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ABSTRACT
Burkholderia territorii, a Gram-negative bacterium, encodes for the i-class carbonic anhydrase (CA, EC
4.2.1.1) BteCAi, which was recently characterised. It acts as a good catalyst for the hydration of CO2 to
bicarbonate and protons, with a kcat value of 3.0� 105 s�1 and kcat/KM value of 3.9� 107M�1 s�1. No
inhibition data on this new class of enzymes are available to date. We report here an anion and small
molecules inhibition study of BteCAi, which we prove to be a zinc(II)- and not manganese(II)-containing
enzyme, as reported for diatom i-CAs. The best inhibitors were sulphamic acid, stannate, phenylarsonic
acid, phenylboronic acid and sulfamide (KI values of 6.2–94mM), whereas diethyldithiocarbamate, tellurate,
selenate, bicarbonate and cyanate were submillimolar inhibitors (KI values of 0.71–0.94mM). The halides
(except iodide), thiocyanate, nitrite, nitrate, carbonate, bisulphite, sulphate, hydrogensulfide, peroxydisul-
fate, selenocyanate, fluorosulfonate and trithiocarbonate showed KI values in the range of 3.1–9.3mM.
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1. Introduction

The carbonic anhydrase (CA, EC 4.2.1.1) superfamily is composed
nowadays of eight genetically distinct classes, the a-, b-, c-, d-, f-,
g-, h-, and i-CAs, which probably may soon increase when add-
itional families will be reported in other organisms. All of them
catalyse a simple but physiologically crucial reaction, the carbon
dioxide reversible hydration to bicarbonate and protons CO2 þ
H2O � HCO3

� þ Hþ.1–6. CO2 hydration/bicarbonate dehydration
are relevant in organisms all over the phylogenetic tree, from sim-
ple to complex ones. In most cells, tissues and organs, these
enzymes participate in crucial physiologic processes connected to
pH regulation, metabolism, secretion of electrolytes, transport of
gases and anions, and others, which are also therapeutically rele-
vant (at least for mammalians)5,7,8. In fact, both CA inhibitors
(CAIs)5–8, and CA activators (CAAs)9,10 have many therapeutic
applications in a variety of fields, starting with diuretics and anti-
glaucoma agents and ending with anticancer/antimetastatic drugs
(for the inhibitors)5–8, but also including memory therapy, modula-
tion of emotional memory and fear extinction memory activator
agents9,10. Recently, inhibition of CAs from pathogenic organisms
has also been proposed as an innovative approach to develop
anti-infectives, which may target bacterial infections resistant to
clinically used antibiotics4,11–13, but also to treat protozoan-pro-
voked14,15 as well as fungal infections16,17. Indeed, various classes
of inhibitors were shown to be effective in a variety of mod-
els4,11–17, which inspired researchers to find novel chemotypes

acting as modulators of activity as well as novel potential drug
targets4,11–17.

Very recently, a gene coding for a member of the i-CA family
has been originally described to occur in the genome of the mar-
ine diatom Thalassiosira pseudonana2a; the corresponding enzyme
has been isolated and reported preferring Mn(II) as a metal cofac-
tor in its active site, and not Zn(II) frequently found therein in
other organisms. In the same paper, it has been shown that mem-
bers of the i-CA family should be present also in bacteria, as
deduced by genome analysis, although such enzymes were not
characterised at that moment in such organisms. Recently, we
confirmed the finding of Gontero’s group2a, and reported the
cloning and biochemical characterisation of the first example of a
bacterial i-CA, which was observed in the Gram-negative bacter-
ium Burkholderia territorii and denominated BteCAi2b. The enzyme
showed a significant CO2 hydrase activity, with kinetic parameters
(kcat of 3.0� 105 s�1 and kcat/KM of 3.9� 107M�1 s�1) comparable
to those of highly efficient bacterial and even mammalian iso-
forms, such as human (h) CA I2b. However, no inhibition studies
have been performed so far on this enzyme, which has been dem-
onstrated to be dimeric (by using protonography)18 and also to
be a zinc- and not manganese-dependent enzyme2b. Here, we
prove that this is indeed the case by using atomic absorption
spectroscopy, and also report the first inhibition study of the
enzyme, with small molecules and anions, a well-known class
of CAIs19.
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2. Materials and methods

2.1. Chemistry

Anions and small molecules were commercially available reagents
of the highest available purity from Sigma-Aldrich (Milan, Italy).
Purity of tested compounds was higher than 99%.

2.2. Atomic absorption spectrometry

In various enzyme samples, the content of Zn(II) and Mn(II) was
measured with a flame PinAAcle 500 Perkin Elmer instrument,
located in the Interdepartmental Service Centre for Biotechnology
of Agricultural, Chemical and Industrial Interest (CIBIACI),
University of Florence.

2.3. Enzymology

BteCAi was a recombinant enzyme obtained in-house as
described earlier2b.

2.4. Ca catalytic activity and inhibition assay

An Applied Photophysics stopped-flow instrument has been used
for assaying the CA catalysed CO2 hydration activity20. Phenol red
(at a concentration of 0.2mM) has been used as an indicator,
working at the absorbance maximum of 557 nm, with 10–20mM
HEPES (pH 7.5) as buffers, and 20mM NaClO4 (for maintaining
constant the ionic strength), following the initial rates of the CA-
catalysed CO2 hydration reaction for a period of 10–100 s. The
CO2 concentrations ranged from 1.7 to 17mM for the determin-
ation of the kinetic parameters and inhibition constants. For each
inhibitor, at least six traces of the initial 5–10% of the reaction
were used to determine the initial velocity. The uncatalyzed rates
were determined in the same manner and subtracted from the
total observed rates. Stock solutions of inhibitors (10mM) and
dilutions up to 0.01mM were prepared in distilled-deionised water.
Inhibitor and enzyme solutions of concentrations ranging between
5 and 10 nM were preincubated together for 15min, at room tem-
perature, prior to assay, in order to allow for the E-I complex for-
mation. The inhibition constants were obtained by non-linear
least-squares methods using PRISM 3 and the Cheng-Prusoff equa-
tion, as reported earlier21, and represent the mean from at least
three different determinations.

3. Results and discussion

Gontero’s group reported that the i-CA isolated from the marine
diatom T. pseudonana2a is active with Mn(II) bound as a metal
cofactor within its active site and not with Zn(II), such as most
other CA isoforms known to date. However, it should be men-
tioned that c-CAs are active with Fe(II)22 and f-CAs with Cd(II)23

present at their active sites, as well as with Zn(II), so that the use
of alternative metal ions to zinc is not improbable. Thus, we

prepared the recombinant BteCAi as described earlier2b, both in
the presence of zinc as well as manganese salts in order to assay
which of the two metal ions are incorporated into the holoen-
zyme. As seen from Table 1, significant amounts of Zn(II) were
found in all protein samples investigated, with trace quantities of
Mn(II). The amount of Mn(II) was the same in both enzyme sam-
ples, even those prepared in the presence of high concentrations
of Mn(II) salts (possibly due to contaminants in the buffers/
reagents used to prepare the enzyme). The content of zinc ion
per polypeptide chain was determined as 1:1 (within experimental
error limits). Hence, unlike the diatom enzyme2a, the bacterial
i-CA was proved to be a zinc-containing enzyme.

We also investigated the inhibition of the bacterial enzyme
BteCAi with a wide range of inorganic anions and small molecule
compounds known to interact with the CA family of proteins
(Table 2)19. Although anion inhibitors are usually not highly effect-
ive, they are relevant both for understanding in detail the inhib-
ition mechanisms of metalloenzymes and for drug design
purposes; this was the reason why many CAs belonging to various
families were profiled for their inhibition with anions19.

Table 1. Percentage of zinc and manganese in BteCAi as determined by atomic
absorption spectroscopy.

Enzyme Concentration (mM) % Zn-BteCAi % Mn-BteCAi

Zn-BteCAi – sample 1 33.5 98.30 1.70
Zn-BteCAi – sample 2 46.6 99.93 0.07
Mn-BteCAi – sample 1 20.0 97.85 2.15
Mn-BteCAi – sample 2 21.0 99.74 0.26

The buffer used for sample preparation reported 7.0� 10�3 ppm of Zn and
1.1� 10�2 ppm of Mn.

Table 2. Anion inhibition data of BteCAi as determined by a stopped-flow CO2

hydrase assay.20

Anion

KI (mM)a

hCA Ib hCA IIb E. coli b-CAc BteCAid

F� >300 >300 9.4 4.6
Cl� 6 200 6.7 3.1
Br� 4 63 3.8 4.8
I� 0.3 26 >50 >50
CNO� 0.0007 0.03 0.58 0.79
SCN� 0.2 1.6 5.7 6.1
CN� 0.0005 0.02 >50 >50
N3

� 0.0012 1.51 >50 >50
NO2

� 8.4 63 4.9 8.4
NO3

� 7 35 2.4 6.2
HCO3

� 12 85 0.81 0.94
CO3

2� 15 73 0.89 4.4
HSO3

� 18 89 3.7 8.4
SO4

2� 63 >200 1.7 5.8
HS� 0.0006 0.04 2.7 6.2
NH2SO2NH2 0.31 1.13 0.011 0.086
NH2SO3H 0.021 0.39 0.0025 0.0062
PhAsO3H2 31.7 49 0.0061 0.008
PhB(OH)2 58.6 23 0.0028 0.009
ClO4

� >200 >200 >50 >50
SnO3

2� 0.57 0.83 0.52 0.094
SeO4

2� 118 112 3.1 0.73
TeO4

2� 0.66 0.92 0.51 0,71
OsO5

2� 0.92 0.95 >50 >50
P2O7

2� 25.8 48 >50 >50
V2O7

2� 0.54 0.57 >50 >50
B4O7

2� 0.64 0.95 0.25 >50
ReO4

� 0.11 0.75 >50 >50
RuO4

� 0.101 0.69 9.5 >50
S2O8

2� 0.107 0.084 6.4 7.4
SeCN� 0.085 0.086 3.1 6.6
NH(SO3)2

2� 0.31 0.76 1.5 >50
FSO3

� 0.79 0.46 0.83 9.3
CS3

2� 0.0087 0.0088 3.1 8.6
EtNCS2

� 0.00079 0.0031 0.084 0.81
PF6

� >50 >50 >50 >50
CF3SO3

� >50 >50 >50 >50

Inhibition of the human isoforms hCA I and II, and the bacterial b-CA from
Escherichia coli are also shown for comparison.
aMean from 3 different assays, by a stopped flow technique (errors were in the
range of ± 5–10% of the reported values).
bFrom Ref. 19.
cFrom Ref. 24.
dThis work.
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The data of Table 2 show the following interesting aspects for
the inhibition of this poorly investigated CA class:

i. some anions, among which iodide, cyanide, azide, perchlo-
rate, perosmate, diphosphate, divanadate, tetraborate,
perrhenate, perruthenate, iminodisulfonate, hexafluorophos-
phate and trifluoromethanesulfonate, did not inhibit BteCAi
significantly up to 50mM concentration of inhibitor in the
assay system. This is not unexpected for anions with low
affinity for complexing metal ions, such as perchlorate, hexa-
fluorophosphate and trifluoromethanesulfonate19, but it is
rather surprising for iodide, cyanide, and azide, which have
quite a high affinity for metal ions in solution and in the
active site of many metalloenzymes19. Indeed, some of these
anions show a potent inhibitory action for other CAs, such as
the isoform hCA I (Table 1 and Ref. 19). As no X-ray crystallo-
graphic data are available so far for i-CAs, it is impossible to
rationalise these interesting and surprising data.

ii. The following inhibitors showed inhibitory action against
BteCAi in the millimolar range: fluoride, chloride, bromide,
thiocyanate, nitrite, nitrate, carbonate, bisulphite, sulphate,
hydrogensulfide, peroxydisulfate, selenocyanate, fluorosulfo-
nate and trithiocarbonate (KI values in the range of
3.1–9.3mM). As above, some of these data stupefied us: sul-
phate, for example, is a highly inefficient inhibitor of many
a-CAs (e.g. hCA I and II), but it inhibits efficiently the bacter-
ial b- and i-CAs shown in Table 1.

iii. Even more efficient inhibitory action against BteCAi was reg-
istered for the following anions: diethyldithiocarbamate, tel-
lurate, selenate, bicarbonate and cyanate, which were
submillimolar inhibitors with KI values ranging between 0.71
and 0.94mM (Table 1). The bicarbonate high affinity is of
interest, since this anion is also a substrate/reaction product
of the CA – catalysed reactions.

iv. The most efficient BteCAi inhibitors detected so far were
stannate, sulphamic acid, phenylarsonic acid, phenylboronic
acid and sulfamide, with KI values of 6.2–94 mM (Table 1).
Some of these compounds, such as sulfamide and sulphamic
acid, act as effective inhibitors of many other CAs (for
example, see the E. coli b-CA inhibition data shown in Table
1). They also inhibit the human isoforms hCA I and II
(although to lower levels compared to the bacterial
enzymes). The stannate data is also quite interesting. This
anion is an order of magnitude better as a BteCAi inhibitor
compared to its inhibition level of other CAs investigated
so far.

4. Conclusions

We investigated the nature of the metal ion within the active site
of the first bacterial i-CA described so far, namely BteCAi, whose
corresponding gene was found in the genome of the Gram-nega-
tive bacterium B. territorii. Unlike the diatom enzyme cloned from
T. pseudonana, the bacterial i-CA has Zn(II) ions at its active site
and not Mn(II) counterparts. We also report here the first inhib-
ition study of BteCAi with a range of inorganic anions and small
molecules known to act as CA inhibitors. The most efficient
BteCAi inhibitors were stannate, sulphamic acid, phenylarsonic
acid, phenylboronic acid and sulfamide, with KI values of
6.2–94mM. Diethyldithiocarbamate, tellurate, selenate, bicarbonate
and cyanate were submillimolar inhibitors, with KIs ranging
between 0.71 and 0.94mM. Fluoride, chloride, bromide, thiocyan-
ate, nitrite, nitrate, carbonate, bisulphite, sulphate,

hydrogensulfide, peroxydisulfate, selenocyanate, fluorosulfonate
and trithiocarbonate showed KI values in the range of 3.1–9.3mM,
whereas no inhibition was registered for iodide, cyanide, azide,
perchlorate, perosmate, diphosphate, divanadate, tetraborate,
perrhenate, perruthenate, iminodisulfonate, hexafluorophosphate
and trifluoromethanesulfonate. These data may be useful for
designing more efficient i-CA inhibitors.
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