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Abstract: Using the modified method of Brownian dynamics, the dynamics of macroparticles with a
uniform metal coating in a plasma-dust monolayer under the action of laser radiation was simulated.
The time dependences of the root-mean-square and average linear displacements of particles were
calculated for different initial effective parameters of nonideality and different intensities of laser
radiation. A relationship was established that connects the effective parameter of nonideality of the
dusty plasma system of active particles with the maximum value of the mean linear displacement
of particles.

Keywords: dusty plasma monolayer; metal coating; thermophoretic force; Brownian motion;
active matter

1. Introduction

A dusty plasma monolayer is an actively investigated physical object with a number
of unique properties [1–11]. The kinetic temperature of the macroparticles in the dusty
plasma monolayer is much higher than the temperature of the surrounding heavy particles
(neutrals and plasma ions) [6]. This is due to the fact that the presence of a charge in the
particles leads to the transfer of the electric energy of the gas discharge into the kinetic
energy of the chaotic motion of particles in the plane of the monolayer. In this connection,
the dusty plasma system can be considered as one of the options for the implementation
of active matter [12–17]. In recent years, the interest in this form of matter on the part of
scientists from various fields of science is growing rapidly [14]. The unusual properties
of active matter are largely associated with the thermodynamic openness of such systems
and, as a consequence, its study is important for solving fundamental problems of physics,
chemistry and biology. The active substance is also of interest for many applications, from
efficient drug delivery to the creation of “living” materials with structures and functions
that cannot be achieved in passive materials [14]. In this work, the goal is to simulate
the dynamics of charged macroparticles with a uniform metal coating in a plasma-dust
monolayer under the action of laser radiation.

The effect of increasing the kinetic energy of particles in a dusty plasma system using
laser radiation has advantages over the traditional method of heating and melting a dusty
plasma crystal by reducing the pressure in the discharge chamber. In the first case, the
particle charge remains practically unchanged, and the vibration amplitude of the particles
in the direction perpendicular to the plane of the monolayer does not increase, the system
remains stable.

In [16], the behavior of a single such particle in an RF capacitive discharge under
the action of laser radiation on it was experimentally studied. It was found that such a
particle performs cyclic movements along a trajectory close to a circle, and the radius of the
trajectory depends on the power of the acting laser radiation. The more power, the larger
the radius of the trajectory. In [17], experimental studies of the microscopic dynamics of
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particles of melamine-formaldehyde with a metal coating in a plasma-dust monolayer
when exposed to a limited area of the system of laser radiation were presented. Under the
action of laser radiation in the wavelength range below the red border of the photoelectric
effect, the particle surface was heated. The collision of neutral atoms with a more heated
particle is accompanied by a greater transfer of momentum than in a collision with a less
heated one. Thus, a dust particle with a heated surface receives an additional external
energy source to increase its own kinetic energy. The additional force associated with
particle heating, as well as the Langevin force, is characterized by a random change in
both magnitude and direction. However, unlike the Langevin force, this additional force is
not related to the equilibrium ambient temperature. Therefore, to set it in modeling, it is
necessary to use a non-standard approach, which is described below.

2. Statement of the Problem and Details of Modeling

Let us consider the case when a dusty plasma monolayer consists of several hundred
micron polymer particles coated with a metal film. Then, the movement of each individual
particle will largely depend on the interaction with neighboring particles and on external
conditions. The strong interaction of particles is due to the presence of an electric charge
on them and the properties of the surrounding nonequilibrium low-pressure gas discharge
plasma [1–11]. The model assumes that the particles have the same size and composition
and are uniformly covered with a thin metal film capable of absorbing laser radiation. The
initial arrangement of the particles is uniform in the plane of the monolayer. The potential
of Yukawa was chosen as the potential for interaction:

ϕ(r) =
Zd
r

exp
(
− r

λD

)
(1)

where Zd—particle charge, r—the distance between two neighboring particles, λD—Debye
shielding radius, which was assumed to be equal to the mean distance between particles.
lp corresponds to the parameters of the simulation of such systems and is close to actual
experimental data [1]. One of the key parameters of the dusty subsystem is the effective
nonideality parameter Γ*, which is determined from the following relation [18,19]:

Γ* =
Z2

d

(
1 + κ + κ2

2

)
lpkBT

exp(−κ),

where κ = lp/λD—screening parameter, T is the kinetic temperature of the dust subsystem.
The phase transition in the “crystal-liquid” system corresponds to the value Γ* ≈ 104 [19].

In addition, the particles are affected by the friction force on neutrals - mγ
.
ri and the

determining random force, the Langevin thermostat Li. m is the mass of the particle, the
coefficient of friction γ is determined from the following expression:

γ = δ
4π

3
ma

m
nacarp.

Here, δ is the coefficient depending on the microscopic mechanism of collision of a gas atom
with the particle surface, na is the concentration of buffer gas atoms, ma is the mass of buffer
gas atoms, ca is the velocity of buffer gas atoms, rp is the radius of a dusty macroparticle.
For the coefficient δ, a value of 1.22 was chosen, which corresponds to an intermediate
value between the ideal reflecting surface at δ = 1 and the surface of the ideal heat insulator
at δ = 1.442 [20]. Note that in this case, the force Li is specified as a normal random variable
with variance

√
2kBT/γdt, where dt is the simulation time step. It is assumed that the

forces acting in the vertical direction counterbalance each other. The system is kept within
the considered region by specifying potential walls at the boundaries; in the equation of
motion term is responsible Fcon f —the force from the border of the area (confinement). In
the case under consideration, the potential trap is specified by applying mirror boundary
conditions. In addition, the particles are affected by a random force Ftp

i , associated with
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the effect of thermophoresis under the heating effect of laser radiation on the metal surface
of the particle, which is proportional to the density of the light flux [17]. The heated
surface of the particle leads to the fact that neutral atoms of the buffer gas transfer a greater
momentum upon collision with a particle than upon collision with a “cold” particle. In
our case, it is assumed that the system is uniformly illuminated by laser radiation, so that
the surface of all particles is simultaneously and uniformly heated. Thus, this force is
responsible for the activity of the particles. In this work, the magnitude and direction of
this force is set randomly with uniformly distributed values of the modulus and angle of
rotation of the force vector, and the maximum value of the force is selected so as to provide
the desired effective parameter of the nonideality of the dust subsystem, since an increase
in force causes an increase in the effective temperature of the dust subsystem. The modulus
of its average value is further denoted as F. Thus, the equations of motion of particles in
the system are as follows:

m
..
ri = −Zd ∑∇ϕ−mγ

.
ri + Li + Fcon f + Ftp

i (2)

The two-dimensional region, limited by a potential trap with a radius of 28 mm
(Figure 1), was filled with particles in the amount of N = 625, with an interparticle distance
of 1 mm and a particle diameter of 10 µm, the mass of particles was calculated based
on the density of melamine-formaldehyde and the thickness of the copper coating of
100 nm and amounted to 10−9 g. The charge on the particles was taken as equal to
10,000 electron charges, which corresponds to the data of many works, see, for example, [5].
The determination of the effective nonideality parameter Γ* was carried out by calculating
the radial distribution function of particles (pair correlation function) using the method
described in [21]. The studies were carried out for different values of the initial effective
nonideality parameter Γ*0, as well as for different values of the average force F caused by
the heating of the particle surface by laser radiation. After “switching on” the force F, the
system was held for 50 s in order to come to a stationary state, which was characterized by
a fairly stable average kinetic energy of the dust subsystem. Figure 2 shows the trajectories
of particles obtained in 0.3 s for different values of the force F and the initial effective
parameter of nonideality Γ*0 = 300. As expected, with an increase in the force F, an increase
in the intensity of the kinetic motion of the particles (effective temperature) of the system is
observed. In this case, if F= 10 fN, we have Γ* ≈ 200, if F = 20 fN, we have Γ* ≈ 50, and if
F = 40 fN, we have Γ* ≈ 15.
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Figure 2. Particle trajectories in 0.3 s. Initial Γ*0 = 300, (a) F = 10 fN; (b) F = 20 fN; (c) F = 40 fN.

Based on the results of numerical experiments, the time dependences of the root-mean-
square displacements and average linear displacements of particles along the vectors of
the initial velocities of the particles were calculated.

3. Obtained Data, Their Analysis and Discussion

Figure 3a,b show the time dependences of the root-mean-square displacements of
particles with a metal coating in a plasma-dust monolayer at different initial effective
parameters of nonideality and different values of the average thermophoretic force F.
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Figure 3. (a) Mean square displacements of particles at Γ*0 = 100 и500, and with different values of thermophoretic force
F. (b) Mean square displacements of particles at the initial value of the effective parameter of nonideality Γ*0 = 500 and
various values of thermophoretic force .

As can be seen from these figures, the graph of the rms displacement at a higher
average thermophoretic force is higher than at a lower one, which is obviously associated
with a more intense kinetic motion of particles in the first case. The values of the rms
displacement at a higher value of the initial effective parameter of nonideality are higher,
which is due to the fact that at low Γ*0, the effect of the external force will manifest itself
less because of the high initial average kinetic energy of the particles. It can be seen that
under the action of a thermophoretic force on a dusty system for the root-mean-square
displacement of particles in such a system, there are regions corresponding to the ballistic,
transient, and diffusion regimes. Moreover, the transient regime is more pronounced at the
minimum value of the acting thermophoretic force.

To characterize the active motion of a single particle, the value of the average linear
displacement along the vector of the initial particle velocity [14] (Figure 4) can be used. It
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is noted in [14] that for a single active particle, the value of the linear displacement along
the initial orientation of the particles is always nonzero.
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direction of the initial velocity.

In the case of considering a certain ensemble of particles, it is necessary to use averag-
ing over particles, and therefore, this value is calculated using the following formula:

〈Lvx(t)〉 =
1
N

N

∑
i

∆ri(t)·vi(0)
|vi(0)|

. (3)

In this case, for the average linear displacement perpendicular to the direction of the
initial velocities, we have the relation:

〈Lvy(t)〉 =
1
N

N

∑
i

|∆ri(t)× vi(0)|
|vi(0)|

. (4)

In expressions (3) and (4), the initial velocities vi(0) are taken to be those velocities
that the particles acquire 50 s after the “switching on” of the force F.

Figure 5 shows the graphs of the time dependences of the value 〈Lvx(t)〉 (on the inset
of the value 〈Lvy(t)〉).

As can be seen from the graphs presented, the value of the average linear displacement
along the vector of initial velocities first increases sharply, and the growth occurs at times
corresponding to the ballistic regime of particle motion (see Figure 3). Here, the particles
move mainly along the vector of their initial velocity. Further, the value of the average
linear displacement reaches its local maximum and, performing damped oscillations,
reaches an almost constant value, where the diffusion mode of motion is realized. It can
be seen that both the value of the first maximum and the constant value of saturation
in the diffusion mode depend on the value of the average force F. With increasing force
values, the displacement increases, i.e., the activity of the system is increasing. Different
values of the external force make it possible to realize different effective parameters of the
nonideality of the system. For the value of the average linear displacement perpendicular to
the vector of the initial velocity (inset in Figure 5), there is a slight increase in the amplitude
of oscillations near zero.
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Figure 6 shows the dependence of the maximum value of the average linear displace-
ment along the vector of the initial velocity on the effective parameter of the nonideality
of the system realized under the given conditions. It can be seen from the graph that the
maximum values that the value 〈Lvx(tmax )〉 takes is associated with the effective parameter
of the system’s nonideality through a simple relation:

〈Lvx(tmax)〉
lp

≈ 2
3
√

Γ∗
. (5)
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Relation (5) can be used to determine the effective nonideality parameter of a system of
active dust particles in a dust-plasma monolayer in a wide range with known experimental
data on the coordinates and velocities of particles.

4. Conclusions

In this work, using the method of nonequilibrium Brownian dynamics, the microscopic
dynamics of a system of interacting dust particles with a uniform metal coating under the
action of laser radiation is investigated. Data on the coordinates and velocities of particles
are obtained for different initial effective parameters of nonideality and different intensities
of laser radiation. Using these data, the time dependences of the root-mean-square and
average linear displacements of particles were calculated. It was found that a twofold
increase in the average force caused by thermophoresis when the system is irradiated with
a laser can lead to a fivefold decrease in the effective nonideality parameter. A simple
relationship is established that connects the effective parameter of nonideality of the dusty
plasma system of active particles with the maximum value of the mean linear displacement
of particles along the direction of their initial velocities. This ratio can be used to diagnose
such systems in a wide range of changes in the effective parameter of nonideality.
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