity-based eye disease screeningprograms andplays a crucial role in the prevention and treatment of eye diseases in Shanghai, China. The

study’s methodology encompasses three main stages. Initially, we collected 45� fundus images, which were subsequently reviewed and

graded by experienced ophthalmologists. Following standardized preprocessing procedures, these images were saved in jpg format,

with the diagnoses provided by the specialists used as labels. In the second step, we developed a computer-aided diagnosis (CADx) system

based on SSL and the Transformer framework. The final step of our research involved a comparative analysis of our model’s effectiveness in

MM screening with existing approaches, focusing on two aspects: 1) evaluating common model performance metrics based on confusion

matrices and receiver operating characteristic curves in both internal and external testing sets; 2) employing DCA to evaluate the impact

of the widespread use of related models on the net benefits of implementing high myopia screening. Additionally, we generated heatmaps

to visually represent the model’s predictive process.

Study approval

Our research protocol adhered to the principles of theDeclaration of Helsinki andwas approvedby the Ethics Committee of the First People’s

Hospital affiliated with Shanghai Jiao Tong University School of Medicine (Approval No. 2015KY156). Informed consent was obtained from all

participants. All imageswere subjected to irreversible anonymization. This study exclusively utilized retrospective data and did not involve any

active participation from the patients. No commercial interests were implicated in the design and conduct of this study.

Data acquisition and quality control

In the absence of a standardized classification system for MM, we adopted the META-PM criteria for grading.41 The META-PM is a globally

recognizedpathologicmyopia classification systembased on color fundus photographs.25,35,37,42 As outlined in Table 4, it categorizesmyopic

maculopathy into five groups: no maculopathy (Category 0), tessellated fundus (Category 1), diffuse choroidal atrophy (Category 2), patchy

choroidal atrophy (Category 3), and macular atrophy (Category 4).

Development of the CADx system

We developed a CADx system for the automatic grading of MM from color fundus photographs. The approach adopted involves an initial

phase of SSL pre-training, succeeded by fine-tuning for the specific downstream task. The pre-training was implemented based on the

RETFound framework, utilizing the Mask Autoencoder (MAE)43 to learn from 1.6 million unlabeled fundus images, allowing the model to

generalize representations of fundus tissue structures. Following this, themodel underwent fine-tuning on our training dataset for the specific

downstream task, aiming to produce labels that correspond to the image labels. All images in the training dataset were resized to 2563256

pixels. Data augmentation techniques similar to those used in pre-training were applied, including random cropping (20% to 100% of the

image), resizing cropped images to 2243224, random horizontal flipping, and image normalization. Training was conducted on 4 NVIDIA

GeForce RTX 2080 Ti GPUs, using CUDA version 11.1, an Intel(R) Xeon(R) Platinum 8255C CPU @ 2.50GHz, on an Ubuntu 18.04 system

with 86GB memory. The primary hyperparameters utilized in our study included a batch size of 16 and a total training duration of 50 epochs.

We employed a cosine annealing algorithm to adjust the learning rate, initiating with a warm-up phase during the first 10 epochs (gradually

increasing the learning rate from 0 to 5310^-4), followed by a cosine annealing schedule that progressively reduced the learning rate from 53

10^-4 to 1310^-6 over the subsequent 40 epochs. After each epoch, the model was evaluated on the internal validation dataset, and the

model weights with the highest AUROC were saved as checkpoints for subsequent evaluation and DCA analysis.

Evaluation of the CADx system

For a comprehensive evaluation of our system, several prevalent deep learning models were implemented. SSL typically encompasses four

strategies: Contrastive, Self-prediction, Generative, and Innate relationship.44 Accordingly, we employed Lesion-based CL for Contrastive

SSL,45 Uni4eye for Self-prediction SSL,46MMSSL for Generative SSL,47 and Rotation-oriented for Innate relationship SSL48 to train Transformer

models (ViT-L/16) and CNN models (ResNet). Additionally, we developed two Transformer models (ViT-B/16 and ViT-L/16) and three CNN

models (DenseNet-121, EfficientNet-b3, and Vgg16) using SL methods. Each model was trained using the same methodology and tested on

identical datasets to ensure fairness and consistency in comparisons.

QUANTIFICATION AND STATISTICAL ANALYSIS

We compiled a confusion matrix and calculated key metrics such as sensitivity, precision, specificity, AUROC, and AUPRC. Considering the

imbalance in the number of samples across different categories in our dataset, we employed Cohen’’s Kappa (k) as a statistical measure to
12 iScience 27, 110566, August 16, 2024
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gauge the level of agreement in classification or grading data among observers. The k value ranges from 0 to 1, with values greater than 0.8

generally indicating almost perfect agreement. Additionally, we utilized the F1 score to assess the model’s effectiveness in differentiating

between positive and negative cases. The F1 score, ranging from 0 to 1, indicates that higher scores reflect the model’s ability to correctly

identify positive instances while minimizing false positives. The relationships between these parameters and the metrics are defined by

the following equations.

Sensitivity =
TP

TP+FN
(Equation 1)
Specificity =
TN

TN+FP
(Equation 2)
Precision=
TP

TP+FP
(Equation 3)
F1 score=
2 � TP

2 � TP+FP+FN (Equation 4)
Cohen0s kappa=
p0 � pe

1� pe
(Equation 5)

In the formula for Cohen’s kappa calculation, p0 is the observed agreement (the proportion of samples correctly classified), and pe is the

expected agreement under random chance. These metrics were calculated using Python 3.9.17.

To gain a deeper understanding of the predictive process of deep learning models, we conducted a significance analysis using the

Gradient-weighted Class Activation Mapping (Grad-CAM) technique.40 This method generates colored heatmaps by employing a specific

feature weight calculation, highlighting the contribution of different regions of the image to the detection of MM. This analysis enabled

us to identify regions that significantly contribute to the decision-making process of the system.
Decision curve analysis

Unlike traditional evaluation metrics that fail to consider clinical consequences, DCA is a statistical technique focused on evaluating the ‘net

benefit’ of predictive models or diagnostic tests.49 This method accounts for critical clinical considerations, such as the consequences of a

missed diagnosis (false negative) compared to unnecessary treatment (false positive). DCA evaluates a model’s net benefit by comparing

it to fundamental strategies like treating all or no patients. The formula of net benefits is as follows:

NetBenefit =
TruePositiveCount

N
� Pt

1� Pt
3
FalsePositiveCount

N
� TestHarm (Equation 6)

The probability threshold Pt denotes the equilibrium between the benefits of treatment or further testing and those of avoidance, reflect-

ing clinicians’ risk-benefit assessments. For example, a 10% risk of severe conditions might prompt some doctors to intervene, while more

cautious ones may opt for intervention at a 20% risk. A model outperforms others if it yields a higher net benefit at a specified Pt .

TestHarm quantifies a test’s negative aspects, such as cost and side effects, relative to a true positive’s value. As an example, if a clinician

believes that overlooking a patient needing further treatment for high myopia is 50 times worse than an extra review using CADx system,

then TestHarm would be valued at 0.02.
ADDITIONAL RESOURCES

This study did not generate additional data.
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