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Drug addiction is a severe neuropsychiatric disorder characterized by loss of control over
motivated behavior. The need for effective treatments mandates a greater understanding
of the causes and identification of new therapeutic targets for drug development. Drugs of
abuse subjugate normal reward-related behavior to uncontrollable drug-seeking and -taking.
Contributions of brain reward circuitry are being mapped with increasing precision.The role
of synaptic plasticity in addiction and underlying molecular mechanisms contributing to the
formation of the addicted state are being delineated. Thus we may now consider the role
of striatal signal transduction in addiction from a more integrative neurobiological perspec-
tive. Drugs of abuse alter dopaminergic and glutamatergic neurotransmission in medium
spiny neurons of the striatum. Dopamine receptors important for reward serve as principle
targets of drugs abuse, which interact with glutamate receptor signaling critical for reward
learning. Complex networks of intracellular signal transduction mechanisms underlying
these receptors are strongly stimulated by addictive drugs. Through these mechanisms,
repeated drug exposure alters functional and structural neuroplasticity, resulting in transi-
tion to the addicted biological state and behavioral outcomes that typify addiction. Ca2+ and
cAMP represent key second messengers that initiate signaling cascades, which regulate
synaptic strength and neuronal excitability. Protein phosphorylation and dephosphoryla-
tion are fundamental mechanisms underlying synaptic plasticity that are dysregulated by
drugs of abuse. Increased understanding of the regulatory mechanisms by which protein
kinases and phosphatases exert their effects during normal reward learning and the addic-
tion process may lead to novel targets and pharmacotherapeutics with increased efficacy
in promoting abstinence and decreased side effects, such as interference with natural
reward, for drug addiction.
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INTRODUCTION
Drug addiction is a behavioral disorder influenced by a complex
interaction of genetic, environmental, and developmental factors
(Crabbe, 2002; Volkow, 2005). Addictive substances include illicit
drugs like the psychostimulant cocaine and the opiate heroin, as
well as legally available tobacco/nicotine and alcohol (ethanol;
EtOH). Prescription drugs, such as opioids, stimulants, or depres-
sants are also increasingly being used for non-medical reasons
(Compton and Volkow, 2006). Drug addiction affects not only the
individual, but also society as a whole evidenced by severed inter-
personal relations, failure in school or job performance, outbreaks
of domestic violence and child abuse, and even the degradation
of entire communities. There are few pharmacotherapeutics that
exist to treat drug addiction and risk of relapse remains substan-
tial despite sincere efforts to remain abstinent. Therefore, it is
important to understand the neurobiological basis of behaviors
characteristic of addiction in order to identify novel mechanisms
that lead to better treatments.

Chronic drug addiction is associated with the development of
pharmacological tolerance, sensitization, and dependence, and the
impact of these processes is manifested in drug intake, craving,
and relapse. The transition from impulsive to compulsive drug

use corresponds to enhanced euphoric drug experiences, and an
overshadowing of adverse consequences (Robbins et al., 2008;
Torregrossa et al., 2011). These adaptations are seen clinically
as reduced responding to natural rewards and a loss of control
over drug intake in response to drug-associated cues (Kalivas and
Volkow, 2005). Motivation to alleviate drug withdrawal-induced
negative affect (i.e., stress, anxiety, depression, dysphoria) may
also contribute to relapse via their negative reinforcing properties
(Koob and Le Moal, 2001; Koob and Volkow, 2010).

Drugs of abuse target neural processes that normally mediate
adaptive reward-based learning, but with overriding and repeated
stimulation that appears to seize these neural processes (Hyman
et al., 2006; Kalivas and O’brien, 2008; Milton and Everitt, 2010;
Torregrossa et al., 2011). Once brain reward circuitry is activated
by convergent neuronal inputs, synapses undergo functional, and
structural plasticity important for learning associated with the
conditioned stimulus effects of drugs of abuse (Figure 1). What
drives a drug addict to uncontrollable self-destructive behavior?
Pioneering behavioral psychologists emphasized the formation of
stimulus–response associations as important mediators of learned
behaviors. Drugs of abuse can serve as powerful rewarding, dis-
criminative, and reinforcing stimuli. Motoric actions leading to
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FIGURE 1 |The pharmacological effects of drugs of abuse potently

stimulate neural pathways normally mediating reward-based learning

resulting in a powerful learning process and enduring changes in

motivated behavior.

obtaining drug are processed in tandem with environmental cues
that also come to drive drug-seeking and -taking behavior. Trig-
gers of relapse during abstinence include re-exposure to the drug
itself, environmental drug-associated cues, stress, or some combi-
nation of these factors (Schmidt et al., 2005; Milton and Everitt,
2010; Weiss, 2010).

The striatum is a subcortical brain structure that is major target
for drugs of abuse. It is comprised of ventral and dorsal subregions.
The ventral striatum consists of the nucleus accumbens (NAc),
olfactory tubercle, and islands of Calleja. The NAc includes shell
and core subregions and plays an integral role in three dissociable
aspects of psychological reward associated with addiction: “lik-
ing”(hedonic impact),“wanting”(incentive salience), and learning
(predictive associations and cognition; Berridge et al., 2009). While
both natural and drug rewards increase extracellular dopamine
in the NAc, dopamine activity in the NAc shell does not adapt
or habituate to repeated drug exposure by decreasing dopamine
activity as it does with natural rewards (Wise et al., 1995a,b; Hemby
et al., 1997) and repeated drug exposure induces sensitization of
dopamine transmission in the NAc core (Cadoni and Di Chiara,
1999, 2000; Cadoni et al., 2000). Dopamine in the NAc shell is
activated in response to primary, unconditioned, and unantici-
pated stimuli, for example, to an appetitive unfamiliar taste (sweet
chocolate) infused intra-orally (Bassareo et al., 2002). Interest-
ingly, food-conditioned stimuli increase dopamine in the NAc
shell whereas drug-conditioned stimuli increase dopamine in the
NAc core (Bassareo et al., 2011). Repeated and sustained levels of
drug-induced dopamine stimulation in the shell could patholog-
ically strengthen the acquisition (learning) of incentive stimuli
predictive of drug availability through Pavlovian conditioning,
while sensitization of dopamine transmission in the core might
be more directly related to the initiation of behavioral activity to

obtain drug reward (instrumental action). Thus, incentive learning
of drug-associated cues through Pavlovian conditioning is critical
for the reinforcing effects of drugs that increase the probability of
future occurrences of drug-seeking and -taking behaviors (Bower
and Grusec, 1964) and has been denoted as Pavlovian instrumental
transfer (PIT; Ettenberg, 1990).

While reward processed in the NAc is critical for acquisi-
tion of goal-directed behaviors, these behaviors repeated over
time develop into more automatic repertoires characteristic of
stimulus–response learning, largely understood to involve dorsal
striatal circuits (Mitchell et al., 1985; Mitchell and Hall, 1988).
The dorsal striatum includes the caudate and putamen in pri-
mates, analogous to the dorsomedial and dorsolateral striatum in
rodents, respectively. The transition to the addicted state appears to
correspond to a recruitment of neurocircuitry from ventral to dor-
sal striatum (Gerdeman et al., 2003; Porrino et al., 2007; Pierce and
Vanderschuren, 2010). The dorsal striatum is critical for formation
of rigid or inflexible behaviors characterizing drug-seeking and -
taking habits (Gerdeman et al., 2003; Pierce and Vanderschuren,
2010). This ventral to dorsal progression does not, however, negate
involvement of the NAc over time. In fact, a functionally linked
progression of activity from ventral to dorsal striatum in response
to chronic drug exposure may invoke widespread neuroplasticity
underlying cognitive and behavioral perturbations associated with
drug addiction (Koob and Volkow, 2010).

Dorsal and ventral striatum are composed of medium spiny
neurons (MSNs) that are predominantly γ-aminobutyric acid
(GABA) projection neurons (Tepper et al., 2007). These MSNs
receive dopaminergic input from afferent projections of the sub-
stantia nigra and ventral tegmental areas of the midbrain. MSNs
also receive glutamatergic input from afferent projections of the
prefrontal cortex, predominantly in layer 5 of the cortex.

EFFECTS OF DRUGS OF ABUSE ON SIGNAL TRANSDUCTION
Addictive substances can be generally classified into drugs that
target monoamine transporters, G protein-coupled receptors
(GPCRs), or ion channels and ionotropic receptors (Luscher and
Ungless, 2006). Drugs of abuse mimic and surpass endogenous
dopamine activation subsequent to phasic dopamine cell firing
coding for salience and reward (Schultz et al., 2000). Human
brain imaging studies show that drug-induced increases in stri-
atal dopamine are associated with subjective reward (Volkow et al.,
1996; Drevets et al., 2001).

All dopamine receptors are GPCRs (Neve et al., 2004).
Dopamine receptors fall into two major classes: D1-like recep-
tors (D1 and D5) and D2-like receptors (D2, D3, and D4). They are
primarily distinguished via their opposing actions on adenylate
cyclase (AC). D1-like receptors stimulate AC through coupling
to stimulatory (Gαs) G proteins that increase cyclic adenosine
3′,5′-monophosphate (cAMP) levels, whereas D2-like receptors
inhibit AC through coupling to inhibitory (Gαi) G proteins that
decrease cAMP levels. Both D1 and D2 receptors contribute to
aspects addiction, despite the fact that their opposing G protein-
coupled functions might suggest that the two classes would interact
antagonistically. One level at which this paradox resolves is the
neuroanatomical circuitry. Specifically, D1 mediated effects on
midbrain GABA release are direct, while D2 mediated effects are
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indirect. Beyond this discrepancy, interactions between D1 and D2

receptors and their circuitry during reward learning, motivated
behavior, and addiction are quite complex.

While the mechanisms for the synergism between D1 and D2

receptors in mediating behavioral effects are not yet completely
understood, the roles of D1- and D2-like receptors in reward can
be dissociated. Either selective D1- or D2-like receptor agonists
maintain intravenous drug self-administration in rats (Yokel and
Wise, 1978; Self and Stein, 1992), monkeys (Woolverton et al.,
1984; Weed et al., 1993), and mice (Caine et al., 2007). However,
self-administration of D2-like receptor agonists requires an exten-
sive history of self-administration with non-selective dopamine
agonists like cocaine. Converse to systemic studies, intracranial
self-administration studies show a requirement for concomitant
D1- and D2-like receptor activation in the NAc shell but not the
core subregion (Ikemoto et al., 1997). Interestingly, infusion of
cocaine into the more ventral olfactory tubercle regions is even
more efficacious in maintaining self-administration than in the
NAc shell, and this effect is blocked by co-administration of D1-
or D2-like antagonists (Ikemoto, 2003).

In contrast to voluntary drug intake modeled in self-
administration procedures, compulsive drug-seeking modeled in
extinction/reinstatement procedures show a predominant role for
D2- but not D1-like receptors. Extinction/reinstatement proce-
dures typically measure the level of effort an animal with prior
history of drug self-administration will exert to obtain drug, as an
index of craving that would precipitate relapse in humans (Wise
and Rompre, 1989; Berridge and Robinson, 1998). D2-like recep-
tor activation triggers cocaine-seeking during or after extinction of
behavioral responses (Koeltzow and Vezina, 2005; Edwards et al.,
2007). Conversely, D1-like receptor activation essentially has no
effect, even at doses that stimulate locomotor activity comparable
to D2-like receptor activation (Dias et al., 2004; Koeltzow and Vez-
ina, 2005). However, pretreatment with a D1-like agonist blocks
the ability of cocaine priming or cocaine-associated cues to induce
reinstatement (Alleweireldt et al., 2003; Edwards et al., 2007),
whereas, D2-like agonist pretreatment facilitates cocaine-primed
reinstatement (Self et al., 1996). Thus, D2-like receptors are criti-
cal for relapse to cocaine-seeking induced by environmental cues
such as cocaine-related stimuli or stress that activates the mesolim-
bic dopamine system (Phillips et al., 2003) and D1-like receptor
tone may provide an inhibitory mechanism over cocaine-seeking
via saturation of primary reward processes. However, differences
between systemic and intracranial studies of D1- versus D2-like
effects on drug-seeking also exist. In contrast to systemic pretreat-
ment of a D1-like agonist, direct infusion of a D1-like agonist
intra-NAc triggers cocaine-seeking (Bachtell et al., 2005; Schmidt
et al., 2006). Similarly, intra-NAc infusions of D2-like agonists
reinstate cocaine-seeking (Bachtell et al., 2005; Schmidt et al.,
2006). Thus, dopamine effects critical for reward-related behavior
can vary according to receptor subtype and systemic versus direct
infusion into the NAc and either D1- or D2-like receptors have the
ability to modulate the effects of the other.

MODULATION OF GPCR SIGNALING
The effects of GPCRs is modulated via transmembrane signal-
ing pathways consisting of metabotropic cell surface receptors, G

proteins, and effectors (Engelhardt and Rochais, 2007; Figure 2).
In addition to G protein coupling, GPCR activation triggers a neg-
ative feedback mechanism known as desensitization (Hausdorff
et al., 1990). Desensitization may be mediated via agonist-induced
receptor phosphorylation by a GPCR kinase (GRK; Krupnick and
Benovic, 1998). GRK-dependent GPCR phosphorylation increases
receptor affinity for cytosolic arrestin protein family members. For
example, the resulting phosphorylated receptor/arrestin complex
prevents further coupling of the D1 receptor to its G protein, pro-
gressively reducing second messenger synthesis of cAMP. Resen-
sitization is triggered by internalization of an uncoupled recep-
tor to endosomal compartments, allowing protein phosphatase-
dependent dephosphorylation of the receptor and recycling back
to the cell surface, or degradation. Modulation of GRKs occurs via
mechanisms involving Ca2+-binding proteins, phosphorylation,
targeting proteins, or mechanisms governing their localizations
and expressions (Penela et al., 2003). In addition to GRKs that
regulate GPCR activity, several families of accessory proteins have
also been discovered that control G protein signaling (Blumer and
Lanier, 2003). The regulators of G protein signaling (RGS) and
activators of G protein signaling (AGS) G protein modulators both
are implicated in addiction.

FIGURE 2 | Signal transduction mediating reward learning and drug

addiction. Dopamine and glutamate receptors are activated during
rewarding experiences and exposure to addictive drugs. Both situations
invoke heterotrimeric G protein-coupled receptors (GPCRs) and ionotropic
glutamate receptors. In addition to G protein coupling, GRK, arrestin, RGS
and AGS proteins also regulate GPCR activity to influence intracellular
cAMP levels. Ionotropic receptor activation by glutamate increase
intracellular Ca2+ levels. cAMP and Ca2+, in turn, affect protein kinase and
phosphatase activities and the phosphorylation states of downstream
effectors that modulate synaptic remodeling cognition and motivated
behaviors.
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RGS proteins are a large family that function as GTPase-
accelerating proteins (GAP). GAP action at GTP-bound Gαi/o-
or Gαq-coupled receptors increases inactivation of the Gα–GDP
state and expedites recombination of the Gα and βγ signaling
molecules. This allows RGS proteins to restrict G protein sig-
nal strength at steady state and negatively modulate G protein
signaling, controlling potency, and efficacy of agonist effects (Gar-
zon et al., 2008; Hooks et al., 2008; Traynor, 2010). Some RGS
family members are highly enriched in striatal subregions. RGS2
is expressed in caudate putamen (Grafstein-Dunn et al., 2001;
Taymans et al., 2002). RGS4 is expressed in the caudate puta-
men and NAc (Gold et al., 1997; Nomoto et al., 1997). The
long form of RGS9 (RGS9-2) is expressed predominantly in
caudate putamen, NAc, islands of Calleja, and olfactory tuber-
cle (Thomas et al., 1998; Rahman et al., 1999). Based on stri-
atal regional distributions, RGS2, RGS4, and especially RGS9-2
have potential in negatively regulating the effects of drugs of
abuse. Correspondingly, administration of various drugs of abuse
induces an up-regulation of RGS family members in striatum.
RGS2, 4, and 9 have all been implicated in addiction (Burchett
et al., 1998; Zachariou et al., 2003; Psifogeorgou et al., 2007;
Hooks et al., 2008; Traynor, 2010). By acting at a relatively early
stage of the signaling pathway, RGS promoters can affect mul-
tiple branches of D1- as well as D2-like receptor signaling to
AC and its effectors and RGS proteins can function to dampen
dopamine signaling in the striatum in response to various drugs
of abuse.

AGS proteins constitute another family of negative G protein
modulators. The AGS family contains three functionally distinct
members (Blumer et al., 2005). AGS3 is the only one currently
associated with addictive drug-induced neuroadaptations (Kel-
ley and Schiltz, 2004; Bowers, 2010). AGS3 binds to and sta-
bilizes the inactive GDP–bound Gαi conformation, preventing
GDP release and, inhibiting Gαi-mediated signaling (Natochin
et al., 2000). AGS3 expression increases in NAc core during pro-
tracted withdrawal (three or more weeks) from either repeated
experimenter-administered injections of cocaine or 3 weeks of
extinction training in rats that had self-administered cocaine
(Bowers et al., 2004). Furthermore, cocaine-induced reinstate-
ment of drug-seeking behavior was attenuated by AGS3 knock-
down, but then restored by antisense washout and return of
AGS3 protein. These studies suggest that AGS3 up-regulation
requires protracted withdrawal from chronic drug exposure and
that decreased Gαi signaling may support addiction pathogene-
sis.

In addition to dopamine receptors (Surmeier et al., 2007),
group II metabotropic glutamate (mGlu) receptors (mGlu2/3)
also modulate striatal MSNs function (Richards et al., 2005), and
through these receptors cortical glutamatergic input into striatum
may counter balance and potentially reverse drug-induced neu-
roadaptations. These receptors are Gi-coupled and are also subject
to negative regulation via AGS3. Gi coupling to mGlu2/3 receptors
can modulate neurotransmitter release via activation of presy-
naptic K+ channels, inhibition of presynaptic Ca2+ channels, or
direct interference with vesicular release. Dopamine release in NAc
is regulated by mGlu2/3 receptors (Karasawa et al., 2006; Xi et al.,
2010). NAc mGlu2/3 receptor-G protein coupling is reduced after

chronic cocaine (Xi et al., 2002; Bowers et al., 2004; Ghasemzadeh
et al., 2009) or EtOH (Bowers et al., 2008). Furthermore it has
been suggested that mGlu2/3 auto receptors may mediate enhanced
glutamate release in NAc during protracted drug withdrawal in
response to the drug itself or associated cues (Madayag et al.,
2007; Lalumiere and Kalivas, 2008). Therefore, mGlu2/3 receptors
are emerging as a therapeutic target to possibly reduce drug abuse
relapse (Moussawi and Kalivas, 2010).

IONOTROPIC MECHANISMS OF SYNAPTIC PLASTICITY
G protein-coupled receptors signaling via dopamine receptors
and metabotropic glutamate receptors mediates important aspects
of reward and reinstatement through regulation of excitability,
which is dependent upon glutamatergic activation of ionotropic
receptors. The two classes of ionotropic glutamate receptors are N -
methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-
4-propionate (AMPA) receptors and they contribute in important
ways to addiction. For example, cocaine administration increases
the NR1 NMDA and GluA1 AMPA (Figure 3) receptor subunit in
the NAc (Lu et al., 2003; Hemby et al., 2005b; Schumann and Yaka,
2009) and NMDA and AMPA receptors are involved in the abil-
ity of addictive drugs to produce long-term plasticity in learning
and memory circuits associated with cue–reward associations and
habit formation.

Drugs of abuse evoke an NMDA receptor-dependent long-
term potentiation (LTP) of AMPA receptor current in dopamine
neurons, possibly reflecting an early memory trace in the acqui-
sition of drug addiction (Ungless et al., 2001; Saal et al., 2003;
Borgland et al., 2004; Liu et al., 2005). LTP is induced when a

FIGURE 3 | Simplified schematic of signaling pathways involving

major effectors of cAMP and Ca2+implicated in aspects of addiction.

Increased cAMP levels activate PKA, which influences multiple effectors,
such as other kinases, phosphatases, transcription factors, phosphatase
inhibitors, and neurotransmitter receptor subunits. Increased Ca2+ levels
also affect kinases, and phosphatases.
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brief high frequency train of stimuli (a tetanus) is applied to a
synaptic pathway that increases the amplitude of the excitatory
postsynaptic potentials in target neurons. Long-term depression
(LTD) is induced when tetanus application decreases the ampli-
tude of the excitatory postsynaptic potentials in target neurons.
Induction of LTP is associated with the formation of spines de novo
and enlargement of existing spines, whereas induction of LTD is
associated with contraction and retraction of spines (Nagerl et al.,
2004; Okamoto et al., 2004).

Subsequent to induction of LTP, synaptic strengthening can
manifest through insertion of GluA2-lacking AMPA receptors
(Kauer and Malenka, 2007). The synaptic insertion of AMPA
receptors may create a temporal opportunity when the acquisition
of cocaine-related cues corresponds to increased synaptic plasticity
(Wolf, 2010). Restricting AMPA receptor activation could reverse
LTP associated with continued cocaine-seeking. AMPA recep-
tor antagonists attenuate reinstatement of drug-seeking behavior
induced by drug, cue-, or stress (Mcfarland et al., 2004; Backstrom
and Hyytia, 2007; Ping et al., 2008). However, it has also been
shown that degrading basal AMPA receptor function in NAc neu-
rons is sufficient to facilitate relapse and elevating basal AMPA
receptor function attenuates this behavioral effect (Bachtell et al.,
2008). The role of glutamatergic mechanisms in the modula-
tion of drug self-administration and risk of relapse is complex.
Nonetheless, several non-specific glutamatergic agents have dis-
played potential as pharmacotherapeutics for addiction (Bowers
et al., 2010).

Converse to LTP, LTD corresponds to removal of AMPA recep-
tors from synapses (Malinow and Malenka, 2002). Persistent
impairment in LTD has been associated with rigid drug-seeking
behaviors resistant to modulation by environmental contingen-
cies (Kasanetz et al., 2010). Moreover, operant cocaine self-
administration attenuates LTD in both the NAc core and shell;
however, LTD was abolished only in the NAc core after pro-
tracted withdrawal, suggesting long-term plasticity in the core
could underlie drug-seeking behavior and relapse (Martin et al.,
2006). Also, animals sensitized to repeated cocaine administration,
displayed a ratio of AMPA to NMDA receptor-mediated excitatory
postsynaptic currents (EPSCs) that was reduced in MSNs of the
NAc shell that corresponded to decreased amplitude of miniature
EPSCs and magnitude of LTD (Thomas et al., 2001). Thus aspects
of both LTP and LTD in NAc subregions appear to be involved in
drug-taking and -seeking behaviors.

Drug-seeking and -taking induced by exposure to cues associ-
ated with drug use imply the involvement of long-term memories,
such as those induced via strong glutamatergic stimulation. At the
same time, protein kinase A (PKA; see below) activation in the
NAc has been shown to be necessary for reward learning in which
properties of drugs become associated with environmental cues
(Sutton et al., 2000; Beninger et al., 2003). These two converging
observations, that glutamatergic input is elevated and necessary for
drug-seeking and reward learning, and that PKA signaling invoked
via activation of D1 dopamine receptors is also critical for reward
associated learning, suggest that any comprehensive explanation
for the biochemical mechanisms of addiction would require oblig-
atory integration of both NMDA/AMPA receptor-dependent Ca2+
and dopamine receptor-dependent cAMP signaling cascades.

PROTEIN KINASES, PHOSPHATASES, AND DOWNSTREAM
EFFECTORS
Drugs of abuse induce dopaminergic D1 receptor activation that
increases intracellular cAMP. Glutamatergic input that activates
NMDA and AMPA receptors increases intracellular Ca2+ concen-
tration. Intracellular signaling cascades involving specific kinases
and phosphatases affected by cAMP and Ca2+, in turn, influence
phospho- and dephospho-effectors that modulate neuroplasticity
to affect behavioral outcome (Figure 2).

CYCLIC AMP-DEPENDENT KINASE (PROTEIN KINASE A)
Under basal conditions, PKA exists as a heterotetramer composed
of two regulatory and two catalytic subunits. Activation of AC
through Gαs-coupled receptors causes rapid increase in intracel-
lular cAMP. PKA is subsequently activated as cAMP binds the
regulatory subunits triggering dissociation of the holoenzyme,
releasing the active catalytic subunits from inhibition by the reg-
ulatory subunits (Pearce et al., 2010). There are four regulatory
subunit isoforms classified as type I (RIα, RIβ) and type II (RIIα,
RIIβ) and three catalytic isoforms (Cα, Cβ, Cγ). Any change
in cAMP directly affects function of PKA, the most important
effector for cAMP.

For example, cAMP-induced activation of PKA activates cAMP
response element-binding protein (CREB; Figure 3). Induction
of cAMP liberates the PKA Cα subunit that then passively dif-
fuses into the nucleus and induces cellular gene expression by
phosphorylation of CREB on Ser133 (Gonzalez and Montminy,
1989). CREB then signals transcription of genes containing a
cAMP response element (CRE) in their promoter regions to regu-
late gene transcription (Mayr and Montminy, 2001). Both opiates
and stimulants activate CREB-mediated transcription within the
NAc (Cole et al., 1995; Turgeon et al., 1997; Shaw-Lutchman et al.,
2002). Increased CREB in the NAc attenuates rewarding effects
of cocaine (Carlezon et al., 1998) and morphine (Barrot et al.,
2002) and these effects are also seen in transgenic mice with
increased (Mcclung and Nestler, 2003) or decreased (Walters and
Blendy, 2001) CREB. Although the CREB-regulated target genes
contributing to these effects are unknown, one candidate gene in
the NAc encodes preprodynorphin (Carlezon et al., 1998), the pre-
cursor gene product of the endogenous opioid peptide dynorphin,
which activates the κ opioid receptor. Dynorphin is upregulated in
the striatum subsequent to cocaine exposure (Cole et al., 1995) and
is largely understood to contribute to the inhibition of dopamine
transmission that leads to the downregulation of reward mecha-
nisms (Shippenberg and Rea, 1997). For example, microinjection
of a κ opioid receptor antagonist into the NAc of CREB overex-
pressing mice attenuates the inhibition of the rewarding effects
of cocaine (Carlezon et al., 1998). Thus, CREB activation in the
NAc may function as negative feedback to reduce sensitivity to the
behavioral effects of repeated drug administration (Carlezon et al.,
2005).

Another transcription factor induced in striatum by chronic
drugs of abuse is ΔFosB (Figure 3). In contrast to CREB, ΔFosB
appears to mediate the development of drug sensitization. ΔFosB
shares homology with other Fos family transcription factors that
include c-Fos, FosB, Fra1, and Fra2 (Morgan and Curran, 1995).
Heterodimerization of Fos family proteins with Jun family proteins
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(c-Jun, JunB, or JunD) form activator protein-1 (AP-1) tran-
scription factors. AP-1 transcription factors bind to AP-1 sites
in the promoters of specific genes to regulate their transcription.
Fos family proteins are highly unstable and induced rapidly and
transiently in the striatum after acute drug administration. Con-
versely, chronic drug administration induces persistent increases
inΔFosB (M r 35–37 kD) in striatal subregions unlike other Fos
family members (Chen et al., 1995, 1997; Hiroi et al., 1997).
Similar to CREB, some drugs of abuse appear to induce ΔFosB
selectively in dynorphin-containing MSNs of the striatum (Nye
et al., 1995; Moratalla et al., 1996; Muller and Unterwald, 2005; Lee
et al., 2006). ΔFosB-overexpressing mice have augmented locomo-
tor response to acute and chronic cocaine (Kelz et al., 1999) and
exhibit enhanced conditioned place preference (CPP), a Pavlov-
ian, or classical conditioned behavior used as an indirect measure
of the rewarding (or aversive) effects of drugs (Prus et al., 2009)
with either cocaine (Kelz et al., 1999) or morphine (Zachariou
et al., 2006). Further, ΔFosB-overexpressing mice self-administer
lower doses of cocaine than do their wild-type littermates, indicat-
ing increased sensitivity to drug reinforcing effects (Colby et al.,
2003). Interestingly, persistent increases in ΔFosB vary accord-
ing to different striatal subregions, such as the NAc core, shell
and dorsal striatum and do not differ between contingent and
non-contingent drug administration procedures (Perrotti et al.,
2008).

It is important to note here that volition is a critical factor in
understanding the signaling mechanisms of addiction. Different
outcomes between contingent versus non-contingent drug admin-
istration studies exist (Hemby et al., 2005a; Jacobs et al., 2005).
While experimenter-administered drug paradigms, such as CPP
and locomotor sensitization, have greatly increased understand-
ing of neuroplasticity induced by repeated drug exposure, it has
been proposed that molecular mechanisms of drug relapse may
be probed with greater clinical relevance using operant drug self-
administration procedures (Shaham et al., 2003; Epstein et al.,
2006).

Another major substrate of the dopamine D1/cAMP/PKA path-
way implicated in the mechanisms of various drugs of abuse
is Dopamine- and cAMP-regulated phosphoprotein, Mr 32 kDa
(DARPP-32; Svenningsson et al., 2005; Figure 3). DARPP-32 is
highly enriched in striatal MSNs (Ouimet et al., 1998). DARPP-32
can serve a dual function as a protein kinase inhibitor or a protein
phosphatase inhibitor, depending on the site of DARPP-32 phos-
phorylation. Changes in the phosphorylation state of DARPP-32,
through activation of its phosphatase- or kinase-inhibitory activ-
ity, indirectly influence the phosphorylation state of other proteins
and thereby mediate some of the diverse physiological effects of
first messengers on cellular function. For example, activation of
DARPP-32 by dopamine and cAMP can act as a positive feed-
back signal by inhibiting dephosphorylation of other substrates for
PKA. DARPP-32 can also attenuate dephosphorylation of other
substrates for other protein kinases and thereby mediate effects
of first- and second-messenger systems on one another. Further-
more, DARPP-32, via phosphorylation by PKA and dephosphory-
lation by the Ca2+-/calmodulin-dependent phosphatase, protein
phosphatase 2B (PP2B; calcineurin) can integrate physiologi-
cal effects of first messengers that influence cAMP and Ca2+

systems (Figure 3). For example, dopamine activation of D1 recep-
tors that activate the cAMP pathway phosphorylates DARPP-32,
whereas NMDA or AMPA signals that activate the Ca2+pathway
dephosphorylates DARPP-32.

PKA phosphorylates DARPP-32 at Thr34, rendering DARPP-
32 a potent inhibitor of the multifunctional protein phosphatase
1 (PP1; Hemmings et al., 1984). Altered activity of PP1 leads to
altered dephosphorylation of one of its prominent substrates: Na+,
K+-ATPase. Changes in the phosphorylation state of Na+, K+-
ATPase results in altered Na+transport across the cell membrane
and altered membrane potential in excitable cells (Li et al., 1995).
Analogous mechanisms appear to underlie modulation of Ca2+
channel activity (Surmeier et al., 1995).

CYCLIN-DEPENDENT KINASE 5
Cyclin-dependent kinase 5 (Cdk5) is another important kinase
implicated in drug addiction. Cdk5 inhibition, whether by phar-
macological or genetic means, potentiates both natural and
cocaine reward-related behaviors. Repeated intra-NAc infusions
of the Cdk5 pharmacological inhibitor roscovitine prior to cocaine
injections alter both the development and expression of cocaine-
induced locomotor sensitization (Taylor et al., 2007). Repeated
intra-NAc infusion of roscovitine also enhances the incentive-
motivational effects of cocaine as measured by responding for
drug-associated cues and this effect persisted for at least 2 weeks
after the last exposure of roscovitine (Taylor et al., 2007). NAc
infusions of another Cdk5 inhibitor, olomoucine, produces acute,
and persistent increases in “breakpoints” on a progressive ratio
schedule for cocaine reinforcement (Taylor et al., 2007), an index
of the degree of effort an animal will exert to obtain drug.

Cre/loxP conditional knockout systems permit temporal and
spatial control of Cdk5 expression in the adult brain (Benavides
et al., 2007). Mice lacking Cdk5 in adult forebrain exhibit increased
locomotor-activating effects of cocaine, increased breakpoints on
a progressive ratio schedule of food reinforcement and enhanced
cocaine CPP corresponding to increased excitability of MSNs in
the NAc, a form of functional plasticity (Benavides et al., 2007).
These combined results suggest that Cdk5 acts as a homeostatic
mechanism of neuronal excitability in the NAc and that Cdk5 may
govern behaviors driven to obtain drug, drug-associated cues, and
natural reward.

The AP-1 site in the Cdk5 gene promoter is a downstream
target ofΔFosB. Chronic cocaine administration as well as over-
expression of ΔFosB raises striatal Cdk5 mRNA, protein, and
activity (Bibb et al., 2001). Unlike protein kinases that are acti-
vated by second messengers, Cdk5 is constitutively activated
through its interactions with its cofactor p35. In this con-
stitutively active basal state, Cdk5 appears to provide a neg-
ative tonus toward D1 dopamine receptor/cAMP/PKA signal-
ing, through its phosphorylation of DARPP-32, for example.
Cdk5 phosphorylates DARPP-32 at Thr75, rendering DARPP-32
a potent inhibitor of PKA that effectively antagonizes effects of
chronic cocaine on striatal dopamine levels (Bibb et al., 1999).
These data suggest that chronic cocaine induces up-regulation
of Cdk5 mediated by ΔFosB that alters dopamine D1 recep-
tor signaling. While up-regulation of Cdk5 may functionally
repress hyper stimulated cAMP/PKA signaling pathways, it may
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also alter neuroplasticity in other ways that may contribute to
addiction.

PP2A is a predominant mechanism for dephosphorylation of
DARPP-32 at Thr75. Dephosphorylation of DARPP-32 at Thr34
involves primarily the Ca2+-dependent protein phosphatase cal-
cineurin. Dephosphorylation of Thr75 primarily involves PP2A.
Dephosphorylation of Thr75 is subject to control by both cAMP-
and Ca2+-dependent regulatory mechanisms. The PR72 (or B′′
or PPP2R3A; Figure 3) regulatory subunit of PP2A is enriched
in striatum and contains two Ca2+ binding sites formed by
E and F helices (EF-hands 1 and 2), of which EF-hands 1 is
required for the ability of PP2A activity to be regulated by Ca2+
in vitro and in vivo (Ahn et al., 2007b). These data demon-
strate that the PR72-containing form of PP2A is required for
glutamate acting at AMPA and NMDA receptors to regulate
Thr75 dephosphorylation. In addition, PP2A may be activated
through cAMP-dependent signaling through the B56δ regula-
tory subunit (Figure 3), rendering it responsive to D1 receptor
activation and subject to dysregulation by drugs of abuse. It
has been suggested that the B56δ/AC/PP2A complex also regu-
lates the dephosphorylation of DARPP-32 at Thr75 (Ahn et al.,
2007a). As either Ca2+ or cAMP through these two regulatory
subunits may activate it, PP2A represents a particularly interest-
ing signaling molecule that may contribute to reward learning and
addiction.

Ongoing studies in our laboratory suggest that Cdk5 may reg-
ulate PKA signaling through additional mechanisms. While the
activation of Cdk5 is dependent upon associating with p35, this
may also serve as an important regulatory target. Specifically,
NMDAR-dependent Ca2+influx causes calpain to convert p35 to
p25 (Wei et al., 2005; Meyer et al., 2008; Figure 4). The Cdk5/p25
holoenzyme is more soluble than Cdk5/p35 and its specificity
may shift away from substrates by which it mediates attenuation
of cAMP/PKA signaling. Thus, while Cdk5/p25 has been broadly
implicated in neuronal injury and disease (Barnett and Bibb, 2010;
Hisanaga and Endo, 2010), it may play an important role in inte-
grating Ca2+ and cAMP signaling in localized domains within
synapses invoked during reward learning. While there is growing
evidence for this concept, it remains to be proven.

Cyclin-dependent kinase 5 also modulates cocaine-induced
plasticity in dendritic spine morphology, a form of structural

FIGURE 4 | Possible mechanism for the integration of Ca2+ and cAMP

signaling involving Cdk5 and release of its inhibition of PKA signaling

by the conversion of its cofactor p35 to p25 by calpain.

plasticity. Rats received intra-NAc infusions of roscovitine or
saline during chronic cocaine administration and Cdk5 inhibition
attenuated cocaine-induced dendritic spine outgrowth in NAc
core and shell 24–48 h after cocaine exposure (Norrholm et al.,
2003). Cdk5 phosphorylates and inhibits myocyte enhancing fac-
tor 2 (MEF2) that increases dendritic spines in MSNs of the NAc
(Pulipparacharuvil et al., 2008). Inhibition of MEF2 activity in
response to cocaine can permit transcription of the cytoskeleton-
associated genes, Wiskott–Aldrich syndrome protein (WASP), N-
WASP, and WASP-family verprolin homologs (WAVEs) that have
putative MEF binding sites in their proximal promoter regions.
WAVE1 also appears to modulate spine morphogenesis in a Cdk5-
dependent manner (Kim et al., 2006; Sung et al., 2008). Thus,
increased activation of Cdk5 by repeated cocaine exposure via
ΔFosB potentially results in modulation of WAVE activity, whereas
MEF2 can modulate its expression level to mediate persistent
alterations that could underlie aspects of cocaine-induced plas-
ticity and addiction. Thus, Cdk5 could modulate functional and
structural plasticity underlying cognitive inflexibility and mal-
adaptive behaviors characteristic of addiction. The role of Cdk5 in
cytoskeletal dynamics, synaptic function, and cell survival (Lopes
and Agostinho, 2011) and cognition and plasticity (Angelo et al.,
2006; Barnett and Bibb, 2010; Bibb et al., 2010) suggest targeting
Cdk5 signaling may be a viable approach to attenuating drug-
induced changes in synaptic plasticity that influence addiction
behaviors.

EXTRACELLULAR SIGNAL-REGULATED KINASES
Extracellular signal-regulated kinases (ERK) is also involved in
the D1/cAMP/PKA signaling cascade (Figure 3; Greengard et al.,
1999; Svenningsson et al., 2004). The MAPK kinases responsi-
ble for phosphorylating ERK are the ERK kinases II (MEKs).
The MAPK kinase responsible for MEK activation include kinases
termed Raf. Raf is activated by one of three forms of Ras that is,
in turn, activated in response to many types of growth factors to
their receptors, such as brain-derived neurotrophic factor (BDNF).
ERKs are implicated in long-term neuroplasticity induced by var-
ious drugs of abuse (Lu et al., 2006; Girault et al., 2007; Thomas
et al., 2008).

Acute cocaine injections rapidly increase ERK phosphory-
lation in NAc MSNs and dorsal striatum that are blocked
by MEK pharmacological inhibition (Valjent et al., 2000) and
cocaine-induced ERK phosphorylation is attenuated in the NAc
and dorsal striatum in DARPP-32 mutant mice (Valjent et al.,
2005). Increased ERK phosphorylation in the NAc has been
shown with Δ9-tetrahydrocannabinol (THC; Valjent et al., 2001,
2004), d-amphetamine (Choe et al., 2002), 3,4-methylene-dioxy-
methamphetamine (MDMA; Salzmann et al., 2003), morphine
(Valjent et al., 2004), and nicotine (Valjent et al., 2004). Morphine-
dependent mice undergoing naloxone-precipitated withdrawal
show increased ERK activity in NAc but not dorsal striatum com-
pared to controls (Li et al., 2010). Pharmacological inhibition of
ERK, abolishes, or attenuates LTP induced by high frequency stim-
ulation of population spikes in the dorsomedial striatum in rat
and this effect is, in part, mediated by the ERK pathway coupling
to NMDA receptors (Xie et al., 2009). Blockade of ERK phos-
phorylation in the NAc by direct infusion of a MEK inhibitor
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attenuates cocaine-induced activation of CREB (Mattson et al.,
2005). Furthermore, the blockade of ERK activity corresponds
to the blockade of CREB and activity of the intermediary kinase
MSK1 (that directly activates CREB) in the NAc and dorsal stria-
tum (Brami-Cherrier et al., 2005). MEK pharmacological inhibi-
tion also blocked cocaine-induced activation of the transcription
factor Elk-1 and expression of Fos in the NAc and dorsal striatum
(Valjent et al., 2000; Zhang et al., 2004).

Cocaine-induced CPP corresponds to increased ERK phospho-
rylation in the NAc and dorsal striatum (Valjent et al., 2006) and
exposure to the cocaine-paired context increases ERK phosphory-
lation in the NAc core but not shell (Miller and Marshall, 2005).
CPP corresponding to increased ERK activity in striatum has also
been obtained with methamphetamine (Mizoguchi et al., 2004).
Effects of MEK inhibitors in ERK1 knockout mice suggest it is
the ERK2 isoform that is critical for morphine CPP (Mazzucchelli
et al., 2002), cocaine CPP, and locomotor sensitization (Ferguson
et al., 2006). ERK2 can inhibit ERK1 signaling, possibly by com-
petition for phosphorylation by MEK, suggesting ERK2 is more
potent than ERK1 (Valjent et al., 2005). Indeed, ERK1 and ERK2
appear to have opposing roles in drug-induced synaptic plastic-
ity and behavior (Girault et al., 2007), thus ERK2 but not ERK1
appears to be the isoform most critical for modulating behavioral
effects of drugs of abuse.

It has also been suggested that processes of memory disruption
may underlie the effects of ERK blockade during CPP training
on subsequent drug CPP expression (Gerdjikov et al., 2004). The
modulation of ERK by drugs of abuse via dopamine and glu-
tamate receptor interactions integrates many second messengers
suggesting ERK may function in learned associations between
reward and contextual cues (Girault et al., 2007). In addition to
a role in classical conditioning, ERK activation is implicated in
learning and performance of instrumental responding via regula-
tion of transcription factors affecting intrinsic cellular excitabil-
ity (Shiflett and Balleine, 2011a,b). ERK signaling cascades and
BDNF growth factors influence glutamate transmission modulat-
ing LTP and LTD in MSNs of the striatum (Mcginty et al., 2010).
Chronic EtOH intake attenuates ERK phosphorylation and LTD
induction, whereas withdrawal for 1 day potentiates ERK phos-
phorylation and LTD induction (Cui et al., 2011). Direct infusions
of BDNF into the prefrontal cortex decreases responding dur-
ing extinction training and prevents cocaine-induced decreases
in ERK phosphorylation in the NAc but not the dorsal stria-
tum 1 day after drug exposure (Mcginty et al., 2010) and prevents
cocaine-induced aberrations in extracellular glutamate in the NAc
(Berglind et al., 2007, 2009). Thus, the ERK signaling cascade
appears to mediate drug-induced synaptic plasticity linked to
reward.

CA2+/CALMODULIN-DEPENDENT KINASE II
The most prominent example of a Ca2+/calmodulin-dependent
kinases (CaMK) with neuronal involvement in addiction and plas-
ticity is CaMKII (Wayman et al., 2008). CaMKII can mediate many
of the second messenger actions of Ca2+ in neurons (Figure 3).
The CaMKII family consists of four subunits termed α, β, γ,
and δ isoforms that are encoded by four different genes. CaMKII

contains a catalytic, regulatory, and self-association domain. The
regulatory domain contains (1) the autoinhibitory site that binds
to and inhibits the catalytic domain while in the resting state, (2)
the Ca2+/calmodulin-binding site and (3) several regulatory phos-
phorylation sites. Disinhibition of the autoinhibitory site occurs
upon binding of Ca2+/calmodulin to the regulatory domain.
CaMKIIα at Thr286 and CaMKIIβ at Thr287 undergo autophos-
phorylation independent of Ca2+ that switches the kinase into an
autonomous activity mode (Lisman et al., 2002; Wayman et al.,
2008). Due to the stimulation-sensor capability of this autophos-
phorylation switch, CaMKII has been proposed to act as a memory
storage mechanism (Lisman et al., 2002).

The effects of psychostimulants on CaMKII activity can vary
according to striatal region, drug, and dosing regimen. Acute
cocaine increases CaMKII activity in the NAc (Mattson et al.,
2005). Acute amphetamine increases CaMKII activity in dor-
sal striatum and alters the CaMKII substrates, ERK1/2, CREB,
and Elk-1 (Choe and Wang, 2002) that is dependent on group
I mGlu receptors (Choe and Wang, 2001). Acute methamphet-
amine actually reduces CaMKII in the NAc and dorsal striatum
(Akiyama and Suemaru, 2000). Chronic amphetamine adminis-
tration increases CaMKII phosphorylation in the striatum but not
protein levels (Iwata et al., 1997). Chronic intermittent ampheta-
mine increases striatal levels of CaMKII mRNA (Greenstein et al.,
2007). Pharmacological inhibition of CaMKII activity blunts acute
amphetamine-induced dopamine efflux via the dopamine trans-
porter (DAT) in mouse midbrain dopamine cultured neurons,
striatal brain slices, and in vivo (Fog et al., 2006). Acute adminis-
tration of a D1-like agonist (Das et al., 1997; Dudman et al., 2003)
or NMDA agonist (Das et al., 1997) increases phosphorylation of
CREB that is attenuated by CaMKII pharmacological inhibitors in
rat striatal neurons.

There is also cross talk between CaMKII and PKA signaling
pathways. PKA may promote LTP by stabilizing and/or recycling
pools of GluA1 AMPA receptors that are subsequently recruited
to the synaptic membrane by Ca2+ stimulation of CaMKII (or
protein kinase C PKC; see below)-driven trafficking events and
GluA1 phosphorylation at Ser818 and Ser831 (Boehm et al., 2006;
Guire et al., 2008). Single channel AMPA receptor activity may
also be increased during LTP via PKA phosphorylation of Ser845
to increase probability of open channels and CaMKII/PKC phos-
phorylation of Ser831 to increase single channel conductance
(Derkach et al., 2007).

Intriguingly, CaMKII has been implicated as an important
negative regulator of the dopamine D3 receptor subtype that
relieves the dopamine receptor-mediated inhibition on sensi-
tized behavior (Liu et al., 2009). It was shown that D3 recep-
tor activation inhibits AC in acute NAc slices and that NMDA
receptor-mediated Ca2+ influx restores this inhibition through
stimulating CaMKII-binding to the D3 receptor. Importantly, a
peptide derived from the CaMKII-binding site on the D3 receptor
prevented this disinhibition induced by Ca2+ influx.

PROTEIN KINASE C
PKC comprises more than 14 isoforms subdivided into cate-
gories according to their structure, Ca2+ dependence, and lipid
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activators (Pearce et al., 2010). All PKC isoforms contain a catalytic
domain harboring an ATP binding site and a substrate-binding
site. Ca2+ in conjunction with the lipid signaling intermediate
diacylglycerol (DAG) activate the classical PKCs (α, βI, βII, and
γ; Figure 3). DAG but not Ca2+ activate novel PKCs (δ, ε, η,
and θ). Lipids such as phosphatidic and arachidonic acid activate
atypical PKCs (ζ, and ι/λ) that are considered to be constitutively
active as they require neither DAG nor Ca2+. Ca2+ and/or DAG or
lipids bind to the R domain to disinhibit the C domain. PKC,
similar to CaMKII, mediates multiple second messenger func-
tions of Ca2+ to influence substrates such as receptors and ion
channels.

There are numerous downstream substrates of PKCs involved
in mechanisms of drugs of abuse that include neurotransmitter
receptor subtypes such as α4 subunit of the nicotinic acetyl-
choline receptor (nAChR) phosphorylated at Ser550 (Pollock et al.,
2007), dopamine D2 receptors phosphorylated at Ser229, Ser228,
Thr352, Thr354, and Ser355 (Namkung and Sibley, 2004), the
γ2 subunit of the GABAA receptor phosphorylated at Ser327 of
the γ2 subunit of the GABAA receptor (Qi et al., 2007), and
cannabinoid CB1 receptors phosphorylated at Ser317 (Garcia
et al., 1998). Other PKC substrate proteins are involved in exo-
cytosis (e.g., Ser187 of SNAP-25; Nagy et al., 2002) and synaptic
plasticity (e.g., Ser36 of neurogranin and Ser41 of neuromod-
ulin; Huang et al., 1993; Oehrlein et al., 1996) are also targeted
by PKC.

PKC also phosphorylates Ser818 of the AMPA glutamate recep-
tor subunit GluA1 that facilitates AMPA receptor externalization
and LTP (Boehm et al., 2006). PKC and MAPK signaling pathways
appear to be involved in AMPA receptor trafficking underlying an
in vitro model of classical conditioning in pond turtles, Pseudemys
scripta elegans (Zheng and Keifer, 2008). PKC activation facili-
tates autophosphorylated CaMKII and increased association with
NMDA receptors in conjunction with NMDA postsynaptic recep-
tor insertion that was, along with PKC-induced LTP of the AMPA
receptor-mediated response, abolished by a CaMKII antagonist or
by disruption of CaMKII interaction with NR2A or NR2B (Yan
et al., 2011).

Due to the lack of selectivity of pharmacological inhibitors for
specific PKC isoforms, targeted gene disruption in mouse mod-
els is increasingly being used to explore the precise role of PKC
isoforms in behaviors related to addiction (Olive and Newton,
2010). PKCβ knockout mice have a reduced locomotor-activating
effect of acute amphetamine and this isozyme is critical for effects
on DAT (Chen et al., 2009). PKCγ knockout mice fail to exhibit
morphine CPP (Narita et al., 2001) and show increased EtOH con-
sumption in a two-bottle choice procedure (Bowers and Wehner,
2001). PKCε knockout mice show enhanced locomotor stimu-
lant effects of lower doses of EtOH (Hodge et al., 1999, 2002)
and potentiated rewarding and reinforcing effects of morphine
(Newton et al., 2007). However, PKCε knockout mice consumed
approximately 75% less EtOH and exhibit weaker EtOH prefer-
ence in a two-bottle choice task compared to wildtype controls
(Hodge et al., 1999). Another study showed that PKCε knockout
mice exhibit reduced EtOH self-administration and attenuated
alcohol deprivation effect (Olive et al., 2000). PKCε knockout mice

are more sensitive to the aversive and less sensitive to the reward-
ing effects of EtOH in CPP (Newton and Messing, 2007). PKCε

knockout mice acquire morphine intravenous self-administration
at doses that do not maintain self-administration in wild-type
controls (Newton et al., 2007).

These pharmacological and genetic techniques suggest a mean-
ingful role for PKC in neuroadaptations and behavioral alter-
ations pertinent to addiction. Indeed, the wealth of data espe-
cially on PKCε obtained in drug self-administration has led to
its inclusion on a panel of markers for haplotype analysis of
addiction-related genes (Hodgkinson et al., 2008). Thus, the oper-
ation of PKC isozymes and their signaling pathways provide
another route to the development of pharmacotherapeutics for
addiction.

FUTURE DIRECTIONS
Here we have made attempt to integrate different aspects of
addiction including behavioral considerations and animal mod-
els, considerations of circuitry and its mediation of both reward
and addiction learning, and have cataloged a small portion of
the underlying signaling mechanism that mediate normal and
addiction-related motivated behaviors. Focus on the cellular and
molecular neurobiology of signal transduction has allowed the
elucidation of mechanisms beyond the synaptic level that mod-
ulate addictive drug-induced functional and structural plasticity.
Behavioral assays related to drug addiction that dissociates mea-
sures of relapse from reinforcement and dependence provides
powerful tools to evaluate the effects of targeting specific intracel-
lular signaling pathways. However,understanding of the molecular
mechanism involved and relating them complex pathophysiolog-
ical and behavioral basis of adduction is incomplete and remains
a challenge. Current and future research on addiction driven
toward reversing drug-induced pathology that impairs synaptic
plasticity will undoubtedly include the systematic manipulation
of mechanisms of protein phosphorylation.

The transition to the addicted state may initiate with a cascade
of neuroadaptations from the ventral striatum to dorsal striatum.
However, the delineation of drug-induced plasticity in neurocir-
cuitry corresponding to stages of binge intoxication, withdrawal-
induced negative affect and preoccupation/anticipation involves
other critical brain regions that include but are not limited to
the ventral tegmental area, extended amygdala, prefrontal cor-
tex, cingulated gyrus, and hippocampus. A better understanding
of the neurocircuitry altered by drugs of abuse will help form a
heuristic basis in the search for genetic, molecular, and pharmaco-
logical neuroadaptations conferring risk for or protection against
addiction and aid in the identification of novel targets for pharma-
cotherapeutics with increased therapeutic efficacy and decreased
side effect liability.
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