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Background: Late-onset Alzheimer’s disease (AD) is a polygenic neurodegenerative
disease. Identifying the neuroimaging phenotypes behind the genetic predisposition of
AD is critical to the understanding of AD pathogenesis. Two major questions which
previous studies have led to are: (1) should the general “polygenic hazard score” (PHS)
be a good choice to identify the individual genetic risk for AD; and (2) should researchers
also include inter-modality relationships in the analyses considering these may provide
complementary information about the AD etiology.

Methods: We collected 88 healthy controls, 77 patients with mild cognitive impairment
(MCI), and 22 AD patients to simulate the AD continuum included from the ADNI
database. PHS-guided multimodal fusion was used to investigate the impact of PHS
on multimodal brain networks in AD-continuum by maximizing both inter-modality
association and reference-modality correlation. Fractional amplitude of low frequency
fluctuations, gray matter (GM) volume, and amyloid standard uptake value ratios
were included as neuroimaging features. Eventually, the changes in neuroimaging
features along AD continuum were investigated, and relationships between cognitive
performance and identified PHS associated multimodal components were established.

Results: We found that PHS was associated with multimodal brain networks,
which showed different functional and structural impairments under increased amyloid
deposits. Notably, along with AD progression, functional impairment occurred before
GM atrophy, amyloid deposition started from the MCI stage and progressively increased
throughout the disease continuum.

Conclusion: PHS is associated with multi-facets of brain impairments along the
AD continuum, including cognitive dysfunction, pathological deposition, which might
underpin the AD pathogenesis.

Keywords: Alzheimer’s disease, polygenic hazard score, supervised multimodal fusion, default mode network,
executive control network, visuospatial network, cognitive decline
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INTRODUCTION

Late-onset Alzheimer’s disease (LOAD) is the most common
form of dementia, whose morbidity and progression is largely
associated with the risk genes (Escott-Price and Jones, 2017).
Genome-wide associated studies (GWAS) have identified
multiple AD risk genes, including apolipoprotein E (APOE)
ε4, CLU, BIN1, PICALM, MS4A, ABCA7, and CR1 (Lambert
et al., 2013; Desikan et al., 2015). These genetic variants were
involved in the downstream molecular pathways and affect
the AD pathological substances, like amyloid production and
clearance, highlighting the importance of genetic variants in
AD pathogenesis.

Identifying neuroimaging phenotypes of AD genetic risk may
be critical to the understanding of AD pathogenesis (Biffi et al.,
2010; Cruchaga et al., 2013). For instance, the APOE ε4 allele,
as the strongest AD risk gene (Yu et al., 2014), was found to be
associated with brain atrophy and amyloid deposition involving
the hippocampus and temporoparietal regions (Li et al., 2017),
as well as decreased functional connectivity in the default mode
network (DMN) (Machulda et al., 2011). Besides, the BIN1
gene, which is the second crucial genetic susceptibility locus for
LOAD, was associated with the rate of volume change in the
left parahippocampal and right inferior parietal (Li et al., 2017).
Moreover, other genetic variants like the CR1 (Crehan et al.,
2012) and SORL1 (Scherzer et al., 2004) were also found to be
involved in brain clearance thus were regarded as the crucial
components in the pathogenesis of AD. To further elaborate,
SORL1 showed association with hippocampal atrophy (Cuenco
et al., 2008) and functional connectivity impairments (Shen et al.,
2017). Notably, another APOE major genetic variant, namely
APOE ε2 allele is related to a reduced risk of AD thus seems
to confer a protective effect against AD (Reiman et al., 2020).
These findings provided some hints on how genetic variants affect
the occurrence of AD acting through pathological, structural,
and functional brain alterations. However, there are still two
major problems remain unsolved about the relationship between
neuroimaging and gene in AD.

On the one hand, LOAD is a polygenic disorder. Any single
genetic variant found by previous studies cannot fully reflect
the total genetic risk of AD (Escott-Price and Jones, 2017).
A complex genetic index combining all risk and potentially
protective genetic variants should be a better choice to identify
an individual’s overall genetic risk for AD (Escott-Price et al.,
2015). Recently, the polygenic hazard score (PHS), which is
calculated by integrating multiple genetic variants (APOE and
31 other genetic variants) (Desikan et al., 2017), is suggested
to be a better index for evaluating the global impact of AD
susceptibility variants (Mormino et al., 2016; Ge et al., 2018).
Clinically, PHS is effective in predicting individual onset age
of AD dementia, even among APOE ε3/3 individuals, who
constitute the majority of all individuals with AD (Desikan
et al., 2017). Furthermore, PHS shows a significant correlation
with longitudinal cognitive decline in AD (Tan et al., 2017;
Kauppi et al., 2018). The possible mechanism may be the
effect of PHS on the structural and functional brain alterations
as well as AD pathological deposition. Accordingly, further

neuroimaging research should be performed to explore the effect
of PHS on the brain.

On the other hand, most previous studies are based on the
single-modality analysis, neglecting the potential inter-modality
relationships. Some studies observed the spatial overlaps between
different neuroimaging features in AD. For example, the spatial
distribution of Aβ (Buckner et al., 2005; Mormino et al.,
2011; Kvavilashvili et al., 2020) and Tau (Buckner et al.,
2008) is highly overlapped with functional and structural
impairments in DMN regions in AD. Such spatial similarity
indicates the inter-modal information association, which may
provide complementary information about the clues of AD
etiology. Therefore, multimodal fusion is an effective analysis
strategy that could jointly investigate multimodal data and
detect their co-alterations related to diseases (Li et al., 2009;
Sui et al., 2012). A recent approach for reference guided
multimodal fusion method, called multisite canonical correlation
analysis with reference + joint independent component analysis
(MCCAR + jICA) (Qi et al., 2018a), shows high effectiveness
in exploring components of interest related to a particular trait,
for example, gene and cognitive score. MCCAR + jICA uses
subject-wise clinical measures as the reference to guide a 3-way
MRI fusion and by maximizing both inter-modality association
and reference-modality correlation. For example, Qi et al.
(2018b). used the gene as the reference and successfully identified
the risk gene-associated patterns in major depressive disorder.
Accordingly, the appliance of the MCCAR + jICA model
with PHS as reference is an ideal method for comprehensively
evaluating the neuroimaging phenotypes of PHS in AD-
continuum subjects.

Accordingly, the current study aimed to explore the
PHS associated multimodal brain alterations in AD using
MCCAR + jICA. We included healthy control (HC), mild
cognitive impairments (MCI), and AD subjects to simulate the
AD continuum and observed how the identified multimodal
pattern alternates during AD evolution. Using subject-wise PHS
as the reference, three features from different magnetic resonance
imaging (MRI) modalities [fractional amplitude of low frequency
fluctuations (fALFF) from resting-state functional MRI (rs-
fMRI), GMV from structural MRI, and voxel-wise amyloid
standard uptake value ratios (SUVR) from18F-florbetapir PET
([18F]-AV45 PET)] were analyzed jointly to leverage the cross-
information in the existing data that cannot be detected by
single modality analysis alone. Based on the previous findings,
we propose that (1) the PHS associated multimodal brain
alterations mainly involve core brain networks, like DMN; and
(2) such degenerative pattern evolves with the progression of
AD. Thereinto, functional and amyloid changes may occur earlier
while GM atrophy takes place later.

MATERIALS AND METHODS

Study Participants
Data used in the current study were obtained from the
Alzheimer’s disease neuroimaging initiative (ADNI) database
(Supplementary Material 1 provides detailed information
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about ADNI). All included subjects underwent the T1-
weighted structural scan, [18F]-AV45 PET, rsfMRI, PHS, and
comprehensive neuropsychological assessments (Supplementary
Material 2 provides detailed information about the MRI and
PET acquisition). All the cognitive status and MRI data were
obtained from the same visit. This criterion yielded 88 HC, 77
MCI, and 22 AD patients from the ADNI database (see flowchart
and inclusion criteria in Supplementary Material 3).

Neuropsychological Assessment
All subjects completed comprehensive neuropsychological tests,
including assessment of general mental status (MMSE and
CDR), memory [ADNI memory composite score (ADNI-
MEM)], executive function [ADNI executive function composite
score (ADNI-EF)], language function [ADNI language function
composite score (ADNI-LAN)], and visuospatial function
[ADNI visuospatial function composite score (ADNI-VS)].
More detailed information about composite cognitive scores is
provided in Supplementary Material 4.

Polygenic Hazard Score (PHS)
PHS was developed and validated by Desikan et al. (2017).
Firstly, common variants associated with AD (at p < 10−5) were
identified from 17,008 AD cases and 37,154 controls from Stage 1
of the International genetics of Alzheimer’s Project. Then, based
on the Alzheimer’s Disease Genetic consortia phase 1 genetic data
[excluding individuals from the ADNI and National Institute
of Aging Alzheimer’s Disease Center (NIA ADC) samples], a
stepwise Cox proportional hazard model was applied to examine
the association between these SNPs and AD while controlling for
the effects of gender, APOE variants, and the top five genetic
principal components (to control for the effects of population
stratification). This model identified 31 SNPs, including the
APOE ε2 and APOE ε4 genotype, which were further used to
derive the individual PHS. Finally, the PHS was integrated with
population-based incidence rates from the US population to
provide estimates of instantaneous risk for developing AD. The
PHS represents the vector product of an individual’s genotype for
the 31 SNPs and the corresponding parameter estimates from the
Cox proportional hazard model.

Detailed information on the PHS calculation can be found
on the ADNI website1. PHS data used in the current study are
publicly available from the ADNI database2.

Image Preprocessing
RsfMRI data preprocessing was performed using the data
processing assistant and resting-state fMRI toolbox (DPARSF)3

(Chao-Gan and Yu-Feng, 2010) based on Statistical Parametric
Mapping 12 (SPM12)4. The first 5 rsfMRI scans were discarded
for the signal equilibrium and subject’s adaptation to the scanning
noise (Chao-Gan and Yu-Feng, 2010). The remaining 135 images
were corrected for timing differences in slice acquisition. After

1http://adni.loni.usc.edu/
2https://ida.loni.usc.edu
3www.rfmri.org/dpasfa
4www.fil.ion.ucl.ac.uk/spm

that, a rigid body motion correction was performed to correct
the head motion of the fMRI scans. Then, the mean rsfMRI
image was co-registered to the subject-specific T1 image and
spatially normalized to the Montreal Neurological Institute
(MNI) standard space, resampling into 3 × 3 × 3 mm3 cubic
voxel. Scrubbing was then performed to reduce motion-related
artifacts by using a framewise displacement threshold of 0.5
(Power et al., 2012). To control the residual effects of motion and
other non-neuronal factors, we removed covariates, including six
head motion parameters and signals of white matter (WM) and
cerebrospinal fluid (CSF) (Friston et al., 1996; Chao-Gan and Yu-
Feng, 2010). Finally, the fMRI data were smoothed using an 8 mm
full width at half maximum kernel (FWHM).

The T1-weighted image preprocessing was performed using
voxel-based morphometry analysis based on SPM12. Briefly, T1-
weighted scans were aligned to the T1-weighted template image.
Secondly, the aligned images were segmented into GM, WM, and
CSF compartments with bias correction. Then, the GM maps
were normalized to MNI coordinate space via the modulated
method, resampling to 3 × 3 × 3 mm3 voxel size. Finally, GMV
was calculated by the modulated method was smoothed using an
8 mm FWHM Gaussian kernel.

The [18F]-AV45 PET preprocessing was performed using
the PET-PVE12 (an SPM toolbox for Partial Volume Effects
(PVE) correction in brain PET (Gonzalez-Escamilla et al.,
2017). Briefly, the T1-weighted image was firstly segmented
into different tissue compartments (GM, WM, and CSF) based
on an adaptive maximum a posterior approach with partial
volume estimation. An iterative hidden Markov random field
model (Cuadra et al., 2005) was further applied to remove
isolated/unclassified voxels. Then, [18F]-AV45 PET data were co-
registered to the structural MRI data and corrected for PVE using
the voxel-wise method defined by Muller-Gartner et al. (1992)
(PVEc-MG) methods. Here, we set the isotropic point spread
function at 8 mm according to the effective image resolution
of the ADNI AV45 PET data. Then, the voxel-wise [18F]-AV45
PET SUVR map was calculated using the whole cerebellar signal
in the individual raw PET images as the reference. Finally,
for voxel-based analyses, PVEc-MG corrected [18F]-AV45 PET
images were spatially warped using the deformation fields derived
from registration of the co-registered MRI scans to the reference
template. Finally, warped images were smoothed with an 8 mm
FWHM Gaussian kernel.

Feature Extraction
Three representative neuroimaging features (fALFF, GMV, and
[18F]-AV45 PET SUVR) were calculated as the input of fusion
analysis. Voxel-wise GMV and [18F]-AV45 PET SUVR map
(amyloid SUVR) were directly obtained after the preprocessing.
Notably, we considered atrophy, reflected by volume change,
as the signature of GM atrophy. The fALFF is the ratio of
power spectrum of low-frequency to that of the entire frequency
range (Zou et al., 2008) which was calculated using the DPARSF
toolbox. The time series of voxels were first converted into the
frequency domain using a fast Fourier transform. We computed
the square root of the power spectrum. The averaged square root
was obtained across 0.01–0.1 Hz and across the whole frequency
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band. Then we calculated the ratio of averaged square root in low
frequency band to that in the entire frequency band as the fALFF
for each voxel. Finally, normalization is done separately for each
feature within groups, using the square root of mean of squared
data for all subjects.

Fusion With Reference
The normalized features were jointly analyzed based on
MCCAR+ jICA (Qi et al., 2018a) using the Fusion ICA Toolbox
(FIT).5 Figure 1 shows a detailed analysis flowchart. Firstly, for
each modality, the neuroimaging features were stacked to 2D
matrices with the row indicates the subject and the column
indicates the features. Then, PHS was used as the reference
to guide the joint decomposition of three features to generate
spatial maps and their corresponding canonical variants for
each modality. MCCAR identifies joint multimodal components
that show maximal correlation with the reference and inter-
modality covariation based on supervised learning. Based on the
modified minimum description length criterion (Li et al., 2007),
15 components were estimated for each feature (fALFF, GMV,
and amyloid SUVR). Finally, jICA is applied to the concatenated
spatial maps to obtain the final independent components (ICs)
and their corresponding mixing matrices. More details of the
model are shown in Qi et al. (2018a).

Analysis of variance (ANOVA) was performed to explore the
difference of mixing coefficients of each component for each
modality. Then, post hoc analysis using a two-sample t-test
was performed to examine the source of ANOVA difference
(significant at p < 0.05, false discovery rate (FDR) corrected).

Correlation Between Features and
Cognitive Scores
To explore whether the multimodal brain alterations underpin
the cognitive decline, we further examined the potential
relationship between mixing coefficients of multimodal
components and cognitive performance (i.e., memory, executive,
language, and visuospatial function). The Pearson correlation
between the loadings of features and cognitive scores (ADNI-
MEM, ADNI-EF, ADNI-LAN, ADNI-VS) was calculated across
subjects (significant at p < 0.05, FDR corrected).

We also performed the correlation analysis within every
group (HC, MCI, and AD) to show the distinct association
with cognition. To remove the possible effect of covariates
(age, gender, and education level), we further performed
partial correlation analysis. Detailed information was listed in
Supplementary Material 6.

RESULTS

Demographic and Neuropsychological
Data
Detailed demographics are provided in Table 1. We used a
Chi-squared test for categorical (gender, APOE genotype) and

5https://trendscenter.org/software/fit/

ANOVA for continuous data (age, education), respectively,
(SPSS, version 19.0). Then, a two-sample t-test was performed to
reveal the source of ANOVA difference (significant at p < 0.05).

There is no group difference in age, gender, and education
among HC, MCI, and AD. MCI and AD had higher PHS,
APOE 4 percentage, and GDS compared to HC. In terms of the
cognitive level, MCI and AD had lower cognitive scores in all
items compared to HC.

PHS Associated Multimodal Covarying
Imaging Patterns
One joint component was identified that was correlated with
PHS and showed significant alteration along the AD continuum
(HC, MCI, AD). The resulting spatial maps were Z-transformed
and visualized at |Z| > 2 in Figure 2A. Along AD-continuum,
PHS was correlated with (1) decreased fALFF in the precuneus,
inferior parietal lobule (IPL) and middle temporal gyrus (MTG);
(2) decreased GMV in the precuneus, IPL, and temporal region;
and (3) increased amyloid SUVR in the precuneus, IPL, posterior
cingulate cortex (PCC), and temporal regions. These commonly
affected brain regions are essential components of the default
mode network (DMN). The PHS was also associated with other
covarying patterns along the AD continuum (HC, MCI, AD) such
as (1) increased fALFF in the hippocampus, parahippocampal
gyrus, and frontal regions; (2) increased GMV in the frontal
and occipital regions; and (3) increased amyloid SUVR in the
frontal regions. These involved frontal and occipital regions
indicate the alterations of the executive control network (ECN)
and visuospatial network, respectively. Detailed anatomical
information of the identified regions in the joint component was
summarized in Supplementary Material 5.

As shown in Figure 2B, the loadings of ICs were positively
correlated with PHS (r = 0.18, p = 0.01 for fALFF; r = 0.17, p = 0.02
for GMV; r = 0.32, p< 0.001 for amyloid SUVR; p-values are FDR
corrected). Significant differences in loadings of fALFF, GMV, and
amyloid SUVR (Figure 2C) among groups were also observed.
To be specific, both MCI and AD showed higher loadings than
HC in fALFF. As for GMV, AD showed higher loadings than HC
and MCI. Moreover, both MCI and AD showed higher loadings
when compared to HC in amyloid SUVR; notably, AD showed
higher loadings than MCI. The overall results indicate that the
functional abnormalities occur during the early AD stage (HC
to MCI), while the GM abnormalities occur during the late AD
stage (MCI to AD). Continuous amyloid SUVR changes can be
observed along the whole AD continuum (HC, MCI, and AD).

Multimodal Features Associated With
Cognition
The identified multimodal brain alterations were significantly
associated with four major cognitive domains. The loadings of
three features (fALFF, GMV, amyloid SUVR) were negatively
correlated with memory, executive, language, and visuospatial
function. Detailed results were listed in Figure 3 (significant at
p < 0.05, FDR corrected) and Supplementary Material 6.

Furthermore, we tested the robustness of the current results
from the following three aspects: (1) To further reduce the
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FIGURE 1 | Data analysis flowchart using fusion with reference. Extracted neuroimaging features (fALFF, GMV, and amyloid SUVR) are first stacked to 2D matrices
for each modality. Then, PHS is used as the reference to guide the joint decomposition of three features to generate spatial maps (C1,C2,C3) and their
corresponding canonical variants (A1,A2,A3). Finally, joint ICA is applied on the concatenated spatial maps to obtain the final ICs and their corresponding mixing
matrices. fMRI, functional MRI; sMRI, structural MRI; HC, healthy control; MCI, mild cognitive impairment; AD, Alzheimer’s disease; fALFF, fractional amplitude of low
frequency fluctuations; GMV, gray matter volume; SUVR, standard uptake value ratios; PHS, polygenic hazard score; MCCAR, multisite canonical correlation analysis
with reference; ICA, independent component analysis; IC, independent components.

TABLE 1 | Demographic information.

Demographic characteristics HC MCI AD F-value/X2 Sig

N = 88 N = 77 N = 22

Age 77.40 ± 6.13 77.13 ± 8.14 80.70 ± 7.83 2.21 0.11

Gender (F/M) 42/46 32/45 9/13 0.76 0.69

Education 16.42 ± 2.68 15.94 ± 2.95 15.50 ± 2.86 1.20 0.30

APOE 4 3/88 30/77 12/22 41.08 <0.001ab

GDS 0.88 ± 1.11 1.43 ± 1.20 2.36 ± 1.65 14.11 <0.001abc

PHS −0.29 ± 0.29 0.26 ± 0.82 0.46 ± 0.62 23.91 <0.001ab

Cognitive scores

MMSE 29.05 ± 1.10 28.22 ± 1.67 19.41 ± 5.22 174.95 <0.001abc

CDR global 0.00 ± 0.00 0.50 ± 0.00 1.11 ± 0.55 360.12 <0.001abc

CDR sum 0.05 ± 0.15 1.48 ± 0.96 6.27 ± 3.05 235.63 <0.001abc

ADNI_MEM 1.10 ± 0.63 (87/88) 0.34 ± 0.53 (77/77) −0.88 ± 0.70 (22/22) 103.78 <0.001abc

ADNI_EF 1.05 ± 0.81 (87/88) 0.49 ± 0.88 (76/77) −0.94 ± 0.99 (20/22) 44.63 <0.001abc

ADNI_LAN 0.95 ± 0.65 (88/88) 0.42 ± 0.80 (77/77) −0.89 ± 1.23 (22/22) 47.16 <0.001abc

ADNI_VS 0.18 ± 0.66 (88/88) −0.02 ± 0.78 (77/77) −0.88 ± 1.13 (22/22) 16.33 <0.001bc

HC, healthy control; MCI, mild cognitive impairment; AD, Alzheimer’s disease; APOE, apolipoprotein; GDS, geriatric depression scale; PHS, polygenic hazard score;
MMSE, Mini-Mental State Examination; CDR, clinical dementia rating; ADNI-MEM, the composite scores for memory in ADNI; ADNI-EF, the composite scores for
executive function in ADNI; ADNI-LAN, the composite scores for language in ADNI; ADNI-VS, the composite scores for visuospatial function in ADNI. a–c, post hoc
analysis further revealed the source of ANOVA difference (aHC vs. MCI; bHC vs. AD; cMCI vs. AD) (p < 0.05, significant difference between groups). Data are presented
as means ± standard deviations. There are some missing values in multiple composite cognitive scores. We thus listed the proportions. Notably, no missing values in
other demographic information.

possible effect of covariates, we performed analysis corrections
for age, gender as well as education and added them in the
Supplementary Material 7. (2) To further clarify the effect of

APOE and other SNPs, we supplementarily identified the role of
APOE alone and the other SNPs on the brain changes from three
aspects and added them in the Supplementary Material 8. (3)
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FIGURE 2 | The identified joint component. (A) The spatial maps visualized at |Z| > 2, where the positive Z-values (red regions) means higher fALFF, GMV, and more
amyloid deposition, and negative Z-values (blue regions) indicate decreased fALFF, GMV, and less amyloid deposition. (B) The loadings of the identified joint
component and PHS were positively correlated (HC, blue dots; MCI, purple square; AD, red triangle) (C) Boxplot of the loading parameters of the identified joint
component. *Significant at p < 0.05, FDR corrected. fALFF, fractional amplitude of low frequency fluctuations; GM, gray matter; SUVR, standard uptake value ratios;
PHS, polygenic hazard score; HC, healthy control; MCI, mild cognitive decline; AD, Alzheimer’s disease.

We repeated the fusion analysis in the HC with negative amyloid,
MCI, and AD with positive amyloid and listed the results in the
Supplementary Material 9.

DISCUSSION

Based on cross-sectional datasets spanning the continuum of
AD, we explored the progressive pattern of PHS-associated
multimodal impairments. We applied the PHS-guided
multimodal fusion and identified the PHS-related multimodal
covaried pattern, including DMN, ECN, visuospatial networks
in function, pathological deposition, and GM atrophy that
are correlated with multiple cognitive domains. Furthermore,
along the AD continuum, amyloid deposition and functional
impairment occurred earlier, followed by GM atrophy. Notably,
amyloid deposition started from the early stage and progressively
changed along with the disease. Collectively, the current study
provided insight into the linkage between AD risk genes and

multimodal neuroimaging covariations, which might underpin
the pathophysiology of cognitive impairments in AD.

PHS Associated Multimodal Pattern
Involves Multiple Networks
Multimodal brain alterations in fALFF, GMV, and amyloid
SUVR were identified to be related to PHS, which indicates
that subject-specific PHS was associated with functional
impairments, GM atrophy, and amyloid accumulation in AD
susceptible brain region. Such multimodal alterations support
previous findings, indicating amyloid as the key underlying
mechanism that initiates AD onset and leads to downstream
impairments, including brain dysfunction and neuron death in
different brain regions.

These identified brain regions are spatially located within
three networks including DMN, ECN, and visuospatial network,
which played distinct roles in the onset and progression of AD.
PHS related impairments converge on brain regions such as
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FIGURE 3 | Correlation between loadings of the identified joint component and cognitive function. *Significant at p < 0.05, FDR corrected. HC, healthy control; MCI,
mild cognitive impairment; AD, Alzheimer’s disease; fALFF, fractional amplitude of low frequency fluctuations; GMV, gray matter volume; SUVR, standard uptake
value ratios.

the precuneus, IPL, and temporal gyrus, which are the core
components of DMN (Andrews-Hanna et al., 2014). Specifically,
decreased functional connectivity, GM atrophy, and increased
amyloid deposit manifest as decreased fALFF, GMV, and
increased amyloid SUVR in the AD continuum (HC, MCI, AD)
jointly suggested PHS-related multimodal impairments within
DMN. These findings are consistent with but extend previous
studies that the DMN is the most vulnerable region under AD
attacks thus suffers severe functional and structural impairments

(Buckner et al., 2008; Palmqvist et al., 2017). The association
between increased amyloid deposit and decreased GMV in DMN
supports the mechanism of amyloid burden associated structural
impairments in AD.

The identified component also involves frontal regions, which
spatially are the core components of the ECN (Weiler et al.,
2014). Increased values in PHS associated fALFF, GMV, and
amyloid SUVR suggest an increase in the volume and function
of frontal regions, even under more amyloid pathological
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deposits. These findings are in line with the compensatory
enlargement of synaptic size in the frontal cortex under AD
pathology (Scheff et al., 1990), and indicate the increased volume,
and functional connectivity in frontal regions may work as a
compensatory function in the face of AD pathology (Becker
et al., 2013). Interestingly, the joint increase in the frontal
and hippocampus was only observed in the fMRI modality.
This pattern partially proves the role of hippocampal-prefrontal
interactions in cognitive disease and can be interpreted as a
functional compensatory mechanism (Filbey et al., 2010).

We also observed PHS-related GMV increase in occipital
regions, where the processing core of the visuospatial network is
located. Notably, alterations in functional and amyloid features
were not detected in occipital regions, suggesting that PHS-
related visuospatial network impairments are mainly confined
to GM atrophy. Similar conclusions can be found in previous
studies which observed the retained physiological glucose
metabolism in the occipital cortex in AD (Rice and Bisdas, 2017).

Progressive Changes of Multimodal
Patterns Suggest the AD Genetic
Pathogenesis
Group comparisons showed a progressive increase in all PHS-
related neuroimaging features with the development of AD,
suggesting severer brain structural and functional impairments,
as well as more pathological deposits, resulted from AD genetic
risk. Similar conclusions can be made from previous studies using
single modal analysis. For example, our previous study observed
the progressive GMV loss along the AD continuum involving
DMN and ECN (Li et al., 2019). Moreover, plenty of functional
MRI studies showed progressive multiple network impairments
in AD (Zeng et al., 2019). All the above evidence indicates that
PHS affects multi-facets of the brain, and such genetic effect
deepens with the development of AD.

Three features showed different patterns of change in different
disease stages, which further expands our understanding of AD
pathophysiology. MCI showed increased loadings of fALFF and
amyloid SUVR when compared to HC while no significant
changes in that of GMV, suggesting that the effects of AD genetic
risk initially appear in functional MRI and pathological deposit.
As the disease progresses, loadings of amyloid SUVR and GMV
in AD showed a significant increase when compared to MCI,
suggesting that GM atrophy occurs at a relatively late AD stage.
Notably, the GMV and amyloid SUVR showed partial spatial
overlap. This finding is comprehensible considering the late AD
stage has higher possibilities of carrying both amyloid and Tau,
which result in the GM atrophy. Moreover, the loading of amyloid
SUVR showed a progressive increase throughout AD, indicating
that amyloid deposition is the key mechanism underlying the
multimodal neuroimaging changes. This is reasonable since
the amyloid cascade hypothesis of AD postulates that the
accumulation of amyloid occurs even decades before the onset
of the clinical symptoms.

Such a time inconsistency of brain impairments supports the
followed inference: functional alternations tend to happen at
the preclinical stage of AD, while GM atrophy takes place at a

relatively late AD stage. Thereinto, amyloid deposition may be
the key to revealing the underlying mechanism.

Multimodal Neuroimaging Features
Correlate With Multiple Cognitive Scores
in AD-Continuum Subjects
Cognition is formed based on the cooperation of multiple
networks. Our study supported this theory by finding the
significant correlations between the loadings of three features
and multiple cognitive scores, including memory, executive,
language, and visuospatial function. This is also supported by
previous studies, which proposed brain network impairments
as the underlying neural mechanism of multi-domain cognitive
impairments in AD, involving the DMN, ECN, as well
as other networks.

Notably, the identified neuroimaging features showed
different associations to different cognitive domains. Our
correlation analysis on the patient groups (MCI and AD) found
the most significant association in memory. This is in line with
the clinical symptoms, regarding memory loss as the earliest
suffered and most significantly impaired cognitive function in
AD. The underlying mechanism is the widespread functional
and structural impairments in DMN, which is also proved in
our current study. Notably, the most significant association was
found between memory and GMV, which also makes sense since
neuron is the basic unit for cognitive function. Visuospatial
function is less associated with the multimodal changes in our
study. This is consistent with clinical findings showing the
relatively spared visuospatial function in AD. Our findings
showing limited involvement in just GMV, with functional and
pathological impairment spared, may help explain that. Similarly,
one previous study also found that the amyloid deposit is much
less associated with visual memory (Rice and Bisdas, 2017).

LIMITATION

There are several limitations in the current study. First, the
sample sizes of different groups are unbalanced, with a relatively
small sample size for the AD group. Thus, the corresponding
conclusion about AD should be treated cautiously. We would like
to validate our findings in future studies with balanced subjects
for each group. Secondly, the intrinsic causality between amyloid
and fALFF, as well as GMV, is mainly descriptive and needs
further investigation, although it has been reported that amyloid
is the preliminary pathogenesis. Thirdly, this is a cross-sectional
study. Although we try to use the subjects with different disease
stages to depict the AD continuum, a further longitudinal study
should be done. Moreover, due to the small overlap between the
available Tau PET and PHS data, we cannot include the Tau PET
in the current study. This may partially limit our understanding
of the genetic effect on AD pathology and should be further
explored in future studies. Finally, the current study only focused
on PHS, and further study should consider other polygenic risk
scores (PRS), like wider AD-PRSs (including genetic variants at
P-value threshold < 0.5) (Escott-Price et al., 2015) or derive a
PRS by ourselves according to the scientific design.
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CONCLUSION

Based on a data-driven, supervised-learning fusion method, our
study revealed that subject-specific PHS was linked with multi-
facets of the brain, including function, pathological deposition,
and neurodegeneration. The multimodal brain abnormalities
were further correlated with cognition. The identified atypical
brain regions spatially involved DMN, ECN, as well as
visuospatial network and showed progressive changes with the
development of AD. This work expands our understanding of
how genetic risk factors in AD contribute to brain impairments
and provides insight into how plausible genetic risk factors
may influence the pathophysiology of AD. Moreover, different
disease stages show different sensitivity to different imaging
parameters, suggesting that specific neuroimaging methods
should be selected according to the disease stages during the
clinical diagnosis and treatment.
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