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Alzheimer's disease (AD) and atherosclerosis are both chronic age- and inflammation-
dependent diseases. In addition, atherosclerosis is frequently observed in AD patients 
indicating common involvement of vascular components in both disease etiologies. 
Recently, epigenome-wide association studies have identified epigenetic alterations, and 
in particularly DNA methylation changes for both disorders. We hypothesized the existence 
of a common DNA methylation profile in atherosclerosis and AD which may be valuable 
as a blood-based DNA methylation inflammaging biomarker. Using publicly available 450k 
Illumina methylation datasets, we identified a co-methylation network associated with 
both atherosclerosis and AD in whole blood samples. This methylation profile appeared 
to indicate shifts in blood immune cell type distribution. Remarkably, similar methylation 
changes were also detected in disease tissues, including AD brain tissues, atherosclerotic 
plaques, and tumors and were found to correlate with immune cell infiltration. In addition, this 
immune-related methylation profile could also be detected in other inflammaging diseases, 
including Parkinson's disease and obesity, but not in multiple sclerosis, schizophrenia, and 
osteoporosis. In conclusion, we identified a blood-based immune-related DNA methylation 
signature in multiple inflammaging diseases associated with changes in blood immune 
cell counts and predictive for immune cell infiltration in diseased tissues. In addition to 
epigenetic clock measurements, this immune-methylation signature may become a 
valuable blood-based biomarker to prevent chronic inflammatory disease development or 
monitor lifestyle intervention strategies which promote healthy aging.
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INTRODUCTION
Aging and inflammation are important contributors of various chronic lifestyle diseases, including 
Alzheimer's disease (AD) and atherosclerosis. Furthermore, AD and atherosclerosis share a lot of 
disease characteristics and it has been hypothesized that they have a common cause (Lathe et al., 2014).

AD is the most common form of dementia, and is characterized by the accumulation and aggregation 
of extracellular amyloid-β (Aβ) plaques, the intraneuronal deposition of hyper-phosphorylated 
tau protein which forms neurofibrillary tangles, neuronal loss, and gliosis in the cerebral cortex 
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and hippocampus (Ballard et al., 2011; Masters et al., 2015). In 
addition, also vascular components seem to play a crucial role in 
the initiation and development of AD (Zlokovic, 2011; Nelson 
et al., 2016; Kisler et al., 2017). The brain consumes a high amount 
of oxygen and glucose, and therefore the cerebral blood flow is 
of particular importance for brain health. It is therefore not 
surprising that cerebrovascular dysfunction has been associated 
with dementia, AD, and other neurodegenerative disorders. More 
recently, it has been hypothesized that cerebrovascular damage 
could be the first hit in AD initiation leading to neuronal injury 
and loss, and the accumulation of Aβ in the brain, and eventually 
the development of AD (Zlokovic, 2011).

Atherosclerosis has been associated with dementia and 
AD (Casserly and Topol, 2004; Lathe et al., 2014). During 
atherosclerosis development, lipids, macrophages, fibrous 
connective tissue, and necrotic debris accumulate in the 
arteries wall leading to the formation of plaques, which can 
over time rupture and block the blood flow leading eventually 
to cardiovascular diseases (CVDs) like myocardial infarction or 
stroke (Lusis, 2000). Both atherosclerosis as AD risk increases 
with age and has an inflammatory component. Of interest, 
cerebrovascular atherosclerosis has been found to occur more 
often in AD patients and correlate with the severity of cognitive 
impairment (Roher et al., 2003; Roher et al., 2004; Honig et al., 
2005; Dolan et al., 2010; Roher et al., 2011; Yarchoan et al., 2012; 
Yuan et al., 2013; Arvanitakis et al., 2016; Kim  et  al., 2016). 
Also carotid atherosclerosis, carotid intima media thickness 
and coronary artery disease has been associated with AD 
and AD pathology (Hofman et al., 1997; Beeri et al., 2006; 
Silvestrini et al., 2009; Silvestrini et al., 2011; Wendell et al., 
2012). In addition, adults with CVD show an increased risk for 
the development of dementia and AD (Newman et al., 2005). 
Furthermore, atherosclerosis and AD share common risk factors 
including age, hypertension, type 2 diabetes, obesity, smoking, 
hypercholesterolemia, and hyperhomocysteinemia (Ballard 
et al., 2011; Kovacic and Fuster, 2012; Fiolaki et al., 2014). Of 
interest, in both diseases the APOE4 allele is a genetic risk factor 
(Yu et al., 2014; Zhu et al., 2016).

Because both diseases are associated with multiple lifestyle 
and environmental factors, it is not surprising that epigenetic 
mechanisms are involved in both disease etiologies. Epigenetics is 
linking environmental factors and genetics through modulation of 
gene expression patterns. Blood and saliva DNA methylation profiles 
are increasingly applied as valuable diagnostic and prognostic 
biomarkers in diseased patients. DNA methylation alterations have 
been identified in whole blood and plaque tissues of atherosclerosis 
(Yamada et al., 2014; Zaina, 2014; Zaina et al., 2014; Nazarenko 
et al., 2015; Valencia-Morales Mdel et al., 2015; Zaina et al., 2015; 
Istas et al., 2017). Also AD has been associated with methylation 
changes in blood and different brain regions (De Jager et al., 2014; 
Lunnon et al., 2014). We recently demonstrated that BRCA1 and 
CRISPR specific DNA changes in blood can be used as surrogate 
marker for atherosclerosis (Istas et al., 2017). More particularly, 
hypermethylation of a CpG island in the promoter region of BRCA1 
could be replicated in plaque tissue of two independent cohorts 
indicating that blood can be used to predict methylation changes 
in atherosclerotic plaques. Of interest, BRCA1 promoter was also 

found to be differentially methylated in AD within neurons, and 
found to be correlated with gene expression (Mano et al., 2017). In 
AD, however, there is limited evidence that methylation changes in 
brain tissues are also present in more accessible tissues like blood 
(Li et al., 2016; Yu et al., 2016). In a study of Lunnon and colleagues, 
methylation changes found in blood of AD patients were not 
overlapping with the changes seen in AD brain (Lunnon et al., 
2014). However, the AD blood differentially methylated positions 
(DMPs) were located in the vicinity of genes of relevance to AD and 
correlated with transcriptional changes making them still potential 
diagnostic biomarkers.

Given the high commonalities between atherosclerosis 
and AD disease, here we further examined whether we could 
find similar DNA methylation signatures in blood of AD and 
atherosclerosis patients.

MeThODS

Datasets
Genome-wide 450k Illumina DNA methylation datasets were 
extracted from the Gene Expression Omnibus (GEO) database 
using the GEOquery R package (Davis and Meltzer, 2007). Raw 
DNA methylation values were intra-array normalized using the 
beta mixture quantile dilation (BMIQ) method (Teschendorff 
et al., 2013) and normalized beta methylation values were used 
for all further analyses.

Table 1 summarizes the genome-wide DNA methylation 
datasets of AD brain and whole blood samples, and plaques and 
whole blood samples of atherosclerotic patients used in our study. 
Also, one dataset containing samples of intracranial aneurysm 
arteries was included. Genome-wide methylation levels were 
measured using the 450k Illumina arrays in every dataset. The 
dataset_ID is used to refer to each dataset in the main text.

Table 2 summarizes the genome-wide DNA methylation 
datasets of whole blood chronic disease samples. Genome-wide 
methylation levels were measured using the 450k Illumina arrays 
in every dataset. The dataset_ID is used to refer to each dataset 
in the main text.

Comparison Alzheimer's Disease 
Deoxyribonucleic Acid Methylation Datasets
Genome-wide DNA methylation analysis was performed using 
the limma moderated t-test (Ritchie et al., 2015) for AD whole 
blood (GSE59685) and atherosclerosis whole blood (GSE107143) 
datasets. Genome-wide similarity was determined by correlating 
the resulting t-statistics using the Pearson's correlation test.

The DMPs in whole blood samples of atherosclerosis 
(GSE107143) that we detected previously (Istas et al., 2017) were 
used to compare with the different AD datasets (whole blood and 
brain tissues). Athero-DMPs were selected based on an FDR < 
0.15 and a delta beta > 0.05 using the limma moderated t-test 
(Ritchie et al., 2015), resulting in 712 athero-DMPs. Two tailed 
t-tests were performed to determine the significance level in 
the AD datasets for each of the 712 athero-DMPs. For each AD 
dataset, the percentage of overlapping genes (POG) was calculated 
by dividing the number of athero-DMPs with an unadjusted 
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p-value < 0.05 with the 712 athero-DMPs. The consistency of the 
overlapping DMPs was calculated by dividing the overlapping 
DMPs with a same direction of methylation change as in the 
atherosclerosis whole blood dataset (i.e., hypermethylated in AD 
dataset and hypermethylated in atherosclerosis dataset) with the 
total number of overlapping DMPs.

The different DNA methylation datasets were also compared 
by correlating the t-statistics of each athero-DMP across the 
datasets using the Pearson's correlation test.

Weighted Correlation Network Analysis
To detect co-methylation consensus modules between 
atherosclerosis and AD in whole blood, the weighted correlation 
network analysis (WGCNA) R package was used (Langfelder 
and Horvath, 2008). First, the most variable probes were selected 
based on an median absolute deviation (MAD) threshold of 0.03 
in at least one dataset. In this way 97,375 probes remained for 
further analysis. The blockwiseConsensusModules function 
in the WGCNA R package was subsequently used to construct 
weighted co-methylation networks and detect consensus 
modules across the two datasets (Zhang and Horvath, 2005). We 
used the soft-threshold power of 7, a minimum module size of 
30 probes, a maximum block size of 20,000, and a dendrogram 
cut height of 0.25 for module merging as input parameters. The 
consensus module eigengenes (i.e., first principal component of 

the module) were associated with disease (either atherosclerosis 
or AD), and the modules with a significant association (p-value < 
0.05) in both datasets were used for further analysis. The module 
membership of each probe in the modules was calculated by 
correlating the module eigengenes with the DNA methylation 
beta values. A module membership close to 1 or −1 indicates 
high connection with the module. The gene significance values of 
each probe in the modules were calculated using the t-statistics of 
the association between the beta-values and the disease groups. 
The Pearson's correlation was used to correlate these significance 
values across different datasets. Probes in the significant 
modules were mapped to different genomic regions, including 
gene elements [transcription start site (TSS), gene bodies, 
untranslated regions (UTRs), intergenic regions] and CpG 
island (CGI) elements (CGI shelves, shores, and islands) using 
the Illumina manifest annotation file and Gm12878 ENCODE 
chromatin segmentation states obtained from the UCSC genome 
browser. The enrichment of module probes in one of the genomic 
regions was calculated using the Fisher's exact test. Probes in the 
significant modules were mapped to genes using the Illumina 
manifest annotation file. Pathway enrichment was performed 
using the Ingenuity Pathway Analysis (IPA) software and the 
Fisher's exact test as statistical test.

Module preservation across different AD and CVD datasets 
were performed using the module Preservation function in 
the WGCNA R package (Langfelder et al., 2011). One hundred 

TABle 2 | Gene Expression Omnibus whole blood methylation datasets of different inflammaging diseases.

 Accession_ID  Platform  Tissue  Disease  Abbreviation  Sample size

GSE107143 450k Whole blood Atherosclerosis Athero Controls: 8; cases: 8
GSE59685 450k Whole blood Alzheimer's disease AD Controls: 9; cases: 48
GSE72774 450k Whole blood Parkinson's disease PD Controls: 219; cases: 289
GSE88824 450k Whole blood Multiple sclerosis MS Controls: 14; cases: 13
GSE73103 450k Whole blood Obesity Obese Controls: 268; cases: 87
GSE41169 450k Whole blood Schizophrenia Schizo Controls: 33; cases: 62
GSE99624 450k Whole blood Osteoporosis Osteo Controls: 16; cases: 32

TABle 1 | Gene Expression Omnibus methylation datasets of Alzheimer's disease.

Dataset_ID geO accession Disease Tissue Sample size

AD_cerebellum_GSE59685 GSE59685 AD Cerebellum Controls: 23; cases: 60
AD_EntorhinalCortex_GSE59685 GSE59685 AD Entorhinal cortex Controls: 21; cases: 58
AD_FrontalCortex_GSE59685 GSE59685 AD Frontal cortex Controls: 24; cases: 60
AD_SupTempGyrus_GSE59685 GSE59685 AD Superior temporal gyrus Controls: 26; cases: 61
AD_wholeblood_GSE59685 GSE59685 AD Whole blood Controls: 9; cases: 48
AD_cerebellum_GSE72778 GSE72778 AD Cerebellum Controls: 9; cases: 23
AD_Frontal_GSE72778 GSE72778 AD Frontal cortex Controls: 20; cases: 21
AD_Hippocampus_GSE72778 GSE72778 AD Hippocampus Controls: 7; cases: 18
AD_Occipital_GSE72778 GSE72778 AD Occipital cortex Controls: 9; cases: 24
AD_TemporalCortex_GSE72778 GSE72778 AD Temporal cortex Controls: 6; cases: 23
AD_PrefrontalCortex_GSE80970 GSE80970 AD Prefrontal cortex Controls: 68; cases: 74
AD_SupTempGyrus_GSE80970 GSE80970 AD Superior temporal gyrus Controls: 70; cases: 74
AD_SupTempGyrus_GSE76105 GSE76105 AD Superior temporal gyrus Controls: 34; cases: 34
Athero_wholeblood_GSE107143 GSE107143 Atherosclerosis Whole blood Controls: 8; cases: 8
IntracranAneurysm_artery_GSE75434 GSE75434 Intracranial aneurysm Superficial temporal artery Controls: 9; cases: 9
AtheroCerebrovas_plaque_GSE66500 GSE66500 Atherosclerosis with 

cerebrovascular event
Carotid plaque Controls: 19; cases: 19

Athero_plaquePaired_GSE46394 GSE46394 Atherosclerosis Aortic plaque Controls: 15; cases: 15
Athero_plaque_GSE46394 GSE46394 Atherosclerosis Carotid plaque Controls: 15; cases: 19
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permutations were performed to calculate the preservation 
z-scores for each dataset. Z-scores higher than 10 indicate strong 
preservation, between 2 and 10 weak to moderate preservation 
and below 2 no preservation.

estimation of Cell Counts and Immune 
Cell Infiltration
Cell type fractions were calculated using the method described 
by Houseman et al. (2012). The EpiDISH R package was used to 
perform the calculations (Teschendorff et al., 2017). For the whole 
blood datasets, we used the centDHSbloodDMC.m whole blood 
reference dataset containing 333 CpG probes of the seven major 
blood cell types [B-cells, natural killer (NK)-cells, CD4+ T-cells, 
CD8+ T-cells, granulocytes, and monocytes]. To estimate the cell 
counts in the atherosclerosis vascular tissues, we created a new 
reference methylome. For the smooth muscle cells, fibroblasts, 
and endothelial cells, we retrieved 450k Illumina methylation 
data of AoSMC, ProgFib, and HUVEC from the ENCODE 
project (GSE40699), respectively. Raw methylation values were 
intra-array normalized using the BMIQ method (Teschendorff 
et al., 2013) and normalized beta-values were subsequently used 
for further analysis. Immune cell (IC) reference methylomes were 
obtained from the study of Reinius et al. (2012). Next, differences 
in methylation across the different cell types were calculated using 
limma linear models (Ritchie et al., 2015) comparing each cell 
type with the rest of the samples: IC vs. rest of samples, AoSMC 
vs. rest of samples, ProfFib vs. rest of samples, and HUVEC vs. 
rest of samples. For each cell type the top 100 significant CpG 
probes with the largest methylation difference were selected and 
combined to obtain 357 unique CpG probes. The beta values of 
the ICs were averaged to obtain the final reference methylome 
(Supplementary Table 1). This reference methylome was 
subsequently used to estimate cell counts and IC infiltration in 
the vascular tissues using the reference based method described 
by Houseman et al. (2012) and implemented in the EpiDISH 
R package (Teschendorff et al., 2017). Information about IC 
infiltration of The Cancer Genome Atlas (TCGA) cancers were 
obtained from a recent study examining immunogenomic profiles 
of different cancers (Thorsson et al., 2018). TCGA level-3 450k 
Illumina methylation data were retrieved using the TCGAbiolinks 
R package (Table   3) (Colaprico et al., 2016). Beta-values were 
used for subsequent analyses.

ReSUlTS

Atherosclerosis and Alzheimer's Disease 
Whole Blood Samples Contain a Common 
Deoxyribonucleic Acid Methylation Signature
To compare methylation profiles between atherosclerosis 
(GSE107143) and AD (GSE59685) in whole blood, we first 
compared the genome-wide significance of each CpG probe in 
both datasets. Using the limma moderated t-test, we performed 
differentially methylation analysis on both whole blood datasets. We 
found a weak positive correlation between the t-statistics (Pearson 
correlation: 0.108, P < 2.2e−16) in both datasets, indicating that at the 
genome-wide level the similarity between the methylation profiles 

in atherosclerosis and AD is limited (Figure 1A). Next, we checked 
more specifically, whether the top significant CpG-probes found in 
our atherosclerosis dataset (Istas et al., 2017) were also differentially 
methylated in the AD dataset. We first selected the most significant 
CpG-probes by setting the threshold for differentially methylation at 
FDR < 0.15 and delta beta > 0.05. In this way 712 CpG-probes were 
selected which we called athero-DMPs. T-tests were performed to 
determine the significance level in the AD dataset for each of the 
712 athero-DMPs. We found several probes which were also found 
to be differentially methylated in AD (p-value < 0.05) (Figure 1B). 
Of particular interest, the directionality of the methylation change 
was very similar in both datasets.

Using different publicly available DNA methylation datasets 
(Table 1), we performed the same analyses in multiple AD brain 
tissues. For each AD dataset, we selected the 712 athero-DMPs 
and correlated the t-statistics resulted from the comparison in 
methylation between AD patients and healthy controls. Again, 
for some of the brain tissue we could find a similar methylation 
profile compared to atherosclerosis blood samples (Figures 
1C, D and Supplementary Figure 1). Especially in frontal lobe, 
frontal cortex, and superior temporal gyrus, the hypo- and 
hypermethylated atherosclerosis DMPs corresponded with hypo- and 
hypermethylation in AD, respectively (Supplementary  Figure 1).  

TABle 3 | The Cancer Genome Atlas datasets.

TCgA code TCgA name Sample size

ACC Adrenocortical carcinoma Controls: 0; cases: 80
BLCA Bladder urothelial carcinoma Controls: 21; cases: 419
BRCA Breast invasive carcinoma Controls: 96; cases: 796
CESC Cervical squamous cell carcinoma Controls: 3; cases: 309
CHOL Cholangiocarcinoma Controls: 9; cases: 36
COAD Colon adenocarcinoma Controls: 38; cases: 315
DLBC Lymphoid neoplasm diffuse large B-cell 

lymphoma
Controls: 0; cases: 48

ESCA Esophageal carcinoma Controls: 16; cases: 186
GBM Glioblastoma multiforme Controls: 2; cases: 153
HNSC Head and neck squamous cell 

carcinoma
Controls: 50; cases 530

KICH  Kidney chromophobe  Controls: 0; cases: 66
 KIRC  Kidney renal clear cell carcinoma  Controls: 160; cases: 325
 KIRP  Kidney renal papillary cell carcinoma  Controls: 45; cases: 276
 LAML  Acute myeloid leukemia  Controls: 0; cases: 140
 LGG  Brain lower grade glioma  Controls: 0; cases: 534
 LIHC  Liver hepatocellular carcinoma  Controls: 50; cases: 380
 LUAD  Lung adenocarcinoma  Controls: 32; cases: 475
 LUSC  Lung squamous cell carcinoma  Controls: 42; cases: 370
 MESO  Mesothelioma  Controls: 0; cases: 87
 OV  Ovarian serous cystadenocarcinoma  Controls: 0; cases: 10
 PAAD  Pancreatic adenocarcinoma  Controls: 10; cases: 185
 PCPG  Pheochromocytoma and paraganglioma Controls: 3; cases: 184
 PRAD  Prostate adenocarcinoma  Controls: 50; cases: 503
 READ  Rectum adenocarcinoma  Controls: 7; cases: 99
 SARC  Sarcoma  Controls: 4: cases: 265
 SKCM  Skin cutaneous melanoma  Controls: 2; cases: 473
 STAD  Stomach adenocarcinoma  Controls: 2: cases: 395
 TGCT  Testicular germ cell tumors  Controls: 0; cases: 156
 THCA  Thyroid carcinoma  Controls: 56; cases: 515
 THYM  Thymoma  Controls: 2: cases: 124
 UCEC  Uterine corpus endometrial carcinoma  Controls: 46; cases: 439
 UCS  Uterine carcinoma  Controls: 0; cases: 57
 UVM  Uveal melanoma  Controls: 0; cases: 80

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 1229

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Immune-Methylation Biomarkers in Inflammaging DisordersDeclerck and Vanden Berghe

5

The POG in each tissue was rather limited, with values ranging 
between 4 and 32% (Table 4). However, the direction of 
methylation change for most of the overlapping CpG sites were 
highly consistent with the atherosclerosis whole blood dataset 
(consistency %) (Table 4). For example, 23.2% of athero-DMPs 
were also found significant in AD whole blood samples of which 
98.2% of the DMPs were directional consistent with the athero-
DMPs. The percentage of consistency was the lowest for the AD 
cerebellum samples (49.4 and 61.8%) and a dataset with AD 
superior temporal gyrus samples (45.1%). Except for cerebellum 
tissues, there was a positive correlation between the t-statistics of 
the athero-DMPs in the atherosclerosis whole blood dataset and 
the other AD brain and whole blood datasets, with correlation 
coefficients ranging from 0.14 to 0.69 (Figure 1C). In contrast, 

FIgURe 1 | Common DNA methylation signature in atherosclerosis and Alzheimer's disease (AD) whole blood and brain samples. (A) The genome-wide 
significance levels (t-statistic) of each CpG-probe in the atherosclerosis (GSE107143) and AD (GSE59685) whole blood dataset was plotted in the X-axis and Y-axis, 
respectively. The Pearson correlation was used to calculate the correlation between the two datasets. (B) Volcano plot showing the methylation differences and 
statistical significance values after comparing the methylation values of the 712 top significant atherosclerosis differentially methylated positions (DMPs) (athero-
DMPs) between AD patients and healthy individuals. Probes which were significantly different between AD and controls (p-value < 0.05) were colored blue when 
hypomethylated and red when hypermethylated in atherosclerosis. (C) Correlation coefficients between the t-statistics of the 712 athero-DMPs in the atherosclerosis 
whole blood dataset and the t-statistics of the athero-DMPs in multiple AD brain and whole blood datasets. Positive correlations are represented as a red bar, 
and negative correlations as a green bar. (D) Correlation heatmap representing the correlation coefficients between the t-statistics of the 712 athero-DMPs across 
different AD datasets. Red means a positive correlation and blue a negative correlation.

TABle 4 | Percentage of overlapping genes (POG) and consistency.

Dataset_ID POg % Consistency %

AD_Frontal_GSE72778 31.9 81.5
AD_wholeblood_GSE59685 23.2 98.2
AD_SupTempGyrus_GSE76105 16.0 45.1
AD_SupTempGyrus_GSE59685 13.9 76.8
AD_FrontalCortex_GSE59685 12.9 84.8
AD_cerebellum_GSE72778 12.5 61.8
AD_cerebellum_GSE59685 11.7 49.4
AD_SupTempGyrus_GSE80970 10.3 82.2
AD_Hippocampus_GSE72778 10.1 69.4
AD_PrefrontalCortex_GSE80970 9.8 78.6
AD_TemporalCortex_GSE72778 9.7 75.4
AD_EntorhinalCortex_GSE59685 5.3 84.2
AD_Occipital_GSE72778 3.9 78.6
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in cerebellum samples no strong correlation could be found 
(correlation coefficient ~ 0). Furthermore, cerebellum samples did 
not correlate with the other brain AD tissues (Figure 1D).

An Atherosclerosis-Alzheimer's Disease 
Whole Blood co-Methylation Consensus 
Network Is enriched for T-Cell  
Regulatory Pathways
We next used WGCNA to identify a consensus co-methylation 
module of atherosclerosis and AD in whole blood. One 
hundred seventy-five consensus modules could be found. We 
used the module eigengenes to associate the different modules 
with atherosclerosis and AD disease state. We found 25 and 16 
modules significantly associated with atherosclerosis and AD, 
respectively. Three consensus modules were found to be both 
significant (p-value < 0.05) in atherosclerosis and AD. Module 
ME91 was positively associated with atherosclerosis and 
negatively with AD, module ME54 was positively associated in 
both datasets, and module ME21 was negatively associated in 
both datasets.

Next, we calculated the gene significance and module 
membership of the probes in the consensus modules. 
We defined the gene significance as the t-statistic of the 
association between the CpG-probe methylation value and 
disease state, and the module membership as the correlation 
coefficient between the module eigengene and the CpG-probe 
methylation beta value. The closer the module membership 
is to 1 or −1 the more important the probe is in the module. 
In general, a module membership close to 1 or −1 is highly 
connective and therefore represents a hub in the network. 
There was a strong correlation between the gene significance 
in the two datasets for module ME21 (Pearson's correlation: 
0.845) (Figure 2A). The same was true for the module 
membership (Pearson's correlation: 0.989) (Figure 2B). As 
expected the gene significance and module membership was 
also highly correlated (Supplementary Figure 2). Because 
a less strong correlation could be found with module ME54 
(data not shown), we decided to focus only on module ME21 
as the consensus module (Supplementary Table 2).

We next mapped the CpG probes in the consensus module 
to different genomic regions relative to gene elements (TSS, 
gene bodies, etc.), CGIs, and chromatin segmentation states. 
Interestingly, we found an enrichment in 5'UTR regions, CpG-
poor regions outside CGIs, active promoters, strong and weak 
enhancers, transcriptional transition, and elongation states 
(Figure 2C). In addition, the consensus module CpG probes 
were strongly depleted in CGIs, repressed chromatin states, and 
heterochromatin.

The consensus module CpG probes were subsequently mapped 
to genes. IPA pathway analysis showed a strong enrichment in 
T cell regulatory and immune pathways, including T- and B 
cell receptor signaling, Th1 and Th2 pathway, IL-10 and IL-8 
signaling, and NF-κB signaling (Figure 2D). In addition, genes 
were enriched in immunological and inflammatory diseases, and 
functions related to cellular development, growth, proliferation, 
and movement (Figure 2E).

The Atherosclerosis-Alzheimer's 
Disease Blood Consensus Network Is 
Also Associated in Brain Tissues and 
Atherosclerotic Plaques
We further analyzed whether module 21 was preserved in 
other AD methylation datasets of different brain tissues. 
The preservation z-scores for all AD brain tissues, except for 
cerebellum, were between 2 and 10, suggesting weak to moderate 
preservation (Figure 3A). In cerebellum, there was no indication 
of module preservation (z-score < 2). We next calculated for 
each AD dataset the gene significance values (t-statistics) of 
the CpG probes in the consensus module, and performed 
pairwise correlation across the different AD datasets. Except 
for cerebellum, all the other AD datasets showed a positive 
correlation with the gene significance values of the whole blood 
datasets, and relative to each other (Figure 3B).

We next wondered whether the same pattern could also 
be found in other methylation datasets related to CVD and 
atherosclerosis. We extracted 450k Illumina data from carotid 
plaques, plaques after cerebrovascular event and arteries 
with intracranial aneurysm (Table 1). Here the preservation 
was much stronger, with z-scores higher than 10 in the 
atherosclerotic plaques after a cerebrovascular event and in 
intracranial aneurysm, while for the carotid plaque datasets 
we found moderate module preservation (Figure 3C). Again, 
we could find strong positive correlations between the gene 
significance values of the different datasets (Figure 3D). Of 
note, the highest correlation with the whole blood dataset 
could be found with the atherosclerotic plaque dataset with a 
cerebrovascular event. In contrast, there was no evidence of 
correlation between the carotid plaque dataset and the dataset 
with a cerebrovascular event.

The Atherosclerosis-Alzheimer's Disease 
Blood Consensus Network Represents a 
Common Immuno-Methylation Signature
The enriched pathways in T cell activation and function indicate 
that part of the methylation changes may be due to differences 
in cell type heterogeneity in the samples analyzed. We therefore 
estimated cell type composition in the atherosclerosis and 
AD whole blood datasets. B-cells and CD4+ T-cell levels 
were both reduced while granulocyte levels were increased in 
atherosclerosis and AD samples as compared to healthy blood 
samples (Figure 4A). In addition, many CpG probes in the 
consensus module seem variable across the different blood IC 
types (Supplementary Figure 3). In this respect, the positive 
correlations seen with the AD brain and atherosclerotic 
plaque tissues could reflect the infiltration of IC in the brain 
and arterial wall respectively. To verify this hypothesis, we 
estimated IC fraction in the vascular tissues using a new 
reference methylome created from methylation profiles of 
aortic smooth muscle cells (AoSMC), fibroblasts (ProgFib), 
human umbilical vein endothelials cells (HUVEC), and IC (see 
Methods section for details). As expected, an increase in IC 
was observed in plaque tissue compared to healthy aorta tissue 
(Figure 4B), and monocytes were the main infiltrated blood 
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FIgURe 2 | Weighted Correlation Network Analysis (WGCNA) co-methylation consensus module in atherosclerosis and Alzheimer's disease (AD) whole blood 
datasets. (A) Correlation of gene significance values (t-statistics) of CpG probes in the consensus module (module ME21) between atherosclerosis and AD whole 
blood datasets. The Pearson's correlation coefficient and p-value are provided at the top of the scatterplot. (B) Correlation of module membership of CpG probes 
in the consensus module (module ME21) between atherosclerosis and AD whole blood datasets. The Pearson's correlation coefficient and p-value are provided at 
the top of the scatterplot. (C) Genomic enrichment of the consensus module CpG probes (module ME21) in multiple genomic regions: gene elements (top), CpG 
island elements (center), and chromatin segmentation states (bottom). CpG probes in module ME21 were mapped to different genomic regions and enrichment or 
depletion compared to all Illumina CpG probes was determined using the Fisher's exact test. Green bars represent the relative overlap of consensus module ME21 
CpG probes with the genomic regions, while gray bars represent the relative overlap of all Illumina CpG probes with the genomic regions. * Fisher's exact P ≤ 0.05, 
** P ≤ 0.01, *** P ≤ 0.001, **** P ≤ 0.0001. (D) Significantly enriched Ingenuity Pathway Analysis (IPA) canonical pathways, and (e) IPA diseases and biofunctions of 
genes containing a consensus module CpG probe. Enrichment was calculated using the Fisher's exact test.

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 1229

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Immune-Methylation Biomarkers in Inflammaging DisordersDeclerck and Vanden Berghe

8

cell type observed in the plaques (Supplementary Figure 4). 
More surprisingly, the AoSMC fraction was relatively lowered 
in plaque material. HUVEC and ProgFib fractions didn't 
show substantial differences. Methylation values from the 
reference methylomes of the 500 most significantly DMPs in 
aorta plaques revealed that the hypermethylated profile in 
atherosclerotic plaques (Zaina et al., 2014) was mainly due to 
an overall hypermethylation in IC compared to the other cell 
types. Similarly, the small fraction of hypo-DMPs could also be 
attributed to hypomethylated CpG sites in IC (Supplementary 
Figure 5). Furthermore, a strong correlation was found between 

the consensus module eigengene and the estimated IC fraction 
in aorta and carotid atherosclerotic plaque tissues, supporting 
our hypothesis (Figure 4C).

To further prove that our methylation profile measures an 
immune component, we made use of IC infiltration information 
of TCGA cancers obtained from a recent study (Thorsson et al., 
2018). As expected, in almost all cancers there was a negative 
correlation between the module eigengenes and leukocyte 
fraction, stromal fraction, and lymphocyte infiltration signature 
score (Supplementary Figure 6). Thus, tumors with methylation 
profiles resembling the methylation consensus module 

FIgURe 3 | Weighted Correlation Network Analysis consensus module in Alzheimer's disease (AD) brain tissues and atherosclerotic plaques. (A) Consensus 
module ME21 preservation in AD tissue datasets. For each dataset the preservation z-score is shown. Z-scores below 2 indicates no preservation, between 2 
and 10 weak to moderate preservation and above 10 strong preservation. Info about the datasets can be found in Table 1. (B) Correlation heatmap representing 
the Pearson's correlation coefficients between the gene significance values (t-statistics) of the consensus module ME21 CpG sites across different AD datasets. 
Red means a positive correlation and blue a negative correlation. (C) Consensus module ME21 preservation in atherosclerosis and cardiovascular disease (CVD) 
datasets (see Table 1). (D) Correlation heatmap representing the Pearson's correlation coefficients between the gene significance values (t-statistics) of the 
consensus module CpG sites across different CVD datasets. Red means a positive correlation and blue a negative correlation.
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demonstrated more IC infiltration. This is completely in line with 
our observations and supports our conclusions.

The Consensus Methylation Module 
Is Also Present in Other Chronic 
Inflammaging Diseases
Since inflammation is a common hallmark of many chronic 
aging diseases, we further checked whether the consensus 
immuno-methylation module identified was also prevalent in 
other chronic inflammation and age-dependent diseases. We 
therefore reanalyzed Illumina 450K DNA methylation profiles of 
whole blood samples of Parkinson's disease (PD), schizophrenia, 
obesity, osteoporosis, and multiple sclerosis (MS) (Table 2), and 
correlated the gene significance values of the CpG probes in the 
consensus module across all the diseases (Figure 5A). A strong 
positive correlation could be observed with PD (r: 0.91). Also 
obesity (r: 0.43) and osteoporosis (r: 0.21) showed a moderate 
positive correlation. On the other hand, schizophrenia (r: −0.39) 
and MS (r: −0.51) demonstrated a negative correlation.

The high correlation found in PD could again be attributed 
to a shift in CD4+ T cell and granulocyte blood levels. However, 
no such changes were detected in obesity and osteoporosis 
(Figure 5B). In osteoporosis, NK cell levels were slightly higher 
as compared to healthy samples. In obesity and schizophrenia, 
IC types didn't change dramatically. MS patients had opposite 
cell type distribution in comparison to atherosclerosis, AD and 
PD patients with higher CD4+ T- and B-cell levels and lower 
granulocyte levels.

DISCUSSION
In this study, we identified a common DNA methylation signature 
in whole blood of atherosclerosis and AD patients. We showed 
that this consensus methylation module represents an immune 
component which correlates with shifts in blood IC distribution 
and IC infiltration in plaques and brains. Finally we demonstrate 
the applicability of the immune-methylation signature, as an 
inflammaging disease biomarker. This study provides evidence 

FIgURe 4 | Weighted Correlation Network Analysis (WGCNA) consensus module is influenced by underlying immune cell type composition and immune cell 
infiltration. (A) Blood immune cell type (B-cells, NK-cells, CD4+ T-cells, CD8+ T-cells, granulocytes, and monocytes) composition shift in atherosclerosis (blue) and 
Alzheimer's disease (AD) (green) patients compared to controls estimated by the method of Houseman. Error bars represent 95% confidence intervals.  
(B) Estimated cell type composition in healthy aorta, aorta atherosclerotic plaque (ao_plaque), and carotid plaque (car_plaque). Relative cell type composition was 
estimated using reference methylomes of aortic smooth muscle cells (AoSMC), endothelial cells (HUVEC), fibroblasts (ProgFib), and immune cells (IC) (see Methods 
for more details). (C) Correlation between estimated IC infiltration and the eigengenes of the WGCNA consensus module (ME21) in aorta and carotid plaques. A 
negative correlation was found between estimated IC infiltration and ME21 eigengenes, which corresponds with the negative association found between module 
ME21 eigengenes and methylation in AD and atherosclerosis (i.e., AD and atherosclerosis patients have lower ME21 eigengenes compared to controls).
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that IC type counts measured by DNA methylation may be a 
useful way to monitor age- and inflammation related diseases 
such as AD and CVDs. In this regard, DNA methylation may 
be a very sensitive method of measuring the immune status of a 
tissue and detecting subtle changes in cell type composition and 
cellular activation states.

Blood-based DNA methylation biomarkers can be valuable 
for diagnostic, predictive, prognostic, and therapeutic purposes 
(Horvath and Raj, 2018; Berdasco and Esteller, 2019). Here, we 
showed that blood DNA methylation in atherosclerosis and AD 
are associated with similar shifts in IC type distribution and/or 
tissue infiltration. In both atherosclerosis and AD, granulocyte 
levels were increased while B and CD4+ T-cells were decreased. 
This is in accordance with other studies showing a higher 
neutrophil/lymphocyte ratio (NLR) in these diseases (Kuyumcu 
et al., 2012; Balta et al., 2016). NLR is a marker of systemic 
inflammation and has been found to be prognostic marker in 
CVDs associated with poor outcome and mortality (Teperman 
et al., 2017; Xue et al., 2017). Interestingly, NLR can also be 
used to predict the presence of carotid atherosclerotic plaques 
(Corriere et al., 2018). Also in AD, NLR was higher as compared 
to healthy controls (Kuyumcu et al., 2012). However, strong 
evidence for NLR as a prognostic or predictive biomarker in 
AD is lacking (Rembach et al., 2014). Whether our methylation 
profile is also a predictor of poor outcome or disease severity 
should be further investigated.

In cancer, systemic inflammation is associated with poor 
outcome (Diakos et al., 2014; Rossi et al., 2017). A recent study 
used DNA methylation to estimate NLR (Koestler et al., 2017), 
and found that this methylation-derived NLR (mdNLR) was 
associated with poor survival in various cancer types (Koestler 
et al., 2017; Wiencke et al., 2017). Furthermore, they also 
showed that mdNLR was increased with age (Koestler et al., 
2017). Indeed, age is also accompanied by chronic low-level 

systemic inflammation, which is often called inflammaging 
(Franceschi et al., 2018b). In addition, many chronic diseases 
are more common with higher age, and it has therefore been 
suggested that aging and age-associated chronic diseases share 
the same underlying biological mechanisms (Kennedy et al., 
2014; Franceschi et al., 2018a). Many age-associated chronic 
diseases can therefore been seen as an acceleration of the aging 
process. Epigenetic clock age can be deduced from Illumina 
450K DNA Methylation profiles and accelerated epigenetic 
clock age has been associated with mortality and age-related 
diseases and phenotypes, suggesting that the epigenetic clock 
is a measure for biological age, rather than chronological age 
(Declerck and Vanden Berghe, 2018; Horvath and Raj, 2018). 
Interestingly, no single CpG site was in common between the 
immune-methylation signature identified in this study and 
the epigenetic clock signature, indicating a difference between 
the two DNA methylation-based biomarkers. Therefore, we 
also tested whether our methylation profile was present in 
other inflammation- and aging-associated diseases, besides 
AD and atherosclerosis. Remarkably, we observed a similar 
immunomethylation related change in cell type contribution. In 
contrast, the other diseases tested showed either low association 
with our methylation profile or no association, indicating that 
this profile is not a general marker for all inflammaging diseases. 
For example, MS showed a rather negative correlation with our 
methylation profile, which was also reflected in an opposite 
shift of cell type distribution, with higher lymphocytes and 
lower granulocytes levels. In contrast to MS, obesity showed 
a mild positive correlation, although this does not change the 
cell type contribution of the major blood cell types, which may 
indicate the involvement of other minority blood cell types or 
different activation cell activation states (Defuria et al., 2013; 
Touch et al., 2017). Indeed, we only used the major IC types 
extracted from the study of Reinius, and it can be anticipated 

FIgURe 5 | The Weighted Correlation Network Analysis co-methylation consensus module in whole blood of other inflammaging diseases. (A) Correlation heatmap 
representing the Pearson's correlation coefficients between the gene significance values (t-statistics) of the consensus module ME21 CpG sites across six chronic 
inflammaging diseases: atherosclerosis (athero), Alzheimer's disease, Parkinson's disease, obesity (obese), osteoporosis (osteo), schizophrenia (schizo), and multiple 
sclerosis (see Table 2). Red means a positive correlation and blue a negative correlation. (B) Estimated blood immune cell type composition shifts in the different 
chronic inflammaging diseases compared to healthy controls. Error bars represent 95% confidence intervals.
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that with the generation of more reference methylomes of 
major and minor blood cell types a more complete picture 
of subtle cell type effects can be detected. In addition, other 
techniques beside the well-known houseman approach to 
estimate cell type composition, such as CIBERSORT (Newman 
et al., 2015) often used in gene expression studies and robust 
partial correlations (RPC) may improve cell type composition 
estimation (Teschendorff et al., 2017).

In most blood-based epigenome-wide association studies 
(EWAS), the Houseman algorithm is frequently applied to 
correct for variations in blood sample cell composition which 
may contribute to methylation variability (Jaffe and Irizarry, 
2014). However, we believe that this immune component 
may be an important determinant of aging disease etiologies 
and holds valuable information for prognostic or therapeutic 
biomarker applications. DNA methylation may be a very 
sensitive method to estimate small shifts in IC distribution 
or activation status. For example, a recent study found DNA 
methylation differences were associated with NK cell activation 
(Wiencke et al., 2016). DNA methyltransferase DNMT3B 
seems to be important in regulating macrophage polarization 
(Yang et al., 2014). In another study, FOXP3 methylation 
can be used to count regulatory T cells in blood and solid 
tissues (Wieczorek et al., 2009). A methylation CpG site in 
GPR15 gene which was associated with smoking, was found 
to be due to a higher proportion of CD3+GPR15+ expressing 
T cells in blood, and not by the direct effect of smoking on 
DNA methylation (Bauer et al., 2015). Correcting for cell 
type effects in EWAS is not always useful and may remove 
important information about the disease pathology (Holbrook 
et al., 2017). In addition, even highly purified cell types were 
found to be rather a collection of epigenomes (which the 
authors called meta-epigenomes) (Wijetunga et al., 2014), and 
may therefore not exclude all cellular effects. The usefulness 
of measuring cell type effects using DNA methylation was 
also exemplified by the extrinsic epigenetic clock which is 
influenced by blood cell counts. Faster extrinsic epigenetic 
age acceleration was associated with all-cause mortality (Chen 
et al., 2016), while different healthy lifestyle factors resulted 
in a decrease in extrinsic epigenetic age acceleration (Quach 
et al., 2017). These results indicate that it may be useful to also 
include cellular effects which may be used to asses therapeutic, 
nutritional, and lifestyle interventions. Therefore, removing 
cell type effects in EWAS is not always preferable and may 
ignore important contributors of chronic diseases, as can be 
seen in this study.

Although this immune-associated DNA methylation profile 
is associated with atherosclerosis and AD, further longitudinal 
studies are required to estimate whether it is also related to 
disease outcome or progression. We established a correlation of 
DNA methylation changes with IC infiltration in atherosclerotic 
plaques and tumors. IC play important roles in atherosclerosis 
and can either promote or reduce atherosclerosis progression 
(Hansson and Libby, 2006). It would be interesting to study 
whether we can use blood-based methylation profiles to predict 
the inflammation status of atherosclerotic plaques. We showed that 
the hypermethylated profile in atherosclerotic plaques described 

previously (Zaina et al., 2014), could be mainly attributed to 
increases in IC in the artery. This is of course not surprising as 
arteries and atherosclerotic plaques are a complex mixture of cell 
types and that atherosclerosis results in a dramatic remodeling 
of artery cell types, such as infiltration of IC and proliferation 
of smooth muscle cells. It is therefore questionable whether the 
methylation changes detected in atherosclerotic plaques are due 
to intrinsic methylation changes in specific cell types and whether 
these aberrant DNA methylation marks could be targets for cell 
type specific therapeutic interventions. We also need to point 
out that our reference methylome-based estimation of the cell 
type counts in plaques could not be validated with histologically 
determined cell type counts and that the tissue consist of much 
more complex cell types which were not included in the reference 
methylome. Furthermore, we used ENCODE cell lines as reference 
methylomes which may not be completely representative for the 
cells in vivo. However, previous studies already used cell lines 
to estimate cell type fractions, and a recent study used the same 
ENCODE cell lines to estimate cell type counts in aortic samples 
in relation to ascending aortic dissection and bicuspid aortic 
valve (Pan et al., 2017; Zheng et al., 2018). Overall, our immune-
methylation profile may predict the immune status of solid tissues, 
and it should be further investigated whether IC changes detected 
in blood are also reflected in solid tissues. Again, more reference 
methylomes constructed by consortia such as BLUEPRINT 
and the International Human Epigenome Consortium (IHEC) 
may help detecting and accounting for rare cell subtypes in  
complex tissues.

Due to the lack of brain cell type reference methylomes, we 
were unable to estimate IC infiltration in AD brain tissues or the 
contribution of microglia. However, neuro-inflammation plays 
an important role in AD and there is evidence that systemic IC 
may infiltrate into the brain (Prinz and Priller, 2017). Whether 
our methylation profile correlates with neuro-inflammation 
or number of infiltrated IC should be further investigated. 
Interestingly, we found no correlation of methylation in AD 
cerebellum samples with our immune-DNA methylation 
signature, which is in accordance with studies showing that 
the cerebellum is less susceptible to AD neuropathological 
features like amyloid plaques and neuronal loss than cortex and 
hippocampus (Heneka et al., 2015).

Another limitation is that the whole blood and solid tissue 
samples are not obtained from the same individuals. We therefore 
don't know whether a DNA methylation change in a person's 
blood sample is also accompanied by a similar change in solid 
tissues. However, on average we observe that the consensus module 
obtained from blood samples is also prevalent in solid tissues.

In conclusion, inflammaging diseases, including 
atherosclerosis, AD, PD, and obesity, share a common DNA 
methylation profiles in whole blood samples representing a 
disease-associated immune component reflected by changes 
in blood IC counts and predictive for IC infiltration in disease 
tissues. In addition to epigenetic clock measurements, this 
immune-methylation signature may become a valuable blood-
based biomarker to prevent chronic inflammatory disease 
development or monitor lifestyle intervention strategies which 
promote healthy aging.
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