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facial morphology: a review of potential
developmental mechanisms

Kaoru Usui and Masayoshi Tokita”

Abstract

Mammals (class Mammalia) have evolved diverse craniofacial morphology to adapt to a wide range of ecological
niches. However, the genetic and developmental mechanisms underlying the diversification of mammalian craniofa-
cial morphology remain largely unknown. In this paper, we focus on the facial length and orofacial clefts of mammals
and deduce potential mechanisms that produced diversity in mammalian facial morphology. Small-scale changes in
facial morphology from the common ancestor, such as slight changes in facial length and the evolution of the midline
cleftin some lineages of bats, could be attributed to heterochrony in facial bone ossification. In contrast, large-scale
changes of facial morphology from the common ancestor, such as a truncated, widened face as well as the evolution
of the bilateral cleft possessed by some bat species, could be brought about by changes in growth and patterning of

Ectomesenchyme, Bone, Orofacial cleft

the facial primordium (the facial processes) at the early stages of embryogenesis.
Keywords: Mammals, Craniofacial morphology, Diversity, Transgenic mice, Bats, Facial processes, Neural crest,

Morphological diversity in mammalian faces
Mammals (class Mammalia) are one of the major groups
of vertebrates, containing over 5400 living species as
well as abundant extinct species [1-4]. Living mammals
consist of three major clades: monotremes (order Mono-
tremata), marsupials (infraclass Marsupialia), and placen-
tals (infraclass Placentalia; Fig. 1). Recent phylogenetics,
including comparative phylogenomic studies, have lead
to a general consensus concerning the deeper branches
of the mammalian evolutionary tree, for example iden-
tifying four major clades within placentals: Xenarthra,
Afrotheria, Laurasiatheria, and Euarchontoglires [5-11].
Mammals have evolved diverse morphologies to
adapt to a wide range of ecological niches [3, 4]. The
morphological diversity of mammalian heads is espe-
cially remarkable, possibly due to the head’s fundamen-
tal role in sensing, communication, and feeding [12-18]
(Fig. 1). For example, both long- and short-faced taxa are
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recognized in each mammalian group (Fig. 1). Crani-
ofacial morphology in mammals has been quantitatively
evaluated in each group by comparative morphological
analyses, including modern geometric morphometrics
(summarized in Table 1).

However, the genetic and developmental mechanisms
underlying the diversification of mammalian craniofa-
cial morphology remain largely unknown. In this review,
we compiled the recent findings in the developmental
genetics of mice, a model mammalian species, to attempt
to deduce the potential diversification mechanisms of
mammalian facial morphology. We also introduce the
results of previous studies in which a strong correlation
between the number of nucleotide tandem repeats within
the Runx2 gene and the facial length in some placental
mammals was reported. Finally, we focus on bats (order
Chiroptera), which display a substantial degree of crani-
ofacial diversity and discuss their potential as a model for
understanding the evolution of mammalian craniofacial
morphology.
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Fig. 1 Phylogeny of mammals and diversity of their craniofacial morphology. A, phylogeny of living mammals adapted from Tarver et al. [11], with
phylogeny of Laurasiatheria based on Chen et al. [101]. B-M’, frontal and lateral views of mammalian heads: B and B”, platypus (Ornithorhynchus
anatinus); C and C’, echidna (Tachyglossus aculeatus); D and D’, red kangaroo (Macropus rufus); £ and E/, koala (Phascolarctos cinereus); F and F’, giant
anteater (Myrmecophaga tridactyla); G and G/, Linnaeus's two-toed sloth (Choloepus didactylus); H and H’, aardvark (Orycteropus afer); I and I/, rock
hyrax (Procavia capensis); J and J, domestic dog (Borzoi) (Canis lupus familiaris); K and K”, leopard (Panthera pardus); L and L’, common tree shrew

Molecular and cellular mechanisms creating
diversity in facial morphology uncovered by mouse
transgenesis

Mouse transgenesis is a powerful tool to infer the func-
tion of genes related to vertebrate morphogenesis. We
examine the phenotypes of transgenic mice to gain
insights into the molecular and cellular mechanisms
that produce morphological variation in mammalian
faces. We focused on two developmental events: (1)
growth and patterning of the facial primordium and (2)
ossification of the facial bones that lead to a shortened
face and the orofacial cleft (Table 2).

Growth and patterning of the facial primordium

Formation of mammalian faces begins at the phar-
yngula stage of embryogenesis, through growth and
fusion of the five facial processes: the frontonasal

process (FNP), medial nasal processes (MNPs), lateral
nasal processes (LNPs), maxillary processes (MAXs),
and mandibular processes (MANSs) [19]. In the facial
development of mice, ENP first expands anteriorly in a
nine-day-old embryo (E9.0). Subsequently, MNPs and
LNPs start to bulge out from the FNP at E10.0. These
two processes surround the nasal placodes, MNP sur-
rounds its medial aspect, and LNP surrounds its lateral
aspect. During the same embryonic stage, MAXs begin
to bulge anteriorly covering the ventrolateral aspect
of the FNP. MAXs and the FNP continue to grow and
fuse to each other in later stages to form the upper jaw.
Paired MANSs begin to grow anteriorly at E9.0 and fuse
to one another at the midline to form the mandible [19,
20].

The early patterning of the mammalian face is regu-
lated by migration and proliferation of the neural crest-
derived mesenchyme (ectomesenchyme hereafter) [19,
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Table 1 Diversity of craniofacial morphology in mammals and recent studies evaluating this diversity using landmark-
based geometric morphometrics

Clade

Remarks on diversity of craniofacial morphology

Landmark-
based geometric
morphometric studies

Monotremata

Marsupialia

Xenarthra
Cingulata

Pilosa

Afrotheria
Tubulidentata

Macroscelidea

Afrosoricida

Hyracoidea

Proboscidea

Sirenia

Laurasiatheria
Eulipotyphla

Perissodactyla

All extant monotremes have a toothless bill covered by electro- and mechano-receptors. The platypus has
a flat, widened, duck-like bill. Echidna bills are more pointed, slender compared to platypus bills

The viscerocranium, which includes the early-ossifying bones of the oral region, is morphologically less
diverse than in placentals. The level of disparity of late-ossifying neurocranium is equivalent with that in
placentals. This suggests that the ossification of marsupial oral bones is more constrained compared to
placentals

Armadillo skulls are elongated anteroposteriorly and flattened dorsoventrally. The zygomatic arch is com-
plete, differing from those of another xenarthran lineage, Pilosa. The dentary bone is thin and long. Varia-
tion in skull shape is only described in the family Pampatheriidae which is an extinct group of Cingulata.
Skull shape is highly conserved among extant members

The suborder Forivora (sloths), which consists of Bradypodidae (three-toed sloth) and Megalonychidae
(two-toed sloths), has a short, high skull with a strongly reduced rostrum. The zygomatic arch is robust
but incomplete. The skulls of three-toed and two-toed sloths are distinct to one another according to
morphometric analyses. Three-toed sloth skulls have a relatively shortened rostrum and no diastema. The
suborder Vermilingua (anteaters) has a specialized skull for eating small insects; the skull is highly elon-
gated and has no tooth. Its pointed rostrum encases a long tongue. The zygomatic arch is incomplete

Aardvark skulls are elongated anteroposteriorly, accompanied by long and slender dentary bones. The
nasal bone is triangular in shape. The frontal bones expand dorsally in front of the orbit as a result of a
highly developed nasal chamber. The zygomatic arch is complete but slender. There is no postorbital bar

Macroscelidea species have a tall, dome-shaped cranium. The zygomatic arch is complete. The rostrum is
long. Macroscelidae consists of two subfamilies: Rhynchocyoninae and Macroscelidinae. Rhynchocyoni-
nae species have a relatively large skull with nasal bones having partially ossified tips. The bony palate
is not perforated. Macroscelidinae species have a relatively smaller skull and wholly cartilaginous nasal
bone tips. The bony palate has some holes

Afrosoricida consists of two families: Tenrecidae (tenrecs) and Chrysochloridae (golden moles). Tenrec skulls
have a long, slender rostrum. The jugal bone is absent and the orbital bone is usually small. The skull of
golden moles is abruptly conical, its anterior portion is pointed, and its posterior portion widened. The
zygomatic arch is formed by an elongated process of the maxilla, and the occipital area contains the
tabular bones, which are not typical in mammals. Tenrec skulls are less morphologically diverse than
those of golden moles. It is suggested that the similarities in skull morphology among the speciose
genus Microgale masks morphological diversity among the rest of the family

All four extant hyrax species have short skulls and deep dentary bones. The skull has a postorbital bar,
which is sometime complete (Dendrohyrax) and sometime incomplete (Heterohyrax and Procavia)

All extant elephant species (Loxodonta and Elephas) have short, tall skulls which are pneumatized particu-
larly in the cranial roof, thereby reducing cranium weight. Skulls bears two tusks derived from the second
incisors of the upper jaw

The skulls of Sirenia species are highly specialized for aquatic life, including adaptations such as deep
dentary bones. Sirenia consists of two families: Dugongidae and Trichechidae. In Dugongidae skulls, the
premaxilla bones are relatively larger, the nasal bones are absent, and the nasal cavity is shortened. In Tri-
chechidae skulls, the premaxilla bones are small, the nasal bones are present, and the nasal cavity is elon-
gated. Within Trichechidae, Trichechus inunguis is distinct in skull shape. The skull shape of T. senegalensis,
T.manatus manatus, and T. m. latirostris are more similar to each other. Within T. manatus, geographic
variations in skull morphology, perhaps caused by geographic isolation, are reported

Disparity in skull morphology among eulipotyphylans may be explained by phylogeny rather than ecology.
In the genus Sorex, similarities and differences in skull shape between species are proportional to the
phylogenic distance between them. Similarly, the degree of morphological variation in the dentary bone
between talpid species corresponds to the phylogenetic distance between the species

Perissodactyla skulls are adapted to an herbivorous diet. Extant Perissodactyla consists of three families:
Equidae, Tapiridae, and Rhinocerotidae, and all have a long skull with an elongated face and large cheek
teeth adapted for grinding coarse vegetation. Equid skulls are generally flat in a mediolateral direc-
tion, with long, deep rostrums. The skulls of the Tapiridae have a well-developed sagittal crest, rostrally
positioned orbital bones, and a small cranium with a reduced posterior region. Rhinocerotidae have a
thickened, enlarged nasal bone which extends anteriorly beyond the anterior margin of the premaxilla
bone. The occipital bone is unusually high where the neck muscles attach to sustain the heavy head

None

[102-105]

[107,108]

None

None

[112]

[114-119]

None
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Clade

Remarks on diversity of craniofacial morphology

Landmark-
based geometric
morphometric studies

Chiroptera

Carnivora

Pholidota

Cetartiodactyla

Euarchontoglires
Scandentia

Rodentia

Lagomorpha

Primates

Dermoptera

Bat skulls are morphologically highly diverse. However, the degree of morphological disparity in skull
shape is not the same among taxa. The family Pteropodidae, which lost the ability to echolocate, have
large orbits accompanied with a well-developed postorbital bar. The rostrum is morphologically uniform
despite variation in diet between species. The family Phyllostomidae shows a high level of variation in
skull morphology explained by a diversity of diets. Nectarivorous species possess an elongated face while
fruigivorous species have a shortened face. Skull morphology of the family Vespertilionidae is highly
conserved, although it is the most speciose group in the order

Carnivoran skulls are characterized by an expanded braincase in which the frontal-parietal suture is located
posteriorly relative to the postorbital constriction, as well as fully or partially ossified ectotympanic bones
that are firmly fused to the skull. Carnivoran skulls are highly varied corresponding to different diets. In
general, felid species have a shorter rostrum for production of higher bite force, while canid species typi-
cally have a longer rostrum with a large nasal chamber associated with a well-developed olfactory sense.
The pinnipeds, semiaquatic marine mammals, usually have a short rostrum, and enlarged orbits

All extant pangolin species have a long, narrow, toothless skull. The dentary bone is narrow and slender as
well. The surface of the cranium is smooth without any ridges or crests. The zygomatic arch is present but
incomplete. The postorbital bar is absent

The skulls of Cetartiodactyla usually have a long rostral portion. The postorbital bar is always present. When
horns are present, they are most often formed on the frontal bones. The extant Cetartiodactyla consists
of the suborder Suina (pigs and peccaries), the infraorder Cetacea (whales), the infraorder Ancodonta
(hippos), and the suborder Ruminantia (cows, goats giraffes, deers etc.). Suiforme skulls are distinct
from those of other cetartiodactyls, having a posteriorly extended squamosal bone that contacts the
exoccipital bone. Ancodontids have a tall skull with high-positioned orbits, enlarged as well as tusk-like
canines and incisors. Ruminantids bear antlers or horns that are often large and complex in shape. The
mastoid bone is exposed between the squamosal and occipital bones. Cetaceans have a highly modified
skull caused by posterior migration of the nostrils. The premaxilla and maxilla bones form the roof of the
rostrum. Enlarged occipital bones occupy the posterior part of the skull. The nasal and parietal bones are
highly reduced in size

Treeshrews have a unique, prominent hole in the zygomatic arch. The postorbital bar is well developed
and contacts the zygomatic arch. There is variation in skull morphology within Tupaia glis that might be
due to the geographic barriers between populations. For example, island populations have a smaller skull
than continental ones

Rodent skulls are unique, bearing a single pair of persistently growing incisors in the upper and lower
jaws. The orbital cavity is located dorsal to the cheek teeth. The zygomatic arch fuses to the maxilla in
line with the first cheek teeth. The vertical ramus of the dentary bone is enlarged and provides the area
for insertion of the masseter muscle. Rodentia consists of three suborders: Myomorpha, Sciuromorpha,
Hystricomorpha. Myomorpha have enlarged temporal bones where a large temporal muscle attaches.
The muscle produces high mastication power using cheek teeth. Sciuromorpha have a large vertical
ramus of dentary bone where the masseter muscle attaches. This produces a high power in biting using
incisors. Hystricomorpha have a large infraorbital foramen in their skull. Both phylogenetic and ecological
factors influence the determination of skull morphology in rodents. In Hystricomorphids (e.g., guinea
pigs, porcupines, and spiny rats), phylogenetic constraints are more important than ecological factors
in generating morphological variation of the dentary bone. On the other hand, morphological variation
of skulls is mainly brought about by ecological factors. Hystricomorphids living in open habitats, such as
guinea pigs, have upward-facing orbits and a wide basicranium. Hystricomorphids living in woody areas,
such as spiny rats, have more laterally facing orbits and a narrow basicranium

Rabbits have a fenestrated skull which is unique among mammals. The fenestration (lattice-like bone) is
seen in the proximolateral part of the rostrum. Morphological disparity of skull morphology in the family
Leporidae is mainly explained by differences in the degree of facial tilt among species

Skull morphology is very different between haplorhines and strepsirrhines, mainly in relative skull length
and width and facial depth. Haplorhines tend to have a mediolaterally wide as well as dorsoventrally tall
skull. Strepsirrhines have a narrower, shallower skull, an elongated face, and a narrower snout. Intraspe-
cific variation in skull shape has been studied in several groups of primates, including Cercopithecoidea
and Hominidae

The two extant colugo species have skulls with large front-facing orbits that improve binocular vision. The
position of three pairs of upper incisors is shifted laterally, and the second upper incisors are transformed
into a canine-like shape. The first two lower incisors are broad and form a comb-like shape

[82,85,86,94,120,121]

[53,122-146]

None

[147-157]

[158-160]

[161-194]

[195-198]

[199-214]

None
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Table 2 The genes involved in shortening the face and making the orofacial cleft in mouse
Gene Mutant Phenotype Protein function Signaling pathway  References
Bmp2/Bmp4 Wnt1Cre; Bmp2”: Bmp4™ Truncated face Signaling molecule BMP [30]
Bmpria NestinCre; Bmprla’/f CL/pP Receptor BMP [215]
Ctnnb1 Ctnnb1”: Crect Truncated face Transcription factor; regulation of Wnt [22]
cell-cell adhesion
Msx1 Msx1~/~ Truncated face Transcription factor BMP [23]
Shh
Ptchl Wnt1Cre; Ptch19¢ CcL Receptor Hh [216]
Smo Wnt1Cre;Smo™"* Truncated face Receptor Hh [217]
Tfap2a Tfap2a Neo(hypomrpha)/Null model ~ CL/P Transcription factor FGF [218]
Notch
BMP
Wnt3 Wnt3~/~ cLp Signaling molecule Wnt [219]
Wnt9b Wnt9b~/clf1 CL/P Signaling molecule Wnt [220]
Wnt5a Wnt5a~~ Truncated face Signaling molecule Wnt [25,31,32]
Bmpria Oer—/resCre;Bmprmf/f SMCP Receptor BMP [38]
Fblin5 Fblin5="~ Shortened face Secreted extracellular matrix protein -~ MAPK-Erk [35]
Fgf8 Osr2cre;Rosa26R-Fgf8 @3 Growth factor FGF [221]
Kif3a Wnt1CrexKif3a”* cpP Motor protein Hh 222
Msx1 Msx1~/~ Shortened face  Transcription factor BMP [223,224]
cP Shh
Mni Mn1=/~ Shortened face  Transcription coregulator N/A [225]
cP
Shox2 Shox2>~/~ CcpP Transcription factor N/A [226]
Tbx22 Tox227/~ SMCP Transcription factor BMP [39]
FGF
TgfBr2 Wnt1Cre; Tnger/f CcpP Receptor TGF-B [227]

21]. Mice with genetic defects related to the migration or
proliferation of the ectomesenchyme possess a shortened
face [22-25] and/or cleft lip (CL) occasionally accompa-
nying the cleft palate (CP) [19, 26—28].

Several major signaling pathways, including BMP, FGF,
Shh, and Wnt signaling pathways, are associated with
outgrowth and fusion of the facial processes [19]. Repres-
sion of the up-stream component genes of these signal-
ing pathways (e.g., Bmp4, Fgf8, Shh, and Wnt3) leads to
a truncated face [19, 22, 24, 29, 30]. Recent papers have
reported that migration of ectomesenchyme in the heads
of mouse embryos are directly regulated by Wnt5a, a
ligand of non-canonical Wnt signaling pathway [22, 25,
31, 32]. Alteration of the level of neural crest-specific
Whnt5a expression (by both knockout and over-expres-
sion) results in a widened, shortened face [25, 33]. In
Whnt5a conditional knockout mice, the migration pattern
of the ectomesenchyme that later occupies the internal
space of the facial processes is altered from that in con-
trol wild type mice [25]. The change in the ectomesen-
chyme migration pattern was attributed to the disruption
of the directionality of cell division [25]. The induction
of the internal facial structures (e.g., cartilage, bones,

sensory compartments, muscles, glands, and teeth) was
not influenced, and the lower jaw’s volume in the Wnt5a
conditional knockout mouse was almost equivalent to
that of the control mouse [25]. These results suggest that
Whnt5a could play a crucial role in generating a short-
ened, widened face (truncated face) as naturally seen in
koalas, sloths, the great apes, and cats through regulating
the ectomesenchyme’s migration pattern, which in turn
governs growth and organization of the facial processes
(Fig. 1).

Disruptions in the growth and fusion of the facial pro-
cesses also cause CL with or without CP (collectively
called ‘CL/P’) [26-28]. A fusion of the facial processes
first occurs between LNP and MNP, followed by a fusion
of LNP and MAX. Finally, the anterior ends of both MAX
and MNP are fused to one another. Fusion of the facial
processes is initiated by contact of the epithelium of each
facial process through proper organization of the facial
processes [19]. Subsequently, the epithelial seam between
coadjacent facial processes disappears due to apoptosis.
Fusion of the MNP and the MAX and fusion of the MNP
and the LNP are defective in mutants of the genes (e.g.,
Bmp4, Bmprla, Tcfap2a, Sox11, and Wnt9b) that regulate
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apoptosis within the epithelium as well as outgrowth and
organization of the facial processes. Failure of these facial
processes fusing accompanies CL/P [26].

Ossification of the facial bones

The palate of mammals separates the oral cavity from the
nasal cavity and is subdivided into the anterior bony hard
palate (palatal bones) and posterior soft palate [34]. The
formation of the palate (palatogenesis) proceeds in two
steps, the primary and secondary palate formations. In
mouse development, the primary palate is formed by the
fusion of the MAXs and MNPs at E11.5. Subsequently,
the secondary palate is formed through three consecu-
tive events. First, a pair of palatal shelves is formed by an
uplift of the tongue at E11.5. Second, at E14.5, each pala-
tal shelf grows medially above the tongue through ‘pala-
tal shelf elevation’ [34]. Third, the left and right palatal
shelves meet and fuse at the midline at E15.0 with fusion
completing at E17.0. Palatal bones (anterior premaxilla
derived from the ectomesenchyme of the primary pal-
ate, and central maxilla and posterior palatine that are
derived from the ectomesenchyme of the secondary pal-
ate) begin to form at E14.5.

In contrast to defects in facial process development
that produce an extremely shortened face (see the pre-
vious section), defects in facial bone formation, which
occur in later phases of facial development, lead to a
shortened face with milder dysmorphology. For exam-
ple, Fbin5 knockout mice exhibit decreased outgrowth of
the premaxilla bones during postnatal stages, compared
to control wild type mice [35]. Fibulin-5 is an extracellu-
lar matrix protein deposited as a fibrous matrix in neu-
ral crest-derived craniofacial suture mesenchyme and
plays a role as a regulator of cellular function such as cell
proliferation [35, 36]. While premaxilla-maxilla suture
mesenchyme in Fbin5 knockout mice were capable of dif-
ferentiating into osteoblasts, suture cells in the mutant
were less proliferative, suggesting fibulin-5 is indispen-
sable for the regulation of facial suture mesenchymal cell
proliferation required for craniofacial skeletal morpho-
genesis [35]. External facial morphology of adult Fbin5
knockout mice is almost normal, although facial length is
slightly shortened compared to the control [35].

Defected facial bone development also leads to a sub-
mucous cleft palate (SMCP). SMCP is a clinical sub-
group of CP. While CP is characterized by the whole
palate (including both bones and epithelium) separated
at the midline, SMCP is characterized by incomplete
fusion of left and right palatal bones at the midline with-
out cleft formation in the oral epithelium covering the
bones. In mouse transgenesis, SMCP is only observed
in the region between left and right maxilla bones. Only
two genes that cause SMCP have been reported to date,
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Bmprla and Tbhx22. In Osr2-IresCre;Bmprid trans-
genic mice, Bmprla was specifically knocked out in the
tissue constructing the secondary palate. Osr2, whose
promoter sequence was used for tissue/time-specific
Bmprla knockout, is uniquely expressed in secondary
palate morphogenesis in mice (see [37] for detail). The
tissue-specific inactivation of Bmprla causes reduc-
tion of mesenchymal condensation in the anterior part
of the secondary palate which subsequently differenti-
ates into the maxilla bones [38]. Expression of Runx2,
Osterix, and DIx5, genes encoding transcriptional fac-
tors for bone development, is severely down-regulated
in the anteromedial part of the secondary palate of Osr2-
IresCre;Bmprld” transgenic mice. As a result, elonga-
tion of the maxilla bones toward the midline is blocked,
resulting in a cleft between the left and right maxilla
bones [38]. Tbx22 is a transcription factor required for
palatal bone formation [39]. Thx22 knockout embryos
bear a CP or SMCP accompanied by delayed osteoblast
differentiation and hypotrophic maxilla bones [39].

To our knowledge, elongation of the face in transgenic
mice compared to wild type mice has not been reported
to date. In fish and birds, longer and more pointed jaws
or beaks are formed by up-regulation of calmodulin
signaling [40—-43]. In mammals, however, the function
of calmodulin signaling in facial development is poorly
understood. Runx2 may regulate facial length in mam-
mals. We briefly review the correlation between facial
length and the variation of glutamine/alanine tandem
repeats within Runx?2 in the next section.

The number of Runx2 tandem repeats
and mammalian facial length
There are long- and short-faced taxa in each mamma-
lian group, and both face types show a high degree of
diversity and evolvability in facial length (Fig. 1). Runx2
(Runt-related transcription factor 2) is an important
transcription factor protein that plays multiple roles in
bone development (e.g., osteoblast differentiation) in
vertebrates including mammals [44-46] (reviewed in
[47]). Runx2 enhances early osteoblast differentiation but
inhibits terminal osteoblast differentiation [48]. There-
fore, up-regulation of Runx2 leads to accelerated (via
early onset of osteoblast differentiation) and extended
(via delayed termination of osteoblast differentiation)
bone development, while down-regulation of Runx2
results in delayed, shortened bone development [48, 49].
The Runx2 protein contains a highly conserved RUNT
DNA binding domain and a repetitive glutamine (Q)
and alanine (A) domain [46, 50]. Changes to the tandem
repeat glutamines to alanines ratio (QA ratio), calculated
by dividing the number of consecutive glutamines by
the number of consecutive alanines within Runx2, alter
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transcriptional activity of Runx2 and its target genes [49,
51].

The Runx2 QA tandem repeat ratio is correlated with
facial length variation in carnivorans [49, 52, 53]. Species
with higher QA ratios have longer faces [49] (Fig. 2). In
contrast, a lower QA ratio leads to lower transcriptional
activity of Runx2 and results in short-faced carnivorans
[49] (Fig. 2). This suggests that the QA ratio is associated
with allometric variation in carnivoran facial length and
the timing of facial bone (e.g., premaxilla, maxilla, nasal,
jugal, vomer, palatine, and dentary) ossification. A similar
pattern has been reported in primates [54].

Conversely, there is no correlation between the Runx2
QA tandem repeat ratio and facial length in xenarthrans
and afrotherians [55], and marsupials [51]. Although
marsupials display variation in facial length roughly
equivalent to that observed in placentals (Fig. 1), almost
no variation is observed in the nucleotide sequence of
glutamine/alanine repeats in Runx2 [51]. The extreme
conservation of nucleotide sequence and the QA ratio
in marsupials may heavily constrain the timing of facial
bone ossification in marsupial species [51]. These results
suggest that the variations of facial length in xenarthrans,
afrotherians, and marsupials are brought about by dis-
tinct molecular mechanisms. For example, a missense
mutation in the gene Bmp3 (that encodes a growth fac-
tor, Bone morphogenetic protein 3) causes brachycephaly
(shortened head) in domestic dogs [56]. We recommend
further research concerning the role of morphogenetic
genes such as Bmp3 to improve our understanding of the
mechanisms generating facial length variation in mam-
mals other than carnivorans and primates.
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Bats: a model for understanding the diversification
of mammalian craniofacial morphology

As reviewed in section II, our understanding of mamma-
lian facial development mechanisms has been informed
by studies of laboratory mice. However, the develop-
mental mechanisms that produce facial morphology in
non-model, wild mammal species have been only par-
tially understood, perhaps due to difficulties in obtaining
embryonic materials for analyses. More is understood
about the molecular and cellular mechanisms underlying
diversification of facial (beak) morphology in non-model
bird species thanks to a series of evo-devo studies of Dar-
win’s finches, one of the most famous examples of adap-
tive radiations in vertebrates [40, 57-62]. Although model
mammals help us to understand the basic mechanisms of
mammalian morphogenesis, studying non-model spe-
cies is necessary to identify other molecular and cellular
mechanisms that lead to the morphological evolution of
this group of vertebrates (including humans). Here, we
focus on bats as a potential model for understanding evo-
lution of mammalian craniofacial morphology.

Bats (order Chiroptera) are the second largest group
of mammals after rodents [2, 63]. More than 1300 extant
bat species are known, classified into 20 families [63].
Recent molecular phylogenetic studies [64—67] identified
two major clades within bats, the Yinpterochiroptera and
Yangochiroptera (Fig. 3). Chiropterans are distributed
worldwide in all but the coldest regions [63], probably
facilitated by the evolution of flight [68—80].

Although largely neglected by biologists, diversity
in bat facial morphology is astonishing. This diversity
reflects their adaption to various environments and
highly impressed Ernst Haeckel, an influential compara-
tive embryologist and an artist in nineteenth century

Species

Siberian husky (Canis lupus familiaris )

Cat (Falis catus)

QA ratio within Runx2

20Q:8A (ratio 2.50)

21Q:10A (ratio 2.10)

Facial morphology

Runx2. QA ratio is 2.10 and results in a shorter face

Fig. 2 Correlation between QA ratio of the transcription factor Runx2 and facial length in order Carnivora. The Siberian husky, a breed of the
domestic dog (Canis lupus familiaris), has 20 glutamine- and 8 alanine-coding nucleotide sequences within the repetitive glutamine and alanine
domain of Runx2. QA ratio, calculated by dividing total glutamine-coding sequences by total alanine-coding sequences, is 2.50 and results in a
longer face. The domestic cat (Falis catus) has 21 glutamine- and 10 alanine-coding nucleotide sequences within the corresponding domain of
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Yinpterochiroptera

Yangochiroptera

O Pteropodidae

E Rhinolophidae
m Hipposideridae
O Rhinopomatidae
O Megadermatidae
O Craseonycteridae
O Emballonuridae
O Nycteridae

O Natalidae

O Molossidae

O Miniopteridae

O Vespertilionidae
o Cistugidae

o Myzopodidae

O Mystacinidae

O Thyropteridae

O Furipteridae

O Noctilionidae O No cleft

O Midline cleft
B Bilateral cleft

O Mormoopidae

O Phyllostomidae

Fig. 3 Phylogeny of bats and evolution of orofacial cleft. The basic framework of chiropteran phylogeny is based on Teeling et al. [65]. Phylogenetic
relationships in the superfamily Vespertilionoidea (Natalidae, Molossidae, Miniopteridae, Vespertilionidae, and Cistugidae) adapted from Lack et al.
[228]. The midline cleft is possessed by nine different families of bats. In Molossidae, at least two genera (Mormopterus, and Tadarida) bear the
midline cleft. In Furipteridae, only the genus Furipterus bears the midline cleft. The bilateral cleft evolved only once in the common ancestor of
Rhinolophidae and Hipposideridae. Character mapping was based on Orr et al. [88]

[81] (Fig. 4). New World leaf-nosed bats (family Phyllos-
tomidae) are especially known for their incredible facial
diversity [82, 83]. Phyllostmid facial length is strongly
correlated with diet [84—86]. For example, frugivorous
species (e.g., the wrinkle-faced bat, Centurio senex) have
a truncated, widened face that exerts a high bite force. In
contrast, nectarivorous species (e.g., the mexican long-
tongued bat, Choeronycteris mexicana) have a long,
narrow face that helps them to insert their rostrum into
flowers. However, the molecular and cellular mechanisms
that regulate the facial length of bats and are responsible

for generating existing diversity in craniofacial morphol-
ogy are poorly understood.

Bats have a unique morphological feature in the rostral
part of the upper jaw, an orofacial cleft on the premax-
illa and maxilla bones that is anatomically similar to that
observed in humans with congenital anomalies [87, 88].
There are two types of chiropteran orofacial cleft, mid-
line and bilateral clefts. The midline cleft is observed
in nine families of bats: Megadermatidae, Emballonu-
ridae, Molossidae, Miniopteridae, Vespertilliionidae,
Cistugidae, Myzopodidae, Thyropteridae, Furipteridae
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¢

Fig. 4 Diversity of craniofacial morphology in bats. Left, a picture drawn by Ernst Haeckel, an influential comparative embryologist and artist [81].
Right, the silhouettes of the bat species illustrated in the Haeckel’s picture: (1) lesser long-eared bat (Nyctophilus geoffroyi), frontal view of the head;
(2) brown long-eared bat (Plecotus auratus), frontal view of the head; (3) brown long-eared bat, entire body; (4) lesser false vampire bat (Megaderma
spasma), frontal view of the head; (5) big-eared woolly bat (Chrotopterus auritus), lateral view of the head; (6) Tomes's sword-nosed bat (Lonchorhina
aurita), caudo-lateral view of the head:; (7) Tomes's sword-nosed bat, frontal view of the head; (8) Mexican funnel-eared bat (Natalus stramineus),
frontal view of the head; (9) Antillean ghost-faced bat (Mormoops blainvillei), frontal view of the head; (70) flower-faced bat (Anthops ornatus), high
magnification of noseleaf; (17) greater spear-nosed bat (Phyllostomus hastatus), frontal view of the head; (72) thumbless bat (Furipterus horrens),
frontal view of the head; (13) greater horseshoe bat (Rhinolophus ferrumequinum), frontal view of the head; (14) wrinkle-faced bat (Centurio senex),

frontal view of the head; (I) spectral bat (Vampyrum spectrum), frontal view of the head

[88] (Fig. 3). Midline clefts are U-shaped clefts present
between two premaxilla bones that are highly reduced
in size (Fig. 6). Each premaxilla bone bears two perma-
nent incisors and is completely fused to the maxilla bone
posteriorly. The inner space of the cleft is occupied with
a robust, translucent, fibrous membrane. The bilateral
cleft is only seen in Rhinolophidae and Hipposideridae
[88] (Fig. 3). In this cleft type, the premaxilla bone, which
bears a single diminutive incisor, is separated from the
laterally located maxilla bone by a cleft. The cleft is filled
with fibrous connective tissue. The posterior margin of
the medially fused premaxilla bones is loosely connected
to the maxilla bones with fibrous connective tissue.

Bat orofacial clefts may contribute to reduction of
returning echolocation signal interference, modulation of
nasal acoustic emissions, increasing oral gape to facilitate
capture of large prey, reduction of overall weight, and
increase of olfactory ability [88]. However, the molecular
and cellular mechanisms underlying orofacial cleft devel-
opment in bats and the degree to which development of
the two cleft types is similar are currently unknown.

Few studies have investigated the molecular mecha-
nisms related to craniofacial diversity in bats. One such
study by Phillips et al. [89] focused on Pax9, a transcrip-
tion factor that plays an important role in vertebrate cran-
iofacial and dental development. The authors compared
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Early embryo Late embryo

maxilla

FNP

Long face MAX
MAN

Short face

Truncated face

process; MAN, mandibular process; MAX, maxillary process

premaxnlla

Zone of ectomesenchyme proliferation
@ Facial bones

Fig. 5 Schematic diagram depicting potential developmental mechanisms regulating facial length in bats. Top row: A long face possessed by
some nectarivorous bat species (e.g., Choeronycteris mexicanay) is formed through extension of the period of facial bone (e.g., premaxilla, maxilla, and
dentary) development. Middle row: A short face possessed by many insectivorous or omnivorous bat species (e.g., Macrophyllum macrophyllum) is
formed through shortening the period of facial bone development. Bottom row: A truncated face possessed by some frugivorous bat species (e.g.,
Centurio senex) is formed through deficient outgrowth of the facial processes in pharyngula stages. This could be attributed to reduced proliferation
as well as disrupted migration of cranial neural crest cells (ectomesenchyme) occupying the internal space of the facial processes. FNP, frontonasal

Postnatal Adult

= (a— /O

~ )3_’@ o
~( ) 4@ ¢

Develpment of facial processes
==p Formation of facial bones

nucleotide sequences of the 3’ untranslated region (UTR)
of Pax9 among phyllostomids, vespertilionids, and other
mammalian orders and identified four Musashi-binding
elements (MBE) within conserved regions of the 3’ UTR
[89]. The number of MBEs in morphologically diverse
phyllostomid bats varied but was invariant in morpho-
logically similar vespertilionid bats with the exception of
a Murina species [89]. Because the number of MBEs may
affect the expression level of Pax9, the authors proposed
that the evolution of Pax9 regulation may be a contribut-
ing mechanism to the radiation of craniofacial morpho-
logical diversity in bats [89]. Although this study provides
valuable insight into a potential genetic mechanism
underlying the evolution and diversification of craniofa-
cial morphology in phyllostomid bats, our understanding
of the fundamental facial development mechanisms is far
from complete.

Because convergence or parallel evolution of morpho-
logical traits in vertebrates is often brought about by
identical genetic mechanisms (e.g., [90-93]), common
mechanisms might regulate facial length even in bats
(superorder Laurasiatheria) and rodents (superorder
Euarchontoglires; Table 2).

In mice, a shortened face without apparent facial bone
defects is mainly brought about by a decrease in prolif-
eration and differentiation of the ectomesenchyme which
later differentiates into osteoblasts [35]. In addition, facial
length variation observed in carnivorans and primates

are correlated with the level of activity of Runx2, which
influences facial bone development duration [49]. There-
fore, facial length variation in bats could be attributed to
differences in the duration of facial bone development
among species. For example, nectarivorous bats (e.g.,
Choeronycteris mexicana) have a relatively longer face.
In this case, the duration of facial bone development
might be extended, giving facial bones time to enlarged,
especially anteriorly (Fig. 5). Conversely, insectivorous
or omnivorous bats (e.g., Macrophyllum macrophyllum)
have a relatively shorter face. Here, the period of facial
bone development may be shortened leading to earlier
completion of facial bone growth and preventing further
anterior elongation (Fig. 5). Indeed, heterochronic shift
in formation and growth of the palatal bones may pro-
duce variations of craniofacial morphology in phyllosto-
mid bats [94]. Sears supposed that the diversity of palate
shapes along phyllostomids is the result of relatively sub-
tle evolutionary changes in later rather than earlier devel-
opmental event. Although it is likely that Runx2 plays a
crucial role in producing facial length diversity in car-
nivorans and primates [49, 52—54], its function in chirop-
teran craniofacial development has yet to be identified
and warrants further investigations.

The truncated face of Wwut5a conditional knockout
mice is brought about by the disruption of ectomesen-
chyme migration within the facial processes [25]. Nota-
bly, some phyllostomid bats (e.g., Centurio senex) possess
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Early embryo

Primary palate

No cleft

Midline cleft

Bilateral cleft

Late embryo

Adult

Fig. 6 Schematic diagram depicting potential developmental mechanisms forming orofacial clefts in bats. Top row: Most bat species do not have
an orofacial cleft in their skull. Palatal bones are composed of three sets of bones: the premaxilla (blue), the maxilla (pink), and the palatine (gray).
Each is a paired structure originally, having left and right elements. In adults, these bones are fused to each other and form the palate. In bats, the
sutures between the bones constructing their skull (including the palate region) usually become indistinct through complete fusion of the bones.
Middle row: In bat species with the midline cleft, the growth of the premaxilla bones toward the midline is inhibited and this makes medially
unfused premaxilla bones. Heterochrony in ossification of the premaxilla bone (shorter and/or delayed ossification of the bone compared to the
ancestor) may result in such a small-scale morphological change in the tip of the face. Bottom row: In bat species with the bilateral cleft, the cleft

is likely formed through three developmental steps: (1) the domain of the secondary palate expands antero-medially, possibly through changes in
growth and patterning of the facial processes at the early stages of embryogenesis. This narrows the space for the primary palate (arrows in the left
illustration). (2) The maxilla bones are elongated anteriorly (arrows in the central illustration) compared to in bats species without orofacial clefts as
well as those with midline clefts, acquiring its anterior projection. Simultaneously, the position of the premaxilla bones is confined at the center of
the tip of the face, due to reduction of the space for its lateral expansion. (3) The boundary between the (anterior) premaxilla and (posterior) maxilla
is left as a joint connected through loose connective tissue (a white dashed line in the right illustration). The space between the (medial) premaxilla

and the (lateral) maxilla bones is left as a cleft

an extremely truncated face that shares multiple char-
acteristics with Wnt5a knockout mice faces. Therefore,
facial morphology in these bat species might be derived
from changes in expression of the genes that control
direction of migration of the ectomesenchyme through
regulating the directionality of cell division within the
facial processes (Fig. 5). It would be interesting to com-
pare Wnt5a activity and expression pattern in facial
ectomesenchyme among chiropteran species.

The orofacial clefts observed in bats are morpho-
logically categorized as SMCP. They are probably
brought about by changes in premaxilla and maxilla
bone formation. As we introduced in section II, Osr2-
IresCre;Bmpriad”/ mice have a cleft between paired
maxilla bones [38]. If Bmprla expression is specifically
inactivated in the primary palate region using a similar
transgenic technique (e.g., using a promoter of the gene

that is uniquely expressed in the primary palate in gene
knockout), a cleft may appear between paired premax-
illa bones that are derived from the ectomesenchyme
distributed within the primary palate. Considering this,
the midline cleft in bats, which is present between two
premaxilla bones, could be explained by domain-spe-
cific repression or down-regulation of Bmpria in the
ectomesenchyme within the primary palate (instead
of the secondary palate) that later gives rise to the pre-
maxilla bones (Fig. 6). Because Bmprla is a receptor of
the growth factor, the down-regulation of Bmpria may
decrease the degree of ossification of the premaxilla bone
through heterochrony (shorter and/or delayed ossifi-
cation of the bone compared to the ancestor) and may
result in such a small-scale morphological change in the
tip of the face.



Usui and Tokita EvoDevo (2018)9:15

The formation of the bilateral cleft could be much more
complicated, perhaps associated with extensive altera-
tions of the developmental program. The premaxilla
bones are derived from the ectomesenchyme distributed
within the primordium of the primary palate, while the
maxilla bones are derived from that of the secondary
palate. Therefore, in the facial development of bat spe-
cies bearing the bilateral cleft, the relative position of
the primary and secondary palates might be changed
through alterations in formation and organization of the
facial processes from those in bat species without oro-
facial cleft. We speculate that the bilateral cleft devel-
oped through the following three steps (Fig. 6). First,
the ectomesenchyme occupying the secondary palate
expanded its distribution antero-medially and restricted
the space for primary palate development at the tip of the
face. Second, the osteoblasts derived from the ectomes-
enchyme distributed within the anterior part of the sec-
ondary palate differentiated into bone and made anterior
projection of the maxilla bones surrounding the premax-
illa bone laterally. Thus, the position of the premaxilla
bone became restricted at the center of the tip of the face.
Third, inhibition of ossification at the suture between the
medially positioned premaxilla and laterally positioned
maxilla bones left the unossified area between the two
bones as a cleft.

Orofacial clefts occur as a craniofacial anomaly in
humans at a relatively high frequency (approximately
1 in 700 live births) [88]. Investigating the mechanisms
behind orofacial cleft formation in bats may contribute
not only to understanding the reason why this cranial
feature, which usually occurs as a skeletal pathology in
other mammals groups including humans, appears as a
normal phenotype in bats, but also to developing novel
therapies against human orofacial cleft.

In the last 15 years, several studies have described
in detail the overall embryonic development [95-100]
and specifically wing development of bat species where
embryos could be obtained [68-77, 79, 80]. We believe
that examination of bat facial development and its com-
parisons among the species provide profound insights
into the molecular and cellular bases of craniofacial
morphology diversification in mammals.

Conclusions

In this paper, we have reviewed recent advances in
understanding how mammalian faces are formed and
discussed how these data are being applied to make new
hypotheses about the diversity creation in mammalian
craniofacial morphology. Small-scale changes in facial
morphology from the ancestor, such slight changes in
facial length and the evolution of the midline cleft in
some lineages of bats could be attributed to heterochrony
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in facial bone ossification. In contrast, large-scale
changes in facial morphology from the ancestor, such as
a truncated, widened faces, as well as the evolution of the
bilateral cleft in some bat species, could be brought about
by changes in growth and patterning of the facial primor-
dium (the facial processes) at the early stages of embryo-
genesis. Significant work remains to be done to test these
hypotheses.

Abbreviations

CL: cleft lip; CP: cleft palate; FNP: frontonasal process; LNP: lateral nasal process;
MAN: mandibular process; MAX: maxillary process; MBE: Musashi-binding ele-
ments; MNP: medial nasal process; SMCP: submucous cleft palate.
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