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Abstract

The temporal order of cancer gene mutations in tumors is essential for understanding and treating the disease. Existing
methods are unable to infer the order of mutations that are identified at the same time in individual tumor samples, leaving
the heterogeneity of the order unknown. Here, we show that through a complex network-based approach, which is based
on the newly defined statistic –carcinogenesis information conductivity (CIC), the temporal order in individual samples can be
effectively inferred. The results suggest that tumor-suppressor genes might more frequently initiate the order of mutations
than oncogenes, and every type of cancer might have its own unique order of mutations. The initial mutations appear to be
dedicated to acquiring the function of evading apoptosis, and some order constraints might reflect potential regularities.
Our approach is completely data-driven without any parameter settings and can be expected to become more effective as
more data will become available.
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Introduction

Cancer is a genetic disease caused by the mutation of cancer

genes consisting of oncogenes and tumor-suppressor genes. In

most cancer cases, multiple mutations occur in a procedure known

as tumor progression [1,2]. To understand tumor progression,

studies have been performed to model general regularities on the

temporal order of mutations for a given type of cancer using both

experimental and computational approaches [3–7]. As a canonical

model, the order of mutations for colorectal cancer was

reconstructed through tumor size and grade [8]. The latest

computational models infer the typical temporal order constraints

for certain type of cancers by simulating tumor progression as a

stochastic process [9–11]. Despite this progress, there is still no

well-defined method to infer the order of mutations identified at

the same time in individual samples, although this inference is

necessary to reveal the heterogeneity of the order of mutations in a

cancer. Recently, as new generation sequencing becomes widely

applied, the mutation landscapes in various cancers are being

revealed one by one. The results have shown that the mutations in

a cancer frequently demonstrate statistical correlations with each

other or even cause-and-effect linkages of induction between the

former and the latter [12–18]. However, these correlations/

linkages have not been fully exploited in inferring the temporal

order of mutations.

From an informatic perspective, this study defines a statistical

measurement to assign value to the correlations or linkages

mentioned above and model the mutations within a complex

network, through which the temporal order of the mutations in

individual samples can be inferred. We call the measurement the

carcinogenesis information conductivity (CIC), which measures the

reachability of transferring the information of a cancer gene

having mutated to the transcription process of a given un-mutated

cancer gene to induce its mutation. Statistically, the reachability

can be estimated by the individual occurrence frequencies and the

sequential co-occurrence frequency of the two genes’ mutations in

cancer samples. Additionally, competition among the information

sent from multiple mutated genes to the given un-mutated gene

should also be considered as any successful sending will cause the

target gene to mutate, thus ending the mutation process. In this

study, we call any two mutations found out in the same cancer

sample co-occurrent mutations. While most genomic studies

provide this quantity in an indirect way, here we aim at

disentangling the sequence of occurrence of two mutational events

from the simple co-occurrence. From these sequences of mutation

occurrence, the sequential co-occurrence frequency can be

calculated (Materials and Methods). Based on this idea, we have

defined the CIC from cancer gene i to cancer gene j as:

Cij~
fij

fi

: fij

fj

: 1

p2
ij

ð1Þ

where fi (fj ) is the occurrence frequency of the mutation of gene i (j)

in cancers, fij is the sequential co-occurrence frequency of the

mutation of gene i followed by the mutation of gene j, and pij is the

priority of gene i compared to other mutant genes to send the

information to gene j. We have determined that
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I(fkjwfij js)). In this equation Sij is the set of

cancer samples with mutant genes i and j, jSij j is the number of

samples in the set, and I(fkjwfij js) is an indicator function that

equals 1 if fkjwfij for the mutant genes k, j and i in sample s.

Otherwise it equals 0. Accordingly, the highest priority of one will

be assigned if fij is larger than fkj in every sample of the set, and

the more times that fkjwfij , the larger value the pij . We regard

formula (1) as a measurement of carcinogenesis information

conductivity because the ratio (fij=fi) is an estimate of the

maximum chance that gene i sends carcinogenesis information to

gene j and causes its mutation, the ratio (fij=fj) is an estimate of the

maximum chance that the mutation of gene j is caused by

carcinogenesis information received from gene i, and pij is the

priority of the communication link compared with other links to

gene j. The value of Cij ranges from 0 to 1. Like the definition of

activation force, a measurement we previously proposed for

weighting the links of complex networks [19], the definition of

CIC follows the formula of gravity if we imagine the ratios (fij=fi)

and (fij=fj) as masses and the priority pij as distance. Statistics

defined in this manner are likely to distribute their values in a

power law, which is convenient for analyzing complex networks of

intricate relationships including those in biology [20–24].

One challenge in computing the CICs is the lack of cancer

samples that can be used as the source of the sequential co-

occurrence frequencies of the cancer gene mutations because the

mutations of different genes in a cancer sample are usually

identified at the same time by sequencing. To tackle this challenge,

we present an iterative procedure that couples CIC computation

and the inference of the probability of every potential order of

cancer gene mutation. The application of this procedure to the

Catalogue of Somatic Mutations in Cancer (COSMIC) database

[25,26] revealed that the iteration reached convergence within

fewer than 10 loops, and the convergent results suggest significant

conclusions.

Materials and Methods

Iterative inference scheme
To perform the iterative inference procedure, a large set of

cancer samples with cancer gene mutations identified by genome-

wide sequencing is necessary. With the dataset, we determine the

basic statistics of occurrence and non-sequential co-occurrence

frequencies of cancer gene mutations. From these basic statistics,

the iterative inference for the number of samples in question

begins and the CIC results and probable orders of cancer gene

mutation for each sample in question are determined when the

iteration reaches convergence. Fig. 1 illustrates an overview of the

procedure.

Iterative procedure of CIC computation and inference of
mutation order

By definition, sequential co-occurrence frequencies are neces-

sary to estimate the CIC value. However, this requirement cannot

be satisfied by the current databases, including COSMIC. To

overcome this difficulty, we adopt an iterative procedure to couple

the inference of the occurring mutation orders and the compu-

tation of the CICs. First, we evenly divide a non-sequential co-

occurrence frequency into the two possible sequential co-

occurrence frequencies to calculate the initial CICs. We then

infer the mutation orders with the initial CICs to repredict the

sequential co-occurrence frequencies, repeat CIC computation

and inference of the mutation orders until a convergent result is

obtained.

Based on the principle of maximum entropy, we first use a

uniform prior distribution of the occurrence orders, which means

that for the non-sequential co-occurrence frequency of the

mutation of two genes i and j, the two mutation orders of iRj

and jRi occur with the same probability. Therefore, the necessary

sequential co-occurrence frequency is set as a half of the

corresponding non-sequential frequency. With this setting, we

compute the initial CIC between every pair of cancer genes.

We then compute the CIC that an order of more than two

mutant genes possesses. In this computation, we must consider

that each of the preceding genes may send the carcinogenesis

information in parallel to a target gene within the order.

Therefore, we borrow the principle of computing resistance in a

circuit, which is a parallel-by-serial procedure; we sum all the

parallel CICs from the preceding genes to a target gene within the

order to determine the phase CIC of the order and then formulate

the order CIC by cascading all the phase CICs. Consider the order

APCRATMRKRAS as an example; this order contains two phases

of information sending, RATM and RKRAS. During the first

phase, the information can be sent from only one source, APC.

Therefore,CAPC,ATM , the CIC from APC to ATM, simply becomes

the CIC of the first phase. In the second phase, however, both APC

and ATM can become the information source, requiring the

summation of the two parallel CICs as the CIC of the second

phase. After the parallel step of each phase, the reciprocals of phase

CICs, regarded as resistances, are serially summed as the reciprocal

of the order CIC. The steps are summarized as follows:

Parallel step:

First phase : ?ATM C1
phase~CAPC,ATM

Second phase : ?KRAS C2
phase~CAPC,KRASzCATM,KRAS

Series step:

The order CIC : Corder~
1

1=C1
phasez1=C2

phase

.

The kth gene in the order is the information receiving gene at

the (k-1)th phase and has k-1 senders of parallel information. An

order consisting of n genes has n-1 phases of carcinogenesis

information conduction. In general, we have the equation,

Corder~
1

Pn{1

k~1

1=Ck
phase

where Ck
phase~

Pk

p~1

Ci(p),i(kz1) is the CIC of phase k, Ci(p),i(kz1) is

the CIC from gene i(p) to gene i(kz1), and i(x) is the index of the

gene at positionx in the order.

Based on the definition of the CIC, a larger CIC value of a

possible order implies easier carcinogenesis information conduc-

tion within the order. Among all competing orders, the larger the

CIC value of an order, the greater probability the occurrence of
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the order. Therefore, we presume that the CIC of an order is

positively proportional to the probability of that order occurring.

When estimating the probability of every potential order by a

linear mapping from the CICs of all potential orders for a given set

of mutant genes, the total of the probabilities of all the potential

orders is equal to one. Formally, for a sample with n mutant cancer

genes, the number of potential orders is n!; we map the CIC of

order m (m = 1, 2, …, n!) into its probability using the equation

pm~
Cm

order

Pn!

i~1

Ci
order

:

After determine the probabilities of every possible order of the

mutations, we redetermine the predicted sequential co-occurrence

frequencies as follows:

fij~

P

l

P

m

pl
mI(i?jjol

m)

P

l

P

m

pl
mI(i?jjol

m)z
P

l

P

m

pl
mI(j?ijol

m)
:gij

where pl
m is the probability of order m of sample l, l~1,2,:::,L, and

L is the number of samples in question. I(i?jjol
m) is an indicator

function that equals 1 when gene i occurs before gene j in order m

of sample l and equals 0 in all other cases, and gij is the non-

sequential co-occurrence frequency between gene i and gene j. If

the redetermined fij values are nearly identical to the old ones or

become convergent, the computed CICs and thus the inferred

order probabilities can be regarded as reliable outcomes.

Otherwise, the CICs and the order probabilities have to be

redetermined in a new loop. The iterative procedure continues in

this manner until convergence is reached. In practice, the criterion

of convergence can be regarded as satisfied when the absolute

difference between the new and old values of fij monotonically

reduces to a sufficiently small value.

Because we begin the iterative procedure with an initial

prediction of the sequential co-occurrence frequencies from non-

sequential frequencies based on the maximum entropy principle,

which provides the maximum modification potential of the

sequential co-occurrence frequencies in the first iteration, the

modification will decrease gradually and finally become insignif-

icant. This premise was verified in the study; a satisfying

convergence was reached within fewer than 10 loops of the

Figure 1. Overview of the inference methodology. (a) The occurrence and co-occurrence frequencies of the cancer gene mutations fi and gij

are determined from available samples, where i,j~1,2:::,m, and m is the number of the cancer genes targeted in the study. An occurrence of a gene
will be counted if it is mutated in one of the samples, and a co-occurrence of a pair of genes will be counted if both are mutated in one of the
samples; therefore, gij~gji and gii~0. (b) Based on the principle of maximum entropy, the initial values of the sequential co-occurrence frequencies

are set as f
(0)

ij ~f
(0)

ji ~0:5gij . (c) The carcinogenesis information conductivities, Cij , are calculated from the vector of fi and the matrix of fij . It should be

noted that Cij might not be equal to Cji , implying that the matrix of Cij represents a directed network. (d) For each of the L samples in question, the
probabilities of every potential order of the mutant genes in sample Pl are computed according to the CICs of each order (Methods). (e) The matrix of

f
(k)

ij is redetermined by the matrix of gij and the ratio of the probability-weighted number of the orders indicated that i occurs before j to the number

of co-occurrence frequency, it is important to note that f
(k)
ij is not equal to f

(k)
ji in general. If the matrix of f

(k)
ij has not reached the criterion of

convergence, the inferred orders will not be regarded as stable and a new loop of the calculation of Cij and Pl will be performed. Otherwise (f), the

orders with a probability higher than random chance and the corresponding probabilities fÔO(k)
l g and fP̂P(k)

l g are regarded as the referred results. For
example, of all 6 potential orders for a sample with three mutant cancer genes a, b and c, orders b?a?c and b?c?a are identified as the probable
ones due to probabilities of 0.7 and 0.2 (higher than a random chance of 1/6).
doi:10.1371/journal.pone.0089244.g001
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inference procedure using a set of samples from the COSMIC

database.

The iteration based on COSMIC data reaches convergence

within 10 loops. Here, we use the computation of CIC from KRAS

to APC to introduce the procedure in detail. Initially, we calculate

the occurrence frequencies of fKRAS = 125 and fAPC = 209 and a

non-sequential co-occurrence frequency gKRAS,APC = 79 from the

COSMIC database. By defining half of the non-sequential co-

occurrence frequency (79) as the sequential frequency, we

determine that fKRAS,APC = 39.5. When comparing with the

sequential co-occurrence frequencies from genes other than KRAS

to the gene APC in each of the 79 samples, fKRAS,APC is found to

have an average order of 1.47. Therefore the priority

pKRAS,APC = 1.47, and the initial value of CKRAS,APC = (39.5/

125)*(39.5/209)/1.472 = 0.028.

Using the initial CICs between all cancer gene pairs, we estimate

the probability of every potential mutation occurrence order in each

sample in the manner described above. According to the

probabilities, the non-sequential co-occurrence frequencies can be

unevenly divided into sequential frequencies. For the 79 samples in

this example, the ratio of KRASRAPC vs. APCRKRAS based on the

corresponding total probability for each order is 0.28: 0.72.

Therefore, we update the value of fKRAS,APC = 79*0.28 = 22.1,

and the priority pKRAS,APC is then determined with the new

fKRAS,APC . With these new values, we redetermine CKRAS,APC .

The convergence of CKRAS,APC and its counterpart CAPC,KRAS

during the iterations is shown in Fig. 2. This example demon-

strates that the values reach a satisfying convergence after just 6

iterations. This example also represents the common situation,

thus we ended the computation of CICs after 10 iterations in this

study.

Complexity of the inference procedure
CIC computation has a complexity of O(n2) if the number of

cancer genes in the study is n, and the inference of the probabilities

of all potential orders for a sample with m mutant cancer genes has

a complexity of O(m!m2). In our study, n is equal to 397 and m

ranges from 2 to 8. Therefore, the complexity of O(m!m2) can differ

greatly for different samples. In reality, during the inference for the

1,118 samples reported in the study, the majority of the time was

consumed by a few samples with the maximum number of mutant

cancer genes. It is worth noting that during the entire procedure,

we only have to compute the CICs once in each loop to infer the

order probabilities for all samples. The inference procedure with

10 iterations for the 1,118 samples was completed within 10

minutes on a platform consisting of a PC (4*2.66 GHz Quad

CPU) and Matlab.

Study data
The results reported in this study were obtained from a recent

COSMIC database (issued on September 12th, 2012) on coding

point mutations. It is a table file containing the names of the

mutated cancer genes in each cancer sampled. Mutant genes in

the same cancer have the same tumor ID (ID_tumour), and the

fields of genome-wide-screen and primary side provide the necessary

information used in this study.

Steps for determining the occurrence and co-occurrence
frequencies of cancer gene mutations in the samples

The occurrence and co-occurrence frequencies of cancer genes

in the cancer samples were used to estimate the CICs in the study,

and the basic statistics were determined using the following steps:

1) Download the source file CosmicMutantExport_v61_120912.tsv

through ftp://ftp.sanger.ac.uk/pub/CGP/cosmic/data_export/;

2) Make a temporary file by obtaining the records with the value ‘y’

in the ‘genome-wide screen’ field from the source file;

3) Make a primary file by obtaining the records of cancer genes

defined by the file Table_1_full_2012-03-15.xls in the Cosmic

web site from the temporary file, and refining the records into

sequences of Gene_name and ID_Sample;

4) Make a mutation_sequence file in which each record is a list of

the mutated genes in the same sample based on the primary

file, and discard the record that contains only one gene name

in the mutation_sequence file;

5) Count the occurrence and co-occurrence frequencies of the

cancer genes based on the mutation_sequence file.

Results

Features of the estimated CICs
We performed the inference on cancer gene mutation data from

genome-wide scanned samples collected in a recent version of the

COSMIC database. A total of 1,212 samples harboring 6,281

mutations in 397 cancer genes was available for determining the

basic occurrence and co-occurrence frequencies. From these,

1,118 samples, each harboring no more than 8 mutant cancer

Figure 2. Convergence of iterative computation of CICs. The CICs of CKRAS,APC (a) and its counterpart CAPC,KRAS (b) quickly reach convergent
as the iterations of computation are performed. After 6 iterations, a satisfying convergence has been reached.
doi:10.1371/journal.pone.0089244.g002

Figure 3. The power law-like distribution of CICs. CICs greater
than 1.0E-6 are present in a power law-like distribution; specifically, the
logarithm of the number of the CICs versus the logarithm of their orders
of magnitude yields a piecewise linear relationship. Based on the
question of whether a power law distribution is appropriate for
analyzing complex networks and worries about the unreliability of
undervalued CICs that might be caused by spare data, only the CICs
greater than 1.0E-6 were directly used in the inference in this study.
CICs inferred as less than 1.0E-6 were replaced by the threshold for
smoothing.
doi:10.1371/journal.pone.0089244.g003
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genes, were used in the iterative procedure of CIC computation

and order inference. Table S1 lists the 1,118 samples. The results

were found to converge within 10 iterations. After convergence,

CICs with a value greater than 1.0E-6 presented a power law-like

distribution over the magnitudes, such that the overwhelming

majority has a magnitude less than the average of 4.0E-4 and a

very small portion has a larger than average magnitude (Fig. 3,

Table S2). This feature is also true for the distribution of the

magnitudes of the CICs from (or to) a given gene in most cases,

which means that only a small number of partners are significant

in terms of carcinogenesis information conduction for any given

gene. In other words, the CICs identify the closest partners in

carcinogenesis information conduction. Furthermore, the directed

networks of cancer genes linked by the CICs were asymmetrical

and small world-like. The CIC from gene i to gene j was usually

unequal to that from gene j to gene i; the network has a number of

hub genes with many more links than normal. This feature is

consistent with the notion that the signaling network in cancer is

analogous to the Internet, which constructs a small world with hub

nodes [27–29]. Fig. 4 illustrates a CIC linked network covering 44

cancer genes, including the hub genes APC, TP53 and MLL3, and

the links stronger than 1.0E-2 showing asymmetry. The asymme-

try of the CICs implies the existence of a preference for certain

mutation orders. Additionally, the three hub genes are all tumor-

suppressor genes, and the strongest directed link, with a value of

0.136, is from APC to KRAS, one of the most frequently mutated

oncogenes, suggesting a superior information channel from the

mutation of APC to the mutation of KRAS.

The inference of probable orders
The inferred mutation orders with a probability higher than

random chance, referred to hereafter as probable orders, provided

more concrete insights into tumor progression. We analyzed the

probable orders inferred for the 1,118 cancer samples in question

to investigate a maximum of 8 mutation steps from initiation. The

primary sites of the samples were mainly located in the ovary (256),

large_intestine (LI, 180), haematopoietic_and_lymphoid_tissue (HLT, 148),

prostate (100), breast (97), central_nervous_system (CNS, 86), and

upper_aerodigestive_tract (UAT, 72).

Table S3 lists all the probable orders and their probabilities in

the analyzed samples, and Table 1 shows a selection of them.

Based on the probable orders, we concluded that in a given sample

only a small portion of all the potential orders has a probability

higher than random chance, and the sum total of the probabilities

of those orders is close to the number of samples with a ratio of

1034.4/1118. This indicates that the inference identified a small

portion of all the potential orders permutated by the given set of

mutant cancer genes as the probable orders. For a sample

harboring two mutant cancer genes, the inference always strongly

suggests one of the two potential orders. However, for the samples

with more than two mutant cancer genes, some orders might have

comparable high probabilities. Although we cannot judge the

individual plausibilities of the inferred probable orders because of

the lack of ground truth for the orders in most cases, their

significance could be strongly suggested by evaluating the

inference with samples of a certain cancer type that have been

well studied in terms of order. For example, APC, KRAS and TP53

are the three most frequently mutated genes in colon cancers, and

their mutation orders have been well modeled [30,31]. In our

results, the sample with mutant cancer genes APC and KRAS,

yielded an inferred probability of 0.95 for the order APCRKRAS,

which was consistent with previous studies. For the sample with

mutant APC, KRAS and TP53 cancer genes, three probable orders

of APCRKRASRTP53 (0.33), APCRTP53RKRAS (0.32) and

TP53RAPCRKRAS (0.19) were inferred from 6 potential ones,

and this result was also consistent with previous studies. BRCA1

germline mutations confer a high risk of breast and ovarian

cancer, but somatic loss of the wild-type BRCA1 allele has been

shown to usually occur after mutation of TP53 [32]. In agreement

with this observation, we inferred the somatic mutation order

TP53RBRCA1 with a probability greater than 0.99. These

examples provide evidence to support the inference validity.

Figure 4. An illustration of the asymmetry of CIC-linked cancer gene networks. Forty-four frequently mutated cancer genes (in more than
20 genome-wide scanned samples in the COSMIC database) are illustrated with the CICs between them larger than 1.0E-2. The thickness of the link is
proportional to the strength of the corresponding CIC. When a pair of genes has bidirectional links, the stronger link is drawn as a straight line and
the weaker one is drawn as a curved line (see the case of APC rRTP53). The asymmetry can be observed by the fact that no bidirectional links of
similar strengths exist between gene pairs, and APC, TP53, and MLL3 each play a hub role in the network.
doi:10.1371/journal.pone.0089244.g004
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Table 1. Examples of cancer gene mutation orders with a predicted probability greater than random chance.

Order Probability Order Probability

APCRBRCA2 0.99932 APCRATMRKRAS 0.39011

APCRFBXW7 0.99675 APCRKRASRATM 0.41748

APCRKRAS 0.95281 APCRBRAFRTP53 0.20884

APCRNOTCH2 0.99906 APCRTP53RBRAF 0.34198

APCRPTEN 0.99986 TP53RAPCRBRAF 0.2958

APCRSMARCA4 0.99934 APCRKRASRTP53 0.33317

APCRTP53 0.65624 APCRTP53RKRAS 0.32532

ARID1ARATM 0.99991 TP53RAPCRKRAS 0.18769

ARID1ARCTNNB1 0.99987 APCRMLL3RPTEN 0.49936

ARID1ARPTEN 0.99966 APCRPTENRMLL3 0.49797

ARID2RCTNNB1 0.99992 CREBBPRKRASRARID1A 0.36621

BRAFRFBXW7 0.99994 CREBBPRARID1ARKRAS 0.56109

BRAFRPTEN 0.99792 CREBBPRCTNNB1RSMARCA4 0.27984

CREBBPRBRCA2 0.9995 CREBBPRSMARCA4RCTNNB1 0.71849

CREBBPRCTNNB1 0.99906 MLL3RSMARCA4REP300 0.49603

CTNNB1RSMARCA4 0.7542 MLL3REP300RSMARCA4 0.4967

EZH2RCARD11 0.99922 PIK3CARSMARCA4RCTNNB1 0.46455

EZH2RCTNNB1 0.96595 PIK3CARCTNNB1RSMARCA4 0.52713

KRASRFBXW7 0.75719 TP53RMLL3RARID1A 0.48265

KRASRPTEN 0.99874 TP53RARID1ARMLL3 0.45573

MLL2RCTNNB1 0.99989 TP53RMLL3RARID2 0.4851

MYH11RSMARCA4 0.99606 TP53RARID2RMLL3 0.46217

NOTCH2RARID1A 0.99964 TP53RCTNNB1RATM 0.49888

NRASRSMARCA4 0.95881 TP53RATMRCTNNB1 0.50012

PIK3CARARID1A 0.99971 TP53RROS1RBRAF 0.73047

PIK3CAREP300 0.99954 TP53RBRAFRROS1 0.26871

TP53RARID1A 0.99985 TP53RPIK3CARBRCA2 0.49745

TP53RAKAP9 0.99941 TP53RBRCA2RPIK3CA 0.49757

TP53RARID2 0.99985 TP53REZH2RCREBBP 0.47725

TP53RATM 0.99974 TP53RCREBBPREZH2 0.52201

TP53RBRAF 0.99937 TP53RMLL2RCREBBP 0.56795

TP53RBRCA2 0.99827 TP53RCREBBPRMLL2 0.43152

TP53RCARD11 0.99926 TP53RNOTCH2RCREBBP 0.50977

TP53RCREBBP 0.99989 TP53RCREBBPRNOTCH2 0.4884

TP53RCTNNB1 0.99984 TP53RFBXW7RCTNNB1 0.47758

TP53REP300 0.99894 TP53RCTNNB1RFBXW7 0.47344

TP53REZH2 0.99985 TP53RKRASRCTNNB1 0.42094

TP53RKRAS 0.83612 TP53RCTNNB1RKRAS 0.4181

TP53RMLL 0.99992 TP53RMLL2REZH2 0.5875

TP53RMLL2 0.9999 TP53REZH2RMLL2 0.41196

TP53RMLL3 0.98377 TP53RKRASRFBXW7 0.38181

TP53RMYH11 0.99954 TP53RFBXW7RKRAS 0.31798

TP53RNRAS 0.94242 TP53RPIK3CARKRAS 0.40396

TP53RPIK3CA 0.99789 TP53RKRASRPIK3CA 0.36917

TP53RPTEN 0.99989 TP53RPIK3CARMYH11 0.49797

TP53RSMARCA4 0.99988 TP53RMYH11RPIK3CA 0.49427

The examples in the table are selected based on that the genes have a mutant frequency greater than 40 in the COSMIC database to show the estimation for the
common cases. Due to the limited space, the prediction for the samples with more than 3 mutant cancer genes is not shown. Refer to Table S3 for a complete result.
The random chance is 1/n!, where n is the number of mutant cancer genes in the sample.
Note, any two samples with the same set of mutant genes have identical predicted results.
doi:10.1371/journal.pone.0089244.t001
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Table 2. The type of a cancer gene and its probability-weighted times of starting an order with a probability greater than random
chance.

Gene Type Times Rate Gene Type Times Rate

TP53 s 484.732 0.844 XPO1 o 1 0.077

APC s 117.471 0.675 TIF1 o 1 0.125

PIK3CA o 31.97 0.381 ERCC5 s 1 0.083

MLL3 s 26.927 0.481 ELN o 1 0.125

KRAS o 24.093 0.223 LRIG3 o 1 0.167

MLL2 s 20.235 0.355 LMO1 o 1 0.5

CREBBP s/o 17.294 0.402 ASPSCR1 o 1 1

ATM s 14.404 0.4 NCOA1 o 1 0.143

ARID1A s 13.625 0.296 SRSF2 o 1 0.5

NPM1 s 12.96 0.48 CBL s/o 1 0.2

EZH2 s 10.733 0.335 MYD88 o 1 0.125

CIC s 10.649 0.41 NUP98 o 1 0.01

ARID2 s 8.699 0.335 PTPN11 o 1 0.2

ROS1 o 7.888 0.316 CDH1 s 0.999 0.062

TET2 s 7.049 0.441 PER1 o 0.999 0.125

WT1 s 7.027 0.502 MEN1 s 0.999 0.1

CTNNB1 o 6.862 0.114 PRDM1 s 0.999 0.125

PBRM1 s 6.854 0.685 IL21R o 0.998 0.25

PTEN s 6.801 0.235 MUC1 o 0.997 0.332

BRAF o 5.988 0.23 PIK3R1 s 0.997 0.066

NOTCH2 o 5.907 0.281 TRIP11 o 0.996 0.1

MYST4 o 5.492 0.25 ITK o 0.995 0.059

SMARCA4 s 5.45 0.156 NCOA2 o 0.995 0.199

DNMT3A s 5.293 0.23 BCOR s 0.995 0.059

ASXL1 s 5.064 0.362 TSHR o 0.995 0.124

MYH9 o 4.988 0.416 MAP2K4 s 0.994 0.076

KDM5A o 4.987 0.623 GNAS o 0.994 0.062

NSD1 o 4.965 0.414 MSH2 s 0.993 0.199

MYH11 o 4.561 0.198 = = = SRGAP3 o 0.993 0.165

BCL2 o 4.165 0.116 FGFR2 o 0.992 0.142

RET o 3.991 0.333 FANCD2 s 0.991 0.33

EP300 s 3.991 0.174 MET o 0.991 0.099

ALK o 3.972 0.306 EWSR1 o 0.991 0.142

PHF6 s 3.264 0.297 BRIP1 s 0.99 0.165

BLM s 3.076 0.22 SETD2 s 0.99 0.062

IDH2 o 3 0.214 BCL6 o 0.989 0.11

COL1A1 o 2.997 0.231 WHSC1 o 0.985 0.123

GNA11 o 2.996 0.749 BAP1 s 0.983 0.089

SF3B1 o 2.993 0.136 ETV6 o 0.953 0.136

TPR o 2.987 0.373 FLI1 o 0.902 0.18

CDH11 o 2.987 0.187 DNM2 s 0.89 0.064

PDGFRA o 2.971 0.186 BCR o 0.888 0.296

MLL o 2.847 0.142 VHL s 0.818 0.055

KIT o 2.59 0.173 FANCC s 0.711 0.711

MED12 o 2.514 0.168 MAF o 0.682 0.341

FBXW7 s 2.428 0.069 RUNX1 o 0.65 0.043

RB1 s 2.204 0.092 CARD11 o 0.5 0.019

LIFR o 2.175 0.128 LHFP o 0.5 0.167
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Initiators of probable mutation orders
Identifying the initiators of mutation orders has been regarded

as one of the major challenges in the study of tumor progression

[1]. Our inferred probable orders of mutation provided informa-

tive hints to solving this challenge. By examining the genes that

initiate the probable orders, we found that the initiators were

dominated by tumor-suppressor genes. An overwhelming majority

(more than 77.5%) of the probability-weighted number of the

probable orders was inferred to be initiated by a tumor-suppressor

gene rather than an oncogene. There were 368 cancer genes in the

test cancer samples, among them only 92 were tumor suppressors.

More specifically, there were 1,858 mutations of tumor suppres-

sors among totally 3,823 mutations of all the cancer genes.

Therefore the average chance for tumor suppressors to initiate the

mutation orders was 48.6% (1858/3823). This demonstrates that

the dominance of tumor suppressors in initiating the mutation

orders could not be ascribed to chance. Additionally, the ratios of

the number of times a gene was the initiator to its mutation

frequency were generally different, implying that it is not certain

that frequently mutated genes will mutate early (Table 2).

Significantly, the probability-weighted number of the probable

orders started by the top two tumor-suppressor gene initiators

TP53 and APC, consisted of percentages as large as 46.9% and

11.4%, respectively. In contrast, the top two oncogene initiators,

PIK3CA and KRAS, were found in percentages as small as 3.1%

and 1.3%, respectively. The top initiators of mutation at the

respective primary cancer sites suggested more details (Table 3). In

general, all cancers at the major primary sites of the samples

revealed a tumor-suppressor gene as their top initiator. In

particular, TP53 was a common top initiator in four of the

previously listed cancer types, ovary, UAT, breast and prostate, with

percentages of 91.5%, 73.4%, 57.6% and 30.4%, respectively. In

LI cancers, the top initiator was APC (57.5%), followed by TP53

(29.7%). Both CNS and HLT cancers had no obviously superior

initiators, with CIC (13.6%), PIK3CA (10.1%) and TP53 (10.0%) as

the top three initiators for the former, and TP53 (14.9%), NPM1

(10.4%) and MLL2 (9.9%) as the top three initiators for the latter.

From the perspective of initiator distribution, ovary, LI, UAT and

breast cancers were inferred to be dominated by a small number of

tumor-suppressor genes, while HLT, CNS and prostate cancers were

inferred to have more diverse significant initiators.

Previous studies have suggested a number of hallmark functions

that need to be acquired for a cancer to generate, helping

researchers understand the complexity in tumor progression in a

way of logical, scientific manner [33,34]. Our inferred results point

to a suggestion that goes one step further. In most cancers, the

earliest acquired hallmark function might be evading apoptosis

because the majority of first mutated genes in every cancer type in

Table 3 (TP53, APC, KRAS, PIK3CA, NPM1 and CIC) have been

found to encode apoptosis-regulating proteins, and the mutation of

all of these genes has been shown to lead to deficient apoptosis

functions. Specifically, the mutation of TP53 can result in the

Table 2. Cont.

Gene Type Times Rate Gene Type Times Rate

AKAP9 o 2.156 0.108 NUMA1 o 0.453 0.032

NRAS o 2.037 0.06 SUZ12 o 0.397 0.066

EGFR o 2 0.154 KIAA1549 o 0.319 0.106

JAK2 o 2 0.2 NCOA4 o 0.314 0.157

PALB2 s 1.991 0.153 FHIT o 0.257 0.086

NF1 s 1.989 0.071 TNFAIP3 s 0.254 0.023

JAK1 o 1.986 0.397 NFKB2 o 0.22 0.11

PRDM16 o 1.97 0.246 MDM4 o 0.198 0.066

CAMTA1 o 1.703 0.122 H3F3A o 0.197 0.197

NOTCH1 o 1.681 0.06 HIP1 o 0.196 0.028

CCND2 o 1.628 SUFU s 0.188 0.047

SMARCB1 s 1.601 0.543 SBDS s 0.184 0.092

NF2 s 1.5 0.133 JAK3 o 0.144 0.013

FOXP1 o 1.5 0.3 HOOK3 o 0.11 0.026

CD74 o 1.499 0.15 TCF7L2 o 0.094 0.006

CCND3 o 1.404 0.75 EIF4A2 o 0.069 0.007

PIM1 o 1.402 0.14 ERBB2 o 0.06 0.003

SLC45A3 o 1.384 0.175 ZNF331 o 0.052 0.013

IL7R o 1.27 0.154 C15orf55 o 0.046 0.011

BTG1 o 1.174 0.159 HOXA11 o 0.045 0.015

ZNF521 o 1.148 0.196 PHOX2B s 0.018 0.006

PDE4DIP o 1.099 0.057 PCM1 o 0.008 0.002

MSH6 s 1.017 0.061 MALT1 o 0.003 0.001

LMO2 o 1 0.17 Total 1034.4

s: tumor-suppressor gene, o: oncogene. The ratios of the summed frequencies of s, o, and s/o to the total are 0.775, 0.207 and 0.018, respectively.
Rate is the ratio of Times to the gene’s total mutation number in the samples in question.
doi:10.1371/journal.pone.0089244.t002
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Table 3. The top initiators of the probable mutation orders in different cancer types.

Cancer Gene Type Percent Cancer Gene Type Percent

Ovary TP53 s 91.5 Prostate NCOA1 o 1.1

Ovary APC s 1.7 Prostate Others 18.9

Ovary PIK3CA o 1.5 Prostate Total s 59.0

Ovary ARID1A s 0.8 Prostate Total o 39.9

Ovary KRAS o 0.7 Breast TP53 s 57.6

Ovary NF2 s 0.4 Breast PIK3CA o 11.8

Ovary BRAF o 0.4 Breast MLL3 s 4.7

Ovary RB1 s 0.4 Breast PTEN s 2.2

Ovary MYST4 o 0.4 Breast ATM s 2.1

Ovary GNA11 o 0.4 Breast ROS1 o 2.1

Ovary EGFR o 0.4 Breast AKAP9 o 1.1

Ovary LIFR o 0.4 Breast PRDM16 o 1.1

Ovary MYH9 o 0.4 Breast SMARCA4 s 1.1

Ovary KIT o 0.4 Breast MYH11 o 1.1

Ovary MLL3 s 0.3 Breast MYH9 o 1.1

Ovary Total s 95.1 Breast ASPSCR1 o 1.1

Ovary Total o 4.9 Breast ARID1A s 1.1

LI APC s 57.5 Breast PDGFRA o 1.1

LI TP53 s 29.7 Breast BRAF o 1.1

LI KRAS o 6.8 Breast NSD1 o 1.1

LI ATM s 1.2 Breast PDE4DIP o 1.1

LI PIK3CA o 0.9 Breast MAP2K4 s 1.1

LI NSD1 o 0.6 Breast FANCD2 s 1.1

LI IL21R o 0.6 Breast MET o 1.1

LI GNA11 o 0.6 Breast Others 4.1

LI ALK o 0.6 Breast Total s 75.2

LI PDGFRA o 0.6 Breast Total o 24.7

LI ARID1A s 0.5 CNS CIC s 13.6

LI MYH11 o 0.3 CNS PIK3CA o 10.1

LI TCF7L2 o 0.1 CNS TP53 s 10

LI Total s 88.9 CNS MLL3 s 5.7

LI Total o 11.0 CNS MLL2 s 5.5

HLT TP53 s 14.9 CNS CTNNB1 o 5.2

HLT NPM1 s 10.4 CNS CREBBP s/o 5.1

HLT MLL2 s 9.9 CNS ATM s 5.1

HLT EZH2 s 7.6 CNS SMARCA4 s 4.4

HLT WT1 s 5.6 CNS NOTCH2 o 3.7

HLT TET2 s 4.8 CNS APC s 2.5

HLT DNMT3A s 4.2 CNS KDM5A o 2.5

HLT BCL2 o 3.3 CNS ROS1 o 2.5

HLT PHF6 s 2.6 CNS AKAP9 o 1.4

HLT IDH2 o 2.4 CNS COL1A1 o 1.3

HLT RET o 2.4 CNS TIF1 o 1.3

HLT ASXL1 s 2.4 CNS ARID2 s 1.3

HLT CREBBP s/o 2.1 CNS TPR o 1.3

HLT NRAS o 1.6 CNS EP300 s 1.3

HLT ATM s 1.6 CNS BLM s 1.3

HLT CDH11 o 1.6 CNS Others 14.9

HLT KRAS o 1.6 CNS Total s 56.6
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removal of a key component of the DNA damage sensor, which

functions to induce apoptosis [33,34], mutant forms of the APC

protein can attenuate responses to apoptotic stimuli [35,36], the

mutations in KRAS and PIK3CA can activate pathways that

transmit anti-apoptotic survival signals [33], and the proteins

encoded by NPM1 and CIC have been shown to function in

apoptosis [37,38].

Informative transitions in the probable orders
The transitions in the probable orders provided additional

information on tumor progression. Though mutations in BRCA1

and BRCA2 have been regarded as key markers for breast cancer

occurrence, somatic mutations in the two genes in the breast

cancer samples were not very frequent, with rates of 3/97 and 6/

97, respectively, and both genes were inferred to have no chance

of initiating a probable order. However, among all transitions in

the probable orders of the breast cancers, TP53RBRCA2 and

TP53RBRCA1 were identified as the second and fourth most

frequent transitions, respectively, implying that mutations in these

two genes tend to occur next to the mutation of TP53. Similarly,

the transition of TP53RBRCA1was ranked as the third most

frequent in the probable orders in ovarian cancer, supporting the

conjecture mentioned above. In LI cancers, mutations in APC,

TP53 and KRAS were found to occur at extraordinarily frequencies

with rates of 146/180, 111/180 and 79/180, respectively, and

their mutual transitions were the top six most frequent, implying

that these three genes as a group play dominating roles in LI

cancers. Liquid HLT cancers were inferred to have the 3 most

frequent transitions that converged on one gene, TP53RBCL2,

MLL2RBCL2 and EZH2RBCL2. Given that BCL2 is a key anti-

apoptotic gene [39] and was the most frequently mutated gene in

HLT cancer samples, these convergent transitions suggest that

HLT cancers might acquire the function of evading apoptosis in a

unique way, mutation of the key anti-apoptotic gene BCL2 next to

the mutations of certain tumor-suppressor genes. Informatively,

among all the 36 BCL2 mutant samples, mutations at 179C and

392C of CDS (Coding DNA Sequence) were as frequent as 5 and

4 times, respectively, suggesting those to be hotspot mutations that

might play a particular role in evading apoptosis. Because TP53,

MLL2 and EZH2 were inferred to be the top initiators of mutation

in HLT cancer samples, the function of evading apoptosis could be

acquired in an early stage of tumor progression.

Discussion

The inferred results from individual samples firmly revealed the

order heterogeneity in a given cancer type, showing the

complexity of the disease. The results also highlighted the limited

number of genes that are able to initiate the mutations and

revealed that the hallmark function of evading apoptosis is

Table 3. Cont.

Cancer Gene Type Percent Cancer Gene Type Percent

HLT CD74 o 1.2 CNS Total o 38.3

HLT CCND3 o 1.1 UAT TP53 s 73.4

HLT PIM1 o 1.1 UAT NSD1 o 3

HLT Others 17.6 UAT NOTCH1 o 2.4

HLT Total s 67.5 UAT FBXW7 s 1.9

HLT Total o 29.6 UAT MLL3 s 1.9

Prostate TP53 s 30.4 UAT CREBBP s/o 1.5

Prostate APC s 9.9 UAT EP300 s 1.5

Prostate MLL3 s 4.5 UAT FOXP1 o 1.5

Prostate PTEN s 4.3 UAT MED12 o 1.5

Prostate MYST4 o 4 UAT GNAS o 1.5

Prostate ATM s 3.9 UAT JAK1 o 1.5

Prostate KDM5A o 3.3 UAT ASXL1 s 1.4

Prostate PIK3CA o 3.3 UAT MLL2 s 1.1

Prostate MYH9 o 2.2 UAT FANCC s 1.1

Prostate TPR o 2.2 UAT CAMTA1 o 1.1

Prostate MLL o 2 UAT APC s 1

Prostate MED12 o 1.7 UAT CCND2 o 1

Prostate SLC45A3 o 1.5 UAT NUMA1 o 0.5

Prostate RB1 s 1.3 UAT KIAA1549 o 0.5

Prostate CREBBP s/o 1.1 UAT EZH2 s 0.4

Prostate PALB2 s 1.1 UAT Others 0.3

Prostate ZNF521 o 1.1 UAT Total s 83.9

Prostate EGFR o 1.1 UAT Total o 14.6

Prostate LRIG3 o 1.1

Percent: the sum of the probabilities of the orders initiated by the gene versus the total of the probabilities of the orders in the same cancer type.
At most top 20 initiators are listed for each cancer type due to the limited space.
doi:10.1371/journal.pone.0089244.t003
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acquired early. Other regularities implied in the results might also

be significant in understanding and treating the disease.

The proposed approach for inferring the temporal order of

mutations is superior to existing methods in two ways: 1) it can be

used to infer the order of mutation in individual samples with

mutations in multiple genes which have been identified at the

same time; and 2) it is completely data-driven, free from the

difficulty in existing methods of setting proper parameters, such as

fitness, mutation rate or waiting time [9–11]. When this approach is

better supported by more sufficient data, it is expected to help

discover more reliable information to understand the mechanism

of carcinogenesis. Fortunately, the wide application of a new

generation of sequencing will make this hope a reality.

The key to the success of this study is finding the statistical

measurement of CIC, which proved to usually be asymmetrical

between a pair of cancer genes, laying the foundation of mutation

order inference. Meanwhile, the iterative procedure provides a

feasible way to infer the CICs from non-sequential co-occurrence

frequencies. With the CICs, the linkages between cancer gene

mutations are modeled as a complex network with directed links.

The small world-like nature of the complex network makes the

inference of the temporal order of mutations effective.
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