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Abstract

Brain maps, or atlases, are essential tools for studying brain function and organization. The 

abundance of available atlases used across the neuroscience literature, however, creates an implicit 

challenge that may alter the hypotheses and predictions we make about neurological function 

and pathophysiology. Here, we demonstrate how parcellation scale, shape, anatomical coverage, 

and other atlas features may impact our prediction of the brain’s function from its underlying 

structure. We show how network topology, structure–function correlation (SFC), and the power 
to test specific hypotheses about epilepsy pathophysiology may change as a result of atlas choice 

and atlas features. Through the lens of our disease system, we propose a general framework and 

algorithm for atlas selection. This framework aims to maximize the descriptive, explanatory, and 

predictive validity of an atlas. Broadly, our framework strives to provide empirical guidance to 

neuroscience research utilizing the various atlases published over the last century.
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1. Introduction

How we define anatomical brain structures and relate those structures to the brain’s function 

can either constrain or enhance our understanding of behavior and neurological diseases 

(Bohland et al., 2009; Dickie et al., 2017; Klein and Tourville, 2012; Mandal et al., 

2012). Discoveries by scientists like Carl Wernicke and Pierre Paul Broca, who mapped 

specific brain regions to speech function, in addition to case studies from Phineas Gage 

and H.M., who lost specific brain regions with resultant changes in brain function and 

behavior, exemplify how brain structure and function are fundamentally linked (Barker, 

1995; Beal et al., 2015; Van Horn et al., 2012). Properly labeling brain structures is 

paramount for enabling scientists to effectively communicate about the variability between 

healthy individuals and about the regions involved in neurological disorders (Mazziotta et 

al., 2001). Yet, no consensus has been reached on the most appropriate ways to label and 

delineate these regions, as evident by the wide variety of brain maps, or atlases, defining 

neuroanatomical structures (Evans et al., 2012).
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In common usage, an atlas refers to a “collection of maps” National (2022) that typically 

defines geo-political boundaries and may include coarse borders (continental), fine borders 

(city), and anything in between (country; Fig. 1 a, left). Borders (National, 2022) are usually 

consistent across atlases of the world. In contrast, atlases of the brain are not consistent. 

Four separate atlases (Fig. 1 a, right) may define the superior temporal gyrus differently. 

For example, approximately ninety percent of the anterior superior temporal gyrus in the 

Harvard-Oxford atlas (Makris et al., 2006) overlaps with the posterior superior temporal 

gyrus in the Hammersmith atlas(Hammers et al., 2003). Atlases may also differ in other 

ways, including parcellation size, neuroanatomical coverage, and complexity of brain region 

shapes. For instance, the Yeo atlas (Thomas Yeo et al., 2011) contains 7 or 17 parcels 

while the Schaefer atlases (Schaefer et al., 2018) may have between 100 and 1000 parcels. 

Complicating matters further, atlases can differ in their intended use. The MMP atlas 

(Glasser et al., 2016) was intended for surface-based analyses (Coalson et al., 2018), yet 

a volumetric version (without sub-cortical structures) was independently created and used in 

connectivity studies (Wu et al., 2019). The plethora of available atlases poses a problem for 

reproducibility in studying healthy and diseased populations and for metanalyses describing 

the involvement of different regions of the brain in various diseases. This has been termed 

the Atlas Concordance Problem (Bohland et al., 2009).

In the present study, we perform an extensive evaluation of the available atlases in the 

neuroscience literature (Table 1) by examining the effect of varying features such as 

parcellation size, coverage, and shape (Fig. 1 b) on structural connectivity (Fig. 1 c). We 

also examine how atlas choice changes structural network topology by measuring structure–

function correlation (SFC) using an atlas-independent measure of functional connectivity 

(Fig. 1 d). We utilize a total of 55 brain atlases, including many routinely used in common 

neuroimaging software. Note the important distinction between the terms atlas, template, 

and stereotactic space (Evans et al., 2012) (see Fig. S1). We found that different atlases 

may alter the power to test a hypothesis about epilepsy pathophysiology that seizures 

propagate through the underlying structural connections of the brain. This hypothesis has 

been previously supported in prior research(Ashourvan et al., 2021; Proix et al., 2017; Shah 

et al., 2019; Wirsich et al., 2016).

In the context of our experimental design, we propose a new framework outlining how to 

appropriately choose an atlas when designing a neuroscience experiment. This framework 

is derived from historical foundations for assessing the validity and effectiveness of 

animal models (Willner, 1984), network models (Bassett et al., 2018), and psychometric 

tests (Association, 1954), which try to maximize the (1) descriptive, explanatory, and (3) 

predictive validity (Bassett et al., 2018) of a model. Atlases are a tool for investigators to test 

for causality and to make predictions about the brain. Thus, this framework incorporates a 

short discussion on explanatory modeling and predictive modeling, each with different goals 

(”To Explain or to Predict?”(Shmueli, 2010)). A one-size-fits-all approach may not exist for 

selecting an atlas, nor should it (Salehi et al., 2020); while there is one Planet Earth with a 

single atlas for a particular use (e.g., an atlas of the geo-political borders for a given point 

in time), there are many brains, with anatomical and functional variability across populations 

and species(Salehi et al., 2020). We hope our framework provides empirical guidance to 

neuroscience research utilizing the various atlases published over the last century.
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2. Results

2.1. Clinical data

Forty-one individuals (mean age 34 ± 11; 16 female) underwent High Angular Resolution 

Diffusion Imaging (HARDI), composed of thirteen controls (mean age 35 ± 13; 6 female) 

and twenty-eight drug-resistant epilepsy patients (mean age 34 ±11; 12 female) evaluated 

for surgical treatment. Of the twenty-eight patients, twenty-four were implanted with 

stereoelectroencephalography (SEEG) and four with electrocorticography (ECoG). Ten 

SEEG patients (mean age 34 ±8; 4 female) had clinical seizure annotations, and the first 

seizure from each patient (mean duration 81 s) without artifacts was selected for SFC 

analyses. Patient and control demographics are included in Table S2.

2.2. Atlas morphology: sizes and shapes

We hypothesized that atlas morphological properties, including size and shape (Fig 2), 

affect SFC. To test this hypothesis, we first quantified the distributions of parcellation sizes 

(Fig 2 a) and shapes (Fig 2 b) in various atlases. These results exemplify the diversity 

of atlas parcellation morphology. Fig 2 c shows a comparison of individual parcellation 

volumes and sphericities. The remaining atlases are shown in Fig. S2. In contrast to standard 

atlases, random atlases have constant sphericity with respect to volume size. Note that 

the distribution of parcellation shapes (i.e. sphericity) is similar across parcellation sizes 

in random atlases and their parcellations may not represent true anatomical or functional 

boundaries. Thus, random atlases allow us to study how parcellation scale affects network 

structure and SFC while keeping the effect of shape constant. Crucially, random atlases 

also allow us to explore if accurate and precise anatomical boundaries are essential in some 

experimental designs(Albers et al., 2021).

2.3. Varying atlases affect structural network topology

Although the morphology of atlas parcellations is diverse, we aimed to investigate how 

these morphological characteristics (particularly parcellation scale) affect structural network 

topology (Fig 3). Networks are the basis upon which we compute SFC, and not necessarily 

morphological characteristics, therefore, we measured how network density, mean degree, 

characteristic path length, mean clustering coefficient, and small worldness change as a 

function of parcellation scale (Fig. 3 a). We found that the change in these network measures 

are congruent between standard and random atlases and previous studies (Zalesky et al., 

2010). We also show that mean density, a global network measure, is similar between our 

control (N=13) and patient (N=28) cohorts (Fig. 3 b).

2.4. Varying atlases affect SFC: Single subject

Fig 4 illustrates an overview of how SFC is calculated. Structure is measured with high 

angular resolution diffusion imaging (HARDI) and function is measured with SEEG 

electrode contacts. Structural connectivity matrices are generated based on the atlas chosen 

(Fig. 4 a) and functional connectivity matrices are generated based on broadband (1 – 

127 Hz) cross-correlation of neural activity between the electrode contacts in widows of 

time (Fig. 4 b, see Methods section on ”Functional Connectivity Network Generation”). 
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Thus, the structural network is static while the functional network is computed across time. 

The connectivity matrices shown are example data from a single patient, sub-patient07. 

Functional connectivity matrices are shown for 6 hours before seizure onset, 90 s before 

seizure onset (t = −90), 40 s after seizure onset (t = 40), 88 seconds after seizure 

onset (seizure duration = 89 s), and 180 seconds after seizure onset (91 s after seizure 

termination). Each functional connectivity matrix time window was correlated to each 

structural connectivity matrix, yielding a SFC at each time window (Fig. 4 c). Each point 

represents the structural edge weight between two brain regions and their corresponding 

functional connectivity edge weight in broadband cross-correlation. A line of best fit is 

shown for visualization, and r values represent Spearman rank correlation for that time point. 

SFC was graphed for all time points during the interictal, preictal, ictal, and postictal periods 

for this patient in Fig. 4 d.

Four example standard and random atlases are graphed. We show that SFC increases 

during the ictal state for many atlases (CerebrA, AAL2, Craddock 400), but not all atlases 

(Hammersmith). The increase in SFC during seizures follows previous SFC studies using 

ECoG (Ashourvan et al., 2021; Shah et al., 2019). Similarly, SFC increases for a subset 

of random whole-brain atlases. While parcellation scale may affect SFC, it is not the 

only feature affecting SFC - the Hammersmith and AAL2 atlases have similar parcellation 

scales yet diverging neuroanatomical properties and SFC dynamics. These findings highlight 

inference from one type of atlas may suggest that seizure activity is not correlated to brain 

structure, contradicting previous studies (Shah et al., 2019).

2.5. Varying atlases affect SFC: Multiple subjects

Fig 5 shows SFC for ten standard atlases and five random atlases using SEEG broadband 

cross-correlation metrics averaged across all patients with clinically annotated seizures (N = 

10). The AAL2 atlas shows a statistically significant increase in SFC from preictal to ictal 

periods (p < 0.05 by Wilcoxon signed rank test after Bonferroni correction for 55 tests). This 

change from preictal to ictal SFC is denoted Delta SFC. Using the AAL2 atlas, this finding 

supports the hypothesis that seizure activity propagates and spreads via axon tracts making 

up the underlying structural connectivity of the brain (Ashourvan et al., 2021; Shah et al., 

2019). SFC was similarly calculated for random whole-brain atlases. A notable finding is 

that during the interictal period, resting state SFC (rsSFC) increases at larger number of 

parcellations (i.e. smaller parcellation volumes). We show that rsSFC is observably affected 

by parcellation scale when plotting the random atlases in Fig 5 (bottom row). These findings 

may be concerning given that the inherent structure-function relationship in the brain is not 

necessarily changing at resting state, but its measurement is greatly affected by atlas choice 

alone.

2.6. Varying atlases affect resting state SFC and ΔSFC

Resting state SFC (rsSFC) and the change in SFC (ΔSFC) from preictal to ictal periods 

are affected by parcellation scale (Fig 6). Fig. 6 a shows how rsSFC decreases with larger 

average parcellation volumes (moving left to right). A large average parcellation volume for 

a given atlas generally means there is a fewer number of total parcellations (e.g. the MNI 

structural atlas has a large average parcellation volume given only nine parcellations). In 
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contrast, Fig. 6 b shows ΔSFC increases with larger parcellation volumes (moving left to 

right). Broadly, ΔSFC may be interpreted as the change in SFC with respect to a disease 

(e.g. a seizure) and non-disease states. This change metric has been used to characterize and 

make inferences in many neurological disorders (Cocchi et al., 2014; Sathian and Crosson, 

2015). Only a subset of atlases show a change in SFC at seizure onset (Fig. 6 c). These 

results exemplify that either overly coarse or fine parcellations may not adequately capture 

the underlying SFC of the brain or its dynamics with relation to a neurological disease.

2.7. Atlas choice affects the power to test a hypothesis

The effect size between preictal and ictal SFC is calculated for all 55 atlases used in this 

study (Fig. 6 d). Cohen’s d and the difference between the mean ictal and mean preictal SFC 

are shown. Atlases are ordered by Cohen’s d.

We found that different atlases may alter the power to test the hypothesis about epilepsy 

pathophysiology that seizures propagate through the underlying structural tracts of the 

brain, measured with diffusion MRI. This hypothesis has been previously supported in prior 

studies(Ashourvan et al., 2021; Proix et al., 2017; Shah et al., 2019; Wirsich et al., 2016)

Many atlases commonly used in the neuroscience literature have comparable effect sizes to 

random atlases (where anatomical boundaries are not followed). The standard atlases with 

the greatest effect size (and thus power, given equal significance levels and sample sizes) 

are the Harvard-Oxford and AAL3 atlases. These atlases outperform many random atlases 

and may indicate that their parcellations may adequately capture the structure–function 

relationship in the brain. These atlases may capture the “true” structural network architecture 

(see Fig. 1 c) because these network architectures better differentiate and are more correlated 

to functional changes seen at seizure onset.

Despite the effect sizes of the Harvard-Oxford and AAL3 atlases, however, there may not be 

a “true gold standard” atlas or parcellation scheme given that resolution is more critical than 

the exact border location of parcels(Albers et al., 2021), there may be no single functional 

atlas for an individual across all brain states(Salehi et al., 2020), and many standard atlases 

yield similar effect sizes to randomly generated atlases (this study).

3. Discussion

In this study, we performed an extensive evaluation of the available structural, functional, 

random, and multi-modal atlases in the neuroscience literature (Table 1). We detailed 

morphological (Fig 2) and network (Fig 3) differences between these atlases. We showed the 

effect of atlas choice on the measurement of structure-function correlation (SFC) in epilepsy 

patients (Fig 4 and Fig 5). We also showed how various atlases may affect the power to test 

a hypothesis about seizure propagation (Fig 6). This work has implications for investigators 

because the ability to test hypotheses and make predictions about the brain’s function may 

depend on atlas choice. In light of our study using an extensive list of available brain atlases, 

we propose a general framework below for evaluating and selecting an atlas (Fig 7).
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3.1. A framework For brain atlases

Various publications have highlighted the Atlas Concordance Problem (Bohland et al., 2009; 

Dickie et al., 2017; Evans et al., 2012; Mandal et al., 2012), curated several atlases in freely 

accessible databases (Gorgolewski et al., 2015; Lawrence et al., 2021), and made arguments 

for why specific atlas features (Fig. 7 b) may be superior in certain situations (Alexander 

et al., 2017; Brennan et al., 2019; Cabezas et al., 2011; Caspers et al., 2013; Coalson et 

al., 2018; Diedrichsen et al., 2009; Salehi et al., 2020). There have been great efforts to 

publish accurate and precise parcellations as seen with an exponential rise in atlas-related 

publications over the last three decades (Fig. S8). However, none have found a general 

solution to the underlying problem: Does atlas choice matter?

We provide a framework that allows us to determine if the choice of an atlas is appropriate 

in the context of its (1) descriptive, (2) explanatory, and (3) predictive validity(Bassett et al., 

2018). This framework is borrowed from the logic for assessing network models(Bassett et 

al., 2018), animal models, (Belzung and Lemoine, 2011; Willner, 1984), and psychometric 

tests (Association, 2014; 1954), where assessment of these models with standard statistical 

model-selection methods is particularly challenging. Thus, theoretical constructs already 

formulated in other fields may provide guidance.

Descriptive validity of an atlas refers to an atlas that appropriately resembles the system 

in which we work. In other words, it has “face value”Willner (1984). An atlas should 

include features (Fig. 7 b) relevant to the study (e.g., parcellations containing subcortical 

structures relevant to epilepsy). Importantly, the descriptive validity of an atlas also relates 

to the modality scale we use to measure the brain - for example, DWI and fMRI at the 

macroscale (Sporns et al., 2005), iEEG and tracers at the meso scale (Fornito et al., 2016), 

and microscopy at the microscale (Sporns, 2011). It is important to select a parcellation 

scale that resembles the measurement modality resolution (Fig. 6 a). When correlating 

DWI with iEEG in our study at larger parcellation sizes, we lose our ability to discern 

precise anatomical locations that are structurally and functionally related (Fig 6 b. Similarly 

at smaller parcellation sizes (tending to voxel resolution), we may not capture the “true” 

structural network architecture (Fig. 1 c), and thus we lose our ability to capture structure–

function relationship changes at seizure onset.

An atlas is a tool to tackle a wide variety of problems in neuroscience. It may be part 

of a methodology to explain causality (explanatory validity) or it may be part of a 

methodology to make predictions (predictive validity). These two goals are distinct, and 

the differences between explanation and prediction “must be understood for progressing 

scientific knowledge” as described in “To Explain or Predict?” by Shmueli, 2010(Shmueli, 

2010). In the context of building scientific models, a model with a high explanatory ability 

may not have a high predictive ability.

Similar to models, atlases are also part of a scientific methodology to (1) explain how 

the brain functions or (2) predict new observations (i.e., they are one part of the overall 

methodological pipeline to test hypotheses or make predictions about the brain - for 

studies using atlases). Thus, atlases are tools. An atlas may be suitable for hypothesis 

testing, for example, because it includes subcortical structures like the hippocampus 
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(also high descriptive validity) to support a hypothesis about seizure propagation through 

subcortical structures. Intuitively, without subcortical structures, it would be impossible 

to test hypotheses about subcortical structures. Less intuitively, explanatory validity of an 

atlas may also relate to the power to test hypotheses, which we show in our study. Some 

atlases may not be suitable for scientific inquiry because they provide little statistical power 

to detect differences in disease states, for example, to detect changes in SFC at seizure 

onset (Fig. 6 b). It may be impossible to accurately predict power using an atlas before 

conducting a study, however, other studies asking similar questions using similar atlases may 

provide reasonable estimates of effect sizes (our study has similar effect sizes to a previous 

study(Shah et al., 2019)). Power may also depend on the accuracy of anatomical boundaries, 

or in our study, other atlas features such as parcellation scale and configuration (Fig. 6 d). 

For example, the Harvard-Oxford and AAL3 atlases have similar parcellation configurations 

and similar power.

Some atlases may or may not be not be suitable for making predictions about new or 

future observations about the brain. For example, many network properties change with atlas 

choice (Fig. 3), and thus it is reasonable to suspect model prediction outputs may change 

with respect to the atlas used to build and train such models. Importantly, the exclusion of 

some anatomical structures, like white matter or the cerebellum in some atlases, may affect 

the training data used to build predictive models. In our study, a translational goal is to 

predict functional seizure activity from structural data. SEEG records activity from both gray 

matter and white matter; however, recent studies have shown that white matter functional 

recordings may provide different information than gray matter(Greene et al., 2021; Mercier 

et al., 2017; Revell et al., 2021; Young et al., 2019). Thus, excluding some anatomical labels 

may affect model predictions. Another example is the use of network models to predict 

spread, such as α-synuclein across the brain connectome (Henderson et al., 2019). Without 

the incorporation of all brain structures related to α-synuclein spread, models to predict and 

monitor spread may be inaccurate.

3.2. Are accurate anatomical or functional parcellations needed?

During the course of conducting this study, and while undergoing peer review, other atlases 

with more accurate or relevant parcellations to the study’s population were published in 

different areas of neuroscience(Callaway et al., 2021; Doucet et al., 2021; Huang et al., 

2021; Joglekar et al., 2021; Lewis et al., 2021; Muñoz-Castañeda et al., 2021; 2021; 

Syversen et al., 2021; Wang et al., 2021; Zhu et al., 2021). Here, we cautiously propose 

a question: Are efforts to publish more atlases created with different algorithms or slightly 

modified parcellations from existing atlases providing any advantages over already existing 

atlases? Naturally, accurate and precise parcellations are needed when probing specific 

hypotheses about exact structures that depend on accurate segmentation of such structures 

(particularly at the sub-field or cellular level); however, few studies compare an atlas to a 

null atlas (one with randomly generated parcellations). Studies that do are Gordon et al. 

2016Gordon et al. (2016)and Lewis et al. 2021Lewis et al. (2021).

In this study, we show that random atlases provide similar power to detect differences in 

SFC between preictal and ictal states (Fig. 6 d). Indeed, it is difficult or nearly impossible 
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to evaluate a newly proposed atlas, given that the performance metrics to evaluate an atlas 

may be infinite (given infinite experimental designs). Only one such metric, SFC, was used 

in this study. But given new deep learning methods and other computationally expensive 

methods using trained classifiers for segmentation, existing atlases may be adequate for labs 

with limited funding resources, trained personnel, and access to GPUs. These labs may still 

be capable of answering important questions in neuroscience.

3.3. Which atlas should be used for my study?

One of the most difficult challenges as scientific investigators is to make optimal 

methodological decisions to discover useful findings for the scientific community. Selecting 

an atlas is one such decision we may make in some of our studies. We realize the 

framework provided above may be abstract to some readers; we also provide a concrete 

list of questions to consider when choosing an atlas (Fig. 7 c) for a neuroimaging study. 

However, in conducting this study, we also found that researchers may face three problems 

when choosing an atlas (Fig. 7 d) and these problems are worth further discussion. The first 

two problems are in selecting an atlas a priori, or before conducting a study. They deal with 

selecting one or a few atlases to preserve power, or in selecting a standard set of atlas to 

publish public data for other researchers to use. The third problem is the issue of conflicting 

results between two atlases and what to do after a study is conducted (post hoc). We provide 

a further discussion on these problems below.

3.4. Considerations in selecting one or a few atlases

Selecting one atlas may preserve power and avoid a multiple comparisons problem by 

testing every atlas. Selecting an additional atlas may also be chosen to confirm the 

robustness of results. In these cases, a balance of time, availability of tools, and atlas features 

logical for your study as outlined in Fig. 7 a-c need to be considered. For example, if a 

custom atlas is used, how will that affect replicability and meta analysis in the long-run for 

the field? What are the atlas features needed (such as scale and coverage of regions)? What 

are the computational costs and personnel training needed to use particular atlases? (See 

questions in Fig. 7 c).

3.5. Considerations in selecting a standard set of atlases

When publishing results and/or making data publicly available for other investigators to 

use, another approach is to select a set of atlases based on the perceived needs of other 

investigators, atlas features covered, prevalence of atlases used in the literature (Fig. S9a), 

and dummyTXdummy-(the prevalence of “turn-key” neuroimaging software that incorporate 

these atlases (Fig. S9b). Studies are emerging with data publicly available for use based 

on one or a few select atlases(Royer et al., 2021; Sinha et al., 2021). Many turn-key 

neuroimaging software also inevitably have to make the decision to employ a set of 

atlases to meet the needs of many researchers. A problem may arise, however, when other 

researchers need the published data at other atlas resolutions or with other structures. And 

unfortunately, the value of the data may be lessened and the effort put in by the publishing 

researchers may be in waste if this happens. What may help with the atlas concordance 

problem is perhaps a “standard set” of atlases – a set to benchmark studies across the 

neuroimaging field. Furthermore, turn-key tools like FreeSurfer, QSIprep, DSI-studio, FSL, 
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and many others may benefit from a standard set of incorporated atlases that captures 

enough features useful to the majority of the neuroscience community, even if not every 

available atlas is included. Based on our exhaustive search of atlases in the neuroimaging 

literature, the ability to collect them for use in a single study, the prevalence of certain 

atlases already in-use (Fig. S9a), and the prevalence of neuroimaging software (Fig. S9b) we 

propose an initial set of atlases (Fig. 7 d).

The AAL atlas is one of the most commonly used volumetric atlases (Fig. S9a), and 

along with the Harvard-Oxford atlas, may provide complimentary results when published 

together. The Brainnetome atlas(Fan et al., 2016) is another structural atlas at a finer 

resolution, having gained popularity since its introduction in 2016. The Destrieux and DKT 

atlases are also structural atlases, and already incorporated into one of the most commonly 

used neuroimaging software, FreeSurfer (https://surfer.nmr.mgh.harvard.edu). FreeSurfer 

provides surface-based registration, which may more accurately label cortical structures than 

volumetric registration (Fig. S6). Accurate segmentation of sub-cortical structures may also 

be acquired from FSLPerlaki et al. (2017) (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki). In addition, 

the MMP, or “Glasser” atlas was created from multi-modal imaging data. A commonly used 

atlas provided at different scales is Schaefer atlases provide, however, it does not include 

subcortical structures.

Random atlases may also provide robust conclusions by allowing researchers to manipulate 

the resolution, size, and shape of parcellations and iterate over many atlases. Although 

random parcellations may forgo accuracy because they do not follow true anatomical 

boundaries, these atlases may still provide similar conclusions to other standard atlases with 

the added benefit of permuting results over many atlases (Fig 6). An alternative to random 

atlases is to divide or combine the parcellations of another standard atlas (a “derived” 

atlas in Fig. 7 d. For example, the AAL 600 is derived from the AAL atlas in which its 

parcellations are further sub-divided using a specified algorithm. Parcellations may also be 

sub-divided randomly.

3.6. Considerations in conflicting results between atlases

When more than one atlas is used, results may conflict. We define conflicting results as two 

different atlases giving alternating predictions (e.g., good vs poor outcomes, increase in SFC 

rather than decrease in SFC) or support alternating working hypotheses (e.g., the temporal 

lobe is involved in one atlas, but another atlas highlights the involvement of the frontal lobe 

in the pathophysiology of a disease). We do not mean that conflicting results arise due to 

lack of statistical power (e.g., one atlas gives a p-value of 0.06 and another atlas 0.04).

One way to understand if the observed effect is not an artifact of the atlas choice is to select 

a few atlases with varying features and figure out what is causing the conflict. Unfortunately, 

there may be no other way given that every study will have different parameters and 

measurements to know what gives rise to conflicting results. In the matter where conflicting 

results arise due to atlas selection, then it may troubleshooting may be needed to understand 

what gives rise to the conflict (surface vs volumetric registration, parcellation scale, missing 

relevant structures, etc.). Fortunately, however, most atlases in this study affect power rather 
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than conflicting results (Fig. 6 d. We hope this discussion, our study, and our figures provide 

insight to others.

3.7. Limitations

Our study is not without limitations. A major limitation is that we did not evaluate atlases in 

a diverse set of experimental systems, but rather limited our analysis to a contemporary topic 

in epilepsy using SEEG implantations and to a study of the structure–function of the brain, 

potentially appealing to a wider audience. The question we were trying to answer (“Which 

atlas should we use?”) is a difficult problem to solve, given that it would be impossible 

to evaluate all atlases in all experimental designs. We attempted to generalize a framework 

given our findings after an extensive search for, and curation of, available neuroimaging 

atlases.

We also did not perform a feature selection analysis post-hoc to maximize Delta SFC at 

seizure onset; rather, we performed a comprehensive evaluation of many atlases to set a 

general framework and describe the nuances between the different atlases and their features. 

Ideally in our study, we required a whole-brain, volumetric atlas that covered the implanted 

SEEG electrode contacts. No such atlas existed. We opted for combining different atlases 

or developing randomly parcellated atlases used in previous publications (Mišić et al., 2015; 

Zalesky et al., 2010). However, no general framework existed to determine which atlas 

should be used or clearly outlined the feature space of these atlases. We had no formal basis 

for how changing an atlas could change our results and eventual goal for translating network 

models to better treat epilepsy patients.

Another limitation, we assume a change in SFC supports the hypothesis that seizures 

harness the underlying structural connectome of the brain (along with support from prior 

literature (Ashourvan et al., 2021; Betzel et al., 2019; Shah et al., 2019)). We may be biasing 

our results to select an atlas that maximizes Delta SFC. However, we wish to select a 

methodology that allows us to measure any change in brain state that accompanies seizure 

onset (explanatory validity), permitting us to probe epilepsy biology and understand the 

processes that govern seizure spread.

An additional limitation concerns the effect of parcellation volume on SFC. In probing this 

effect across our random atlases and atlases used in the literature, we did not perform 

controlled experiments to separate the effects of parcellation size from parcellation N 

(number of parcellations). A future experiment could fix the number of parcellations 

while changing parcellation volume (or vice versa). This would allow us to test whether 

parcellation volume or N drives changes in SFC. However, this was outside the scope of our 

study.

Our goal was to highlight the importance of selecting an appropriate atlas from an array of 

possibilities, using a data-driven, validated experimental paradigm(Shah et al., 2019). We 

acknowledge new studies that show that streamline counts may not completely reflect the 

underlying diffusion data(Smith et al., 2015); however, comparing such techniques were 

outside the scope and goal of our focused study. We also note that few patients had lesions 

on imaging. Misalignment due to non-linear distortion may add noise to our data; however, 
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few patients had lesions. Our study was not conducted to necessarily make the claim that 

SFC changes exist in the brain at seizure onset, but rather to show how varying atlases may 

change SFC.

Finally, our analysis relies on the assumption that an atlas approach must be used to quantify 

SFC and does not consider an atlas-agnostic approach nor if such an approach is appropriate. 

To study SFC using networks, both structural and functional networks must have nodes 

representing the same entity - neuroanatomical structures. The atlases defining anatomical 

structures (whether they are functionally, histologically, genetically, procedurally, multi-

modally, or randomly defined) are the link between structural connectivity and functional 

connectivity measurements of the brain. To study SFC, we must rely on the neuroanatomical 

structures defined by an atlas, then localize electrodes to these regions and correlate 

the structural measurements (e.g., streamlines, fractional anisotropy, mean diffusivity) 

with functional measurements (e.g., cross-correlation, coherence, mutual information). 

Fundamentally, we are defining the nodes of the brain in advance, which can alter our 

results; a more comprehensive discussion on defining the nodes of the brain are in Fornito et 

al., 2016 and Bijsterbosh et al., 2017 Bijsterbosch et al. (2017); Fornito et al. (2016).

3.8. Conclusion

The publication of atlases and their distribution across neuroimaging software platforms 

has risen exponentially over the last three decades. Our study illustrates the critical need to 

evaluate the reproducibility of neuroscience research using atlases published alongside tools 

and analysis pipelines already established in the neuroscience community (e.g., FreeSurfer, 

DSI studio, FSL, SPM, QSIprep, fMRIprep, MRIcron, ANTs, and others).

4. Materials and methods

4.1. Human dataset

MRI data was collected from forty-one individuals, including thirteen healthy controls 

and twenty-eight drug-resistant epilepsy patients at the Hospital of the University 

of Pennsylvania. Twenty-four patients underwent stereoelectroencephalography (SEEG) 

implantation and four underwent electrocorticography (ECoG) implantation. Ten of the 

SEEG patients had clinically annotated seizures and were used for SFC analyses. Inclusion 

criteria consisted of all individuals who agreed to participate in our research scanning 

protocol, and (if they had implantations) allowed their de-identified intracranial EEG 

(iEEG) data to be publicly available for research purposes on the International Epilepsy 

Electrophysiology Portal (https://www.ieeg.org) Kini et al. (2016); Wagenaar et al. (2013). 

Seizure evaluation was determined via comprehensive clinical assessment, which included 

multimodal imaging, scalp and intracranial video-EEG monitoring, and neuropsychological 

testing. This study was approved by the Institutional Review Board of the University of 

Pennsylvania, and all subjects provided written informed consent prior to participating. See 

Table S2 for subject demographics.
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4.2. Structure

Methods and pipelines for structural connectivity generation and analysis are described in 

the following sections. Specific GitHub files and code are included where applicable.

4.3. Imaging protocol

Prior to electrode implantation, MRI data were collected on a 3T Siemens Magnetom 

Trio scanner using a 32-channel phased-array head coil. High-resolution anatomical images 

were acquired using a magnetization prepared rapid gradient echo (MPRAGE) T1-weighted 

sequence (repetition time = 1810 ms, echo time = 3.51 m, flip angle = 9, field of view = 

240 mm, resolution = 0.94×0.94×1.0 mm3 ). High Angular Resolution Diffusion Imaging 

(HARDI) was acquired with a single-shot EPI multi-shell diffusion-weighted imaging 

(DWI) sequence (116 diffusion sampling directions, b-values of 0, 300, 700, and 2000 

s/mm2, resolution = 2.5×2.5×2.5 mm3, field of view = 240 mm). Following electrode 

implantation, spiral CT images (Siemens) were obtained clinically for the purposes of 

electrode localization. Both bone and tissue windows were obtained (120 kV, 300 mA, axial 

slice thickness = 1.0 mm)

4.4. Diffusion weighted imaging (DWI) preprocessing

HARDI images were subject to the preprocessing pipeline, QSIPrep, to ensure 

reproducibility and implementation of the best practices for processing of diffusion images 

(Cieslak et al., 2021). Briefly, QSIPrep performs advanced reconstruction and tractography 

methods in curated workflows using tools from leading software packages, including FSL, 

ANTs, and DSI Studio with input data specified in the Brain Imaging Data Structure (BIDS) 

layout.

4.5. Structural network generation

DSI-Studio (http://dsi-studio.labsolver.org, version: December 2020) was used to reconstruct 

the orientation density functions within each voxel using generalized q-sample imaging 

with a diffusion sampling length ratio of 1.25 (Fang-Cheng et al., 2010). Deterministic 

whole-brain fiber tracking was performed using an angular threshold of 35 degrees, step 

size of 1 mm, and quantitative anisotropy threshold based on Otsu’s threshold (Otsu, 

1979). Tracks with length shorter than 10 mm or longer than 800 mm were discarded, 

and a total of 1,000,000 tracts were generated per brain. Deterministic tractography was 

chosen based upon prior work indicating that deterministic tractography generates fewer 

false positive connections than probabilistic approaches, and that network-based estimations 

are substantially less accurate when false positives are introduced into the network compared 

with false negatives (Zalesky et al., 2010). To calculate structural connectivity, atlases listed 

in Table 1 were used. Structural networks were generated by computing the number of 

streamlines passing through each pair of structural regions in each specific atlas. Streamline 

counts were log-transformed and normalized to the maximum streamline count, as is 

common in prior studies (Bonilha et al., 2015; Park et al., 2017; Taylor et al., 2018; Wirsich 

et al., 2016). GitHub: packages/imaging/tractography/tractography.py
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4.6. Atlases

Atlas descriptions and sources used in this study are found in Table S1. The 55 atlases used 

are listed explicitly in the reporting of effect sizes in Fig. 7 d. All atlases were sourced in 

MNI space and if not already, resliced to dimensions 182×218×182. Atlases were linear and 

non-linear registered to T1w subject space using the ICBM 2009c Nonlinear Asymmetric 

template (Fonov et al., 2011) and FSL flirt and fnirt(Jenkinson et al., 2012).

We also included three atlases registered using surface-based approaches. These atlases 

(the DKT, DK, and Destrieux atlases) are output from FreeSurfer’s recon-all pipeline(Dale 

et al., 1999). Many neuroimaging studies and software use volumetric approaches for 

registration(Coalson et al., 2018), yet surface-based approaches may yield more accurate 

labeling of the cortical surface (Fig. S6). The DKT40 atlas referred in this study is the 

surface version, while the DKT31 OASIS is the publicly available volumetric version (see 

Table S1).

In addition to published standard atlases above, we used whole-brain random atlases. A 

limitation of standard atlases is that they may not have anatomical definitions for all 

regions of the brain, and therefore, implanted electrodes may not be assigned properly to 

a region. This limitation was the impetus of our study (i.e., selecting an appropriate atlas for 

SEEG electrode localization and quantifying SFC). Whole-brain random atlases, in contrast, 

provide coverage to all implanted electrodes. They allow for the ability to change some 

morphological properties (i.e. parcellation size), while keeping other morphologies the same 

(e.g., parcellation shape; Fig. 2 d). However, a limitation of random atlases is that their 

regions may not represent true anatomical or functional boundaries. Random atlases were 

built in the ICBM 2009c Nonlinear Asymmetric template space and covered all voxels, 

excluding those labeled as CSF or outside the brain. To fill these points, a pseudo grassfire 

algorithm was applied (Zalesky et al., 2010). Briefly, N points representing the number of 

parcels of the atlas were randomly chosen as seed points. These seed points were iteratively 

expanded in all six Cartesian directions until all points were covered by one of the initial N 

seeds. After each iterative step, the smallest volume region expanded first. Random atlases 

created were of N equal to 10, 30, 50, 75, 100, 200, 300, 400, 500, 750, 1000, 2000, 5000, 

and 10,000 parcels. Five permutations for each N were created. GitHub code to generate 

random atlases: packages/imaging/randomAtlas/randomAtlasGeneration.py

4.7. Atlas morphology: volume and sphericity

Atlas morphological measurements included parcellation size (volume) and shape 

(sphericity) (Fig 2). Parcellation volume was calculated as the number of voxels in an parcel 

and log10 transformed. Parcellation sphericity was calculated as the ratio of the surface area 

of a sphere with an equal volume of the parcellation to the actual surface area of the atlas 

parcellation. Under this definition, sphericity is bounded from 0 to 1 where 1 is a perfect 

sphere. For reference, a perfect cube and a hemi-sphere have a sphericity of 0.8 and 0.7 

respectively. GitHub: packages/imaging/regionMorphology/regionMorphology.py
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4.8. Structural network measures

We characterized the structural network topology of 52 atlases (Fig 3 and Fig. S3). The three 

surface-based atlases (DKT40, DK, and Destrieux atlases output from the FreeSurfer recon-

all pipeline(Dale et al., 1999)) were excluded from analyses of Fig 3 and Fig 3 because they 

were individually registered to each subjects’ T1w image. To quantify network topology, we 

examined density, mean degree, mean clustering coefficient, characteristic path length, and 

small worldness. Connectivity matrices were first binarized, using a threshold of 0, and a 

distance matrix was computed. The same binarization process and threshold was used across 

all atlases. The distance of any nodes that were disconnected from the main graph was set to 

the maximum distance between any pair of nodes in the main graph. Density, mean degree, 

clustering coefficient, and characteristic path length were then calculated on the binary, 

undirected graphs. Small worldness was calculated as the s-ratio where s = g/I and is the 

ratio of the average, normalized clustering coefficient, C, to the normalized characteristic 

path length, I. g = CG/CR and l = 1G/lR where G is the graph of interest and R represents a 

“random’ graph that is equivalent to G. To approximate the equivalent random graph R due 

to intractable computational costs (Maslov, 2002), a well-known analytical equivalent CR = 

d/N and IR = log N/log d were used, where d denotes average nodal degree. All network 

measures were calculated using the Brain Connectivity Toolbox for Python. GitHub: papers/

brainAtlas/Script_05_structure_02_network_measures.py

4.9. Function

Methods and pipelines for functional connectivity generation and analysis are described in 

the following sections. Specific GitHub files and code are included where applicable.

4.10. Intracranial EEG acquisition

Stereotactic Depth Electrodes were implanted in patients based on clinical necessity. 

Continuous SEEG signals were obtained for the duration of each patient’s stay in the 

epilepsy monitoring unit. Intracranial data was recorded at either 512 or 1024 Hz for each 

patient. Seizure onset times were defined by the unequivocal onset (Litt et al., 2001). All 

annotations were verified and consistent with detailed clinical documentation. If a patient 

had more than one seizure annotated, the first seizure longer than 30 seconds without 

artifacts was used.

4.11. Electrode localization

In-house software (Azarion et al., 2014) was used to assist in localizing electrodes after 

registration of pre-implant and post-implant neuroimaging data. All electrode coordinates 

and labels were saved and matched with the electrode names on IEEG.org. All electrode 

localizations were verified by a board-certified neuroradiologist (J.S.). Electrode contact 

assignment to atlas region assignment was performed by rounding electrode coordinates 

(x,y,z) to the nearest voxel and indexing the given atlas at that voxel in the same space 

as the patient’s T1w image. Electrodes that fell outside the atlas of interest were excluded 

from subsequent analysis. Please see Fig. S10 for visualization. We also show the percentage 

of contacts assigned a region given an atlas (Fig. S7) GitHub: packages/atlasLocalization/

atlasLocalization.py
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4.12. Functional connectivity network generation

Functional connectivity networks were generated from four periods: interictal, preictal, ictal, 

and postictal. (1) The interictal period consisted of the time approximately 6 hours before 

the ictal period. (2) The preictal period consisted of the time immediately before the ictal 

period. (3) The ictal period consisted of the time between the seizure unequivocal onset 

and seizure termination. (4) The postictal period consisted of the time immediately after 

the ictal period. Interictal, preictal, and postictal periods were 180 seconds in duration. 

Following removal of artifact-ridden electrodes, SEEG signals inside either GM or WM for 

each period were common-average referenced to reduce potential sources of correlated noise 

(Ludwig et al., 2009). Next, each period was divided into 2 s time windows with 1 s overlap 

(Khambhati et al., 2017; 2016; 2015; Kramer et al., 2010). To generate a functional network 

representing broadband functional interactions between SEEG signals (Fig. 4 b), we carried 

out a method described in detail previously (Khambhati et al., 2016; Shah et al., 2019). 

Namely, signals were notch-filtered at 60 Hz to remove power line noise, low-pass and 

high-pass filtered at 127 Hz and 1 Hz to account for noise and drift, and pre-whitened using 

a first-order autoregressive model to account for slow dynamics. Functional networks were 

then generated by applying a normalized cross correlation function ρ between the signals of 

each pair of electrodes within each time window, using the formula:

ρxy = max
τ

1
T t = 1

T xk t − xk ∗ yk t + τ − yk
σxkσyk

where x and y are signals from two electrodes, k is the 2 s time window, t is one of 

the T samples during the time window, and τ is the time lag between signals, with a 

maximum lag of 0.5 s. Here, σ represents the standard deviation of the signal. Note that 

functional connectivity measurements were also calculated for coherence and zero time-lag 

Pearson and Spearman rank correlations with associated p-values in defined frequency bands 

reviewed in Newson and Thiagarajan 2019 (Newson and Thiagarajan, 2019), but were not 

analyzed or used in hypothesis testing in the study. For data, available data, please see “Data 

availability and Reproducibility” section below. Networks are represented as fully-weighted 

connectivity matrices. GitHub Code: GitHub:code/tools/echobase.py

4.13. Structure–function correlation

To quantify the relationship between structure and function in the epileptic brain, we 

computed the Spearman rank correlation coefficient between the edges of the structural 

connectivity network and the edges of the functional connectivity networks (Fig. 4 c). To 

avoid redundancy given the symmetric nature of the matrices, only the upper triangle was 

analyzed. In brief, the structural connectivity network, representing normalized streamline 

counts between each atlas region, was first down sampled to only include regions that 

contained at least one SEEG contact Fig. S10. This gave one static representation of 

structural connectivity. In the case where multiple electrodes fell in the same atlas region, a 

random electrode was selected to represent the functional activity of that neuroanatomically 

defined region. Next, for every time-window of the functional network, the functional 

network edges were correlated with the down sampled, static structural network edges. 
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This resulted in a structure–function correlation time series. Note that atlases with very 

small region volumes included more electrodes for SFC calculation. Electrodes that did not 

localize to an atlas were excluded from analysis. To average the SFC for all patients and 

each atlas (Fig 5), SFC time-series was resampled to 100 s for each period and each sample 

was averaged together. GitHub code: packages/eeg/echobase/echobase.py

4.14. Rssfc and Delta SFC

Resting-state SFC (rsSFC) was defined as the SFC during the interictal period, 

approximately 6 hours before the ictal period. The mean SFC of that period was computed. 

Delta SFC was defined as the change in the mean SFC from the preictal to the ictal period 

(Fig 5 top left panel). rsSFC and Delta SFC was calculated for each atlas (Fig 6).

4.15. Statistics

Preictal and ictal SFC for each atlas were compared using effect sizes across the 55 atlases 

shown in Fig. 6 d. Cohen’s d and the difference between preictal and ictal SFC was 

calculated.

4.16. Data availability and reproducibility

All code files used in this manuscript are available at https://github.com/andyrevell/

revellLab. All de-identified raw and processed data (except for patient MRI imaging) are 

available for download by following the links on the GitHub. Raw imaging data is available 

upon reasonable request from Principal Investigator K.A.D. iEEG snippets used specifically 

in this manuscript are also available, while full iEEG recordings are publicly available at 

https://www.ieeg.org. The Python environment for the exact packages and versions used in 

this study in contained in the environment directory within the GitHub. The QSIPrep docker 

container was used for DWI preprocessing.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank Adam Gibson, Carolyn Wilkinson, Jacqueline Boccanfuso, Magda Wernovsky, Ryan Archer, Kelly 
Oechsel, members of Andrew’s Thesis Committee, and all other members and staff of the Center for 
Neuroengineering and Therapeutics for their continued help and support in this work.

Funding

This work was supported by National Institutes of Health grants 5-T32-NS-091006–07, 1R01NS116504, 
1R01NS099348, 1R01NS085211, and 1R01MH112847. We also acknowledge support by the Thornton 
Foundation, the Mirowski Family Foundation, the ISI Foundation, the John D. and Catherine T. MacArthur 
Foundation, the Sloan Foundation, the Pennsylvania Tobacco Fund, and the Paul Allen Foundation.

References

Albers KJ, Ambrosen KS, Liptrot MG, Dyrby TB, Schmidt MN, Morup M, 2021. Using 
connectomics for predictive assessment of brain parcellations. Neuroimage 238, 118170. 
doi:10.1016/j.neuroimage.2021.118170. [PubMed: 34087365] 

Revell et al. Page 17

Neuroimage. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/andyrevell/revellLab
https://github.com/andyrevell/revellLab
https://www.ieeg.org/


Alexander B, Murray AL, Loh WY, Matthews LG, Adamson C, Beare R, Chen J, Kelly CE, Rees 
S, Warfield SK, Anderson PJ, Doyle LW, Spittle AJ, Cheong JLY, Seal ML, Thompson DK, 
2017. A new neonatal cortical and subcortical brain atlas: the melbourne children’s regional 
infant brain (m-CRIB) atlas. Neuroimage 147, 841–851. doi:10.1016/j.neuroimage.2016.09.068. 
[PubMed: 27725314] 

Ashourvan A, Shah P, Pines A, Gu S, Lynn CW, Bassett DS, Davis KA, Litt B, 2021. Pairwise 
maximum entropy model explains the role of white matter structure in shaping emergent co-
activation states. Commun. Biol 4 (1). doi:10.1038/s42003-021-01700-6.

Association, A.E.R. (Ed.), 2014. Standards for Educational and Psychological Testing American 
Educational Research Association, Lanham, MD.

Association, A.P., 1954. Technical recommendations for psychological tests and diagnostic techniques. 
Psychol Bull 51 (2:2), 1–38. doi:10.1037/h0053479.

Azarion AA, Wu J, Pearce A, Krish VT, Wagenaar J, Chen W, Zheng Y, Wang H, Lucas TH, Litt B, 
Gee JC, Davis KA, 2014. An open-source automated platform for three-dimensional visualization 
of subdural electrodes using CT-MRI coregistration. Epilepsia 55 (12), 2028–2037. doi:10.1111/
epi.12827. [PubMed: 25377267] 

Barker FG, 1995. Phineas among the phrenologists: the american crowbar case and nineteenth-century 
theories of cerebral localization. J. Neurosurg 82 (4), 672–682. doi:10.3171/jns.1995.82.4.0672. 
[PubMed: 7897537] 

Bassett DS, Zurn P, Gold JI, 2018. On the nature and use of models in network neuroscience. Nat. Rev. 
Neurosci 19 (9), 566–578. doi:10.1038/s41583-018-0038-8. [PubMed: 30002509] 

Beal DS, Lerch JP, Cameron B, Henderson R, Gracco VL, De Nil LF, 2015. The trajectory of gray 
matter development in broca’s area is abnormal in people who stutter. Front. Hum. Neurosci 9. 
doi:10.3389/fnhum.2015.00089. [PubMed: 25667571] 

Belzung C, Lemoine M, 2011. Criteria of validity for animal models of psychiatric disorders: focus 
on anxiety disorders and depression. Biol. Mood Anxiety Disord 1, 9. doi:10.1186/2045-5380-1-9. 
[PubMed: 22738250] 

Betzel RF, Medaglia JD, Kahn AE, Soffer J, Schonhaut DR, Bassett DS, 2019. Structural, 
geometric and genetic factors predict interregional brain connectivity patterns probed by 
electrocorticography. Nat. Biomed. Eng doi:10.1038/s41551-019-0404-5.

Bijsterbosch J, Smith SM, Beckmann CF, 2017. An Introduction to Resting State FMRI Functional 
Connectivity Oxford University Press.

Bohland JW, Bokil H, Allen CB, Mitra PP, 2009. The brain atlas concordance problem: 
quantitative comparison of anatomical parcellations. PLoS ONE 4 (9), e7200. doi:10.1371/
journal.pone.0007200. [PubMed: 19787067] 

Bonilha L, Gleichgerrcht E, Nesland T, Rorden C, Fridriksson J, 2015. Gray matter axonal 
connectivity maps. Front. Psychiatry 6. doi:10.3389/fpsyt.2015.00035. [PubMed: 25698978] 

Brennan BP, Wang D, Li M, Perriello C, Ren J, Elias JA, Van Kirk NP, Krompinger JW, Pope HG, 
Haber SN, Rauch SL, Baker JT, Liu H, 2019. Use of an individual-level approach to identify 
cortical connectivity biomarkers in obsessive-compulsive disorder. Biol. Psychiatry. Cognit. 
Neurosci. Neuroimaging 4 (1), 27–38. doi:10.1016/j.bpsc.2018.07.014. [PubMed: 30262337] 

Cabezas M, Oliver A, Lladó X, Freixenet J, Cuadra MB, 2011. A review of atlas-based segmentation 
for magnetic resonance brain images. Comput. Methods Programs Biomed 104 (3), e158–77. 
doi:10.1016/j.cmpb.2011.07.015. [PubMed: 21871688] 

Callaway EM, Dong H-W, Ecker JR, Hawrylycz MJ, Huang ZJ, Lein ES, Ngai J, Osten P, Ren B, 
Tolias AS, White O, Zeng H, Zhuang X, Ascoli GA, Behrens MM, Chun J, Feng G, Gee JC, 
Ghosh SS, Halchenko YO, Hertzano R, Lim BK, Martone ME, Ng L, Pachter L, Ropelewski 
AJ, Tickle TL, Yang XW, Zhang K, Bakken TE, Berens P, Daigle TL, Harris JA, Jorstad NL, 
Kalmbach BE, Kobak D, Li YE, Liu H, Matho KS, Mukamel EA, Naeemi M, Scala F, Tan P, 
Ting JT, Xie F, Zhang M, Zhang Z, Zhou J, Zingg B, Armand E, Yao Z, Bertagnolli D, Casper 
T, Crichton K, Dee N, Diep D, Ding S-L, Dong W, Dougherty EL, Fong O, Goldman M, Goldy 
J, Hodge RD, Hu L, Keene CD, Krienen FM, Kroll M, Lake BB, Lathia K, Linnarsson S, Liu 
CS, Macosko EZ, McCarroll SA, McMillen D, Nadaf NM, Nguyen TN, Palmer CR, Pham T, 
Plongthongkum N, Reed NM, Regev A, Rimorin C, Romanow WJ, Savoia S, Siletti K, Smith K, 
Sulc J, Tasic B, Tieu M, Torkelson A, Tung H, van Velthoven CTJ, Vanderburg CR, Yanny AM, 

Revell et al. Page 18

Neuroimage. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fang R, Hou X, Lucero JD, Osteen JK, Pinto-Duarte A, Poirion O, Preissl S, Wang X, Aldridge 
AI, Bartlett A, Boggeman L, O’Connor C, Castanon RG, Chen H, Fitzpatrick C, Luo C, Nery 
JR, Nunn M, Rivkin AC, Tian W, Dominguez B, Ito-Cole T, Jacobs M, Jin X, Lee C-T, Lee K-F, 
Miyazaki PA, Pang Y, Rashid M, Smith JB, Vu M, Williams E, Biancalani T, Booeshaghi AS, 
Crow M, Dudoit S, Fischer S, Gillis J, Hu Q, Kharchenko PV, Niu S-Y, Ntranos V, Purdom E, 
Risso D, de Bzieux HR, Somasundaram S, Street K, Svensson V, Vaishnav ED, Van den Berge K, 
Welch JD, An X, Bateup HS, Bowman I, Chance RK, Foster NN, Galbavy W, Gong H, Gou L, 
Hatfield JT, Hintiryan H, Hirokawa KE, Kim G, Kramer DJ, Li A, Li X, Luo Q, Muñoz-Castañeda 
R, Stafford DA, Feng Z, Jia X, Jiang S, Jiang T, Kuang X, Larsen R, Lesnar P, Li Y, Li Y, Liu L, 
Peng H, Qu L, Ren M, Ruan Z, Shen E, Song Y, Wakeman W, Wang P, Wang Y, Wang Y, Yin L, 
Yuan J, Zhao S, Zhao X, Narasimhan A, Palaniswamy R, Banerjee S, Ding L, Huilgol D, Huo B, 
Kuo HC, Laturnus S, Li X, Mitra PP, Mizrachi J, Wang Q, Xie P, Xiong F, Yu Y, Eichhorn SW, 
Berg J, Bernabucci M, Bernaerts Y, Cadwell CR, Castro JR, Dalley R, Hartmanis L, Horwitz GD, 
Jiang X, Ko AL, Miranda E, Mulherkar S, Nicovich PR, Owen SF, Sandberg R, Sorensen SA, Tan 
ZH, Allen S, Hockemeyer D, Lee AY, Veldman MB, Adkins RS, Ament SA, Bravo HC, Carter 
R, Chatterjee A, Colantuoni C, Crabtree J, Creasy H, Felix V, Giglio M, Herb BR, Kancherla J, 
Mahurkar A, McCracken C, Nickel L, Olley D, Orvis J, Schor M, Hood G, Dichter B, Grauer M, 
Helba B, Bandrowski A, Barkas N, Carlin B, D’Orazi FD, Degatano K, Gillespie TH, Khajouei 
F, Konwar K, Thompson C, Kelly K, Mok S, Sunkin S, BRAIN NB, I.C.C., B.C.a. BRAIN, 
I.C.C.N., BICCN, c.p.i., Principal, m.e., Manuscript, w.a.f.g., Analysis, c., Integrated, d.a., d.g.a.p. 
scRNA seq, a.s.-s., ATAC-seq, d.g.a.p., Methylcytosine, d.p.a.a., Epi-retro seq, d.g.a.p., Omics, 
d.a., Tracing, a.c.d.g., Morphology, d.g.a.r., OLST/STPT, a.o.d.g., Morphology, c.a.i.a., Spatially, 
r.s.-c.t.M., Multimodal, p.P.-s., Transgenic, t., NeMO, a.a.a., Brain, I.L.B.a., DANDI, a., Brain, 
C.D.C.B., Project, m., 2021. A multimodal cell census and atlas of the mammalian primary motor 
cortex. Nature 598 (7879), 86–102. doi:10.1038/s41586-021-03950-0. [PubMed: 34616075] 

Caspers S, Eickhoff SB, Zilles K, Amunts K, 2013. Microstructural grey matter 
parcellation and its relevance for connectome analyses. Neuroimage 80, 18–26. doi:10.1016/
j.neuroimage.2013.04.003. [PubMed: 23571419] 

Cieslak M, Cook PA, He X, Yeh FC, Dhollander T, Adebimpe A, Aguirre GK, Bassett DS, Betzel RF, 
Bourque J, Cabral LM, Davatzikos C, Detre JA, Earl E, Elliott MA, Fadnavis S, Fair DA, Foran 
W, Fotiadis P, Garyfallidis E, Gies brecht B, Gur RC, Gur RE, Kelz MB, Keshavan A, Larsen BS, 
Luna B, Mackey AP, Milham MP, Oathes DJ, Perrone A, Pines AR, Roalf DR, Richie-Halford A, 
Rokem A, Sydnor VJ, Tapera TM, Tooley UA, Vettel JM, Yeatman JD, Grafton ST, Satterthwaite 
TD, 2021. QSIPrep: an integrative platform for preprocessing and reconstructing diffusion MRI 
data. Nat. Methods 18 (7), 775–778. doi:10.1038/s41592-021-01185-5. [PubMed: 34155395] 

Coalson TS, Van Essen DC, Glasser MF, 2018. The impact of traditional neuroimaging methods on the 
spatial localization of cortical areas. Proc. Natl. Acad. Sci 115 (27), E6356–E6365. doi:10.1073/
pnas.1801582115. [PubMed: 29925602] 

Cocchi L, Harding IH, Lord A, Pantelis C, Yucel M, Zalesky A, 2014. Disruption of structure-
function coupling in the schizophrenia connectome. Neuroimage Clin 4, 779–787. doi:10.1016/
j.nicl.2014.05.004. [PubMed: 24936428] 

Dale AM, Fischl B, Sereno MI, 1999. Cortical surface-based analysis. 
Neuroimage 9 (2), 179–194. doi:10.1006/nimg.1998.0395.https://linkinghub.elsevier.com/
retrieve/pii/S1053811998903950 [PubMed: 9931268] 

Dickie DA, Shenkin SD, Anblagan D, Lee J, Blesa Cabez M, Rodriguez D, Boardman JP, Waldman 
A, Job DE, Wardlaw JM, 2017. Whole brain magnetic resonance image atlases: a systematic 
review of existing atlases and caveats for use in population imaging. Front. Neuroinform 11, 1. 
doi:10.3389/fninf.2017.00001. [PubMed: 28154532] 

Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N, 2009. A probabilistic MR atlas of the 
human cerebellum. Neuroimage 46 (1), 39–46. doi:10.1016/j.neuroimage.2009.01.045. [PubMed: 
19457380] 

Doucet GE, Labache L, Thompson PM, Joliot M, Frangou S, Alzheimer’s DNI, 2021. Atlas55+: brain 
functional atlas of resting-state networks for late adulthood. Cereb. Cortex 31 (3), 1719–1731. 
doi:10.1093/cercor/bhaa321. [PubMed: 33188411] 

Evans AC, Janke AL, Collins DL, Baillet S, 2012. Brain templates and atlases. Neuroimage 62 (2), 
911–922. doi:10.1016/j.neuroimage.2012.01.024. [PubMed: 22248580] 

Revell et al. Page 19

Neuroimage. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://linkinghub.elsevier.com/retrieve/pii/S1053811998903950
https://linkinghub.elsevier.com/retrieve/pii/S1053811998903950


Fan L, Li H, Zhuo J, Zhang Y, Wang J, Chen L, Yang Z, Chu C, Xie S, Laird AR, Fox PT, Eickhoff 
SB, Yu C, Jiang T, 2016. The human brainnetome atlas: a new brain atlas based on connectional 
architecture. Cereb. Cortex 26 (8), 3508–3526. doi:10.1093/cercor/bhw157. [PubMed: 27230218] 

Fang-Cheng Y, Wedeen VJ, Tseng W-YI, 2010. Generalized q-sampling imaging. IEEE Trans. Med. 
Imaging 29 (9), 1626–1635. doi:10.1109/TMI.2010.2045126. [PubMed: 20304721] 

Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL, 2011. Unbiased 
average age-appropriate atlases for pediatric studies. Neuroimage 54 (1), 313–327. doi:10.1016/
j.neuroimage.2010.07.033. [PubMed: 20656036] 

Fornito A, Zalesky A, Bullmore E, 2016. Fundamentals of Brain Network Analysis Academic Press.

Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, Ugurbil K, Andersson 
J, Beckmann CF, Jenkinson M, Smith SM, Van Essen DC, 2016. A multi-modal parcellation 
of human cerebral cortex. Nature 536 (7615), 171–178. doi:10.1038/nature18933. [PubMed: 
27437579] 

Gordon EM, Laumann TO, Adeyemo B, Huckins JF, Kelley WM, Petersen SE, 2016. Generation and 
evaluation of a cortical area parcellation from resting-state correlations. Cerebr. Cortex 26 (1), 
288–303. doi:10.1093/cercor/bhu239.

Gorgolewski KJ, Varoquaux G, Rivera G, Schwarz Y, Ghosh SS, Maumet C, Sochat VV, Nichols TE, 
Poldrack RA, Poline J-B, Yarkoni T, Margulies DS, 2015. Neurovault.org: a web-based repository 
for collecting and sharing unthresholded statistical maps of the human brain. Front. Neuroinform 
9, 8. doi:10.3389/fn-inf.2015.00008. [PubMed: 25914639] 

Greene P, Li A, González-Martínez J, Sarma SV, 2021. Classification of stereo-EEG contacts in white 
matter vs. gray matter using recorded activity. Front. Neurol 11. doi:10.3389/fneur.2020.605696.

Hammers A, Allom R, Koepp MJ, Free SL, Myers R, Lemieux L, Mitchell TN, Brooks DJ, Duncan 
JS, 2003. Three-dimensional maximum probability atlas of the human brain, with particular 
reference to the temporal lobe. Hum. Brain Mapp 19 (4), 224–247. doi:10.1002/hbm.10123. 
[PubMed: 12874777] 

Henderson MX, Cornblath EJ, Darwich A, Zhang B, Brown H, Gathagan RJ, Sandler RM, Bassett DS, 
Trojanowski JQ, Lee VMY, 2019. Spread of - synuclein pathology through the brain connectome 
is modulated by selective vulnerability and predicted by network analysis. Nat. Neurosci 22 (8), 
1248–1257. doi:10.1038/s41593-019-0457-5. [PubMed: 31346295] 

Huang C-C, Rolls ET, Feng J, Lin C-P, 2021. An extended human connectome project multimodal 
parcellation atlas of the human cortex and subcortical areas. Brain Struct. Funct doi:10.1007/
s00429-021-02421-6.

Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM, 2012. FSL. Neuroimage 62 (2), 
782–790. doi:10.1016/j.neuroimage.2011.09.015. [PubMed: 21979382] 

Joglekar A, Prjibelski A, Mahfouz A, Collier P, Lin S, Schlusche AK, Marrocco J, Williams SR, 
Haase B, Hayes A, Chew JG, Weisenfeld NI, Wong MY, Stein AN, Hardwick SA, Hunt T, Wang 
Q, Dieterich C, Bent Z, Fedrigo O, Sloan SA, Risso D, Jarvis ED, Flicek P, Luo W, Pitt GS, 
Frankish A, Smit AB, Ross ME, Tilgner HU, 2021. A spatially resolved brain region- and cell 
type-specific isoform atlas of the postnatal mouse brain. Nat. Commun 12 (1), 463. doi:10.1038/
s41467-020-20343-5. [PubMed: 33469025] 

Khambhati AN, Bassett DS, Oommen BS, Chen SH, Lucas TH, Davis KA, Litt B, 2017. Recurring 
Functional Interactions Predict Network Architecture of Interictal and Ictal States in Neocortical 
Epilepsy, 4 doi:10.1523/ENEURO.0091-16.2017. ENEURO.0091–16.2017

Khambhati AN, Davis KA, Lucas TH, Litt B, Bassett DS, 2016. Virtual cortical resection reveals 
push-pull network control preceding seizure evolution. Neuron 91 (5), 1170–1182. doi:10.1016/
j.neuron.2016.07.039. [PubMed: 27568515] 

Khambhati AN, Davis KA, Oommen BS, Chen SH, Lucas TH, Litt B, Bassett DS, 2015. Dynamic 
network drivers of seizure generation, propagation and termination in human neocortical epilepsy. 
PLoS Comput. Biol 11 (12), e1004608. doi:10.1371/journal.pcbi.1004608. [PubMed: 26680762] 

Kini LG, Davis KA, Wagenaar JB, 2016. Data integration: combined imaging and electrophysiology 
data in the cloud. Neuroimage 124, 1175–1181. doi:10.1016/j.neuroimage.2015.05.075. [PubMed: 
26044858] 

Revell et al. Page 20

Neuroimage. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://Neurovault.org


Klein A, Tourville J, 2012. 101 Labeled brain images and a consistent human cortical labeling 
protocol. Front. Neurosci 6. doi:10.3389/fnins.2012.00171. [PubMed: 22347152] 

Kramer MA, Eden UT, Kolaczyk ED, Zepeda R, Eskandar EN, Cash SS, 2010. Coalescence 
and fragmentation of cortical networks during focal seizures. J. Neurosci 30, 10076–10085. 
doi:10.1523/JNEUROSCI.6309-09.2010. [PubMed: 20668192] 

Lawrence RM, Bridgeford EW, Myers PE, Arvapalli GC, Ramachandran SC, Pisner DA, Frank PF, 
Lemmer AD, Nikolaidis A, Vogelstein JT, 2021. Standardizing human brain parcellations. Sci. 
Data 8 (1), 78. doi:10.1038/s41597-021-00849-3. [PubMed: 33686079] 

Lewis JD, Bezgin G, Fonov VS, Collins DL, Evans AC, 2021. A sub+cortical fmri-based surface 
parcellation. Hum. Brain Mapp doi:10.1002/hbm.25675.

Litt B, Esteller R, Echauz J, D’Alessandro M, Shor R, Henry T, Pennell P, Epstein C, Bakay R, Dichter 
M, Vachtsevanos G, 2001. Epileptic seizures may begin hours in advance of clinical onset. Neuron 
30 (1), 51–64. doi:10.1016/s0896-6273(01)00262-8. [PubMed: 11343644] 

Ludwig KA, Miriani RM, Langhals NB, Joseph MD, Anderson DJ, Kipke DR, 2009. Using a 
common average reference to improve cortical neuron recordings from microelectrode arrays. 
J. Neurophysiol 101 (3), 1679–1689. doi:10.1152/jn.90989.2008. [PubMed: 19109453] 

Makris N, Goldstein JM, Kennedy D, Hodge SM, Caviness VS, Faraone SV, Tsuang MT, Seidman LJ, 
2006. Decreased volume of left and total anterior insular lobule in schizophrenia. Schizophr. Res 
83 (2–3), 155–171. doi:10.1016/j.schres.2005.11.020. [PubMed: 16448806] 

Mandal PK, Mahajan R, Dinov ID, 2012. Structural brain atlases: design, rationale, and applications 
in normal and pathological cohorts. J. Alzheimers Dis 31 Suppl 3, S169–88. doi:10.3233/
JAD-2012-120412. [PubMed: 22647262] 

Maslov S, 2002. Specificity and stability in topology of protein networks. Science 296 (5569), 910–
913. doi:10.1126/science.1065103. [PubMed: 11988575] 

Mazziotta J, Toga A, Evans A, Fox P, Lancaster J, Zilles K, Woods R, Paus T, Simpson G, Pike 
B, Holmes C, Collins L, Thompson P, MacDonald D, Iacoboni M, Schormann T, Amunts K, 
Palomero-Gallagher N, Geyer S, Parsons L, Narr K, Kabani N, Goualher GL, Boomsma D, 
Cannon T, Kawashima R, Mazoyer B, 2001. A probabilistic atlas and reference system for the 
human brain: international consortium for brain mapping (ICBM). Philos. Trans. R. Soc. Lond. 
Ser. B: Biol. Sci 356 (1412), 1293–1322. doi:10.1098/rstb.2001.0915. [PubMed: 11545704] 

Mercier MR, Bickel S, Megevand P, Groppe DM, Schroeder CE, Mehta AD, Lado FA, 2017. 
Evaluation of cortical local field potential diffusion in stereotactic electro-encephalography 
recordings: a glimpse on white matter signal. Neuroimage 147, 219–232. doi:10.1016/
j.neuroimage.2016.08.037. [PubMed: 27554533] 

Mišić B, Betzel RF, Nematzadeh A, Goñi J, Griffa A, Hagmann P, Flammini A, Ahn YY, Sporns O, 
2015. Cooperative and competitive spreading dynamics on the human connectome. Neuron 86 (6), 
1518–1529. doi:10.1016/j.neuron.2015.05.035. [PubMed: 26087168] 

Muñoz-Castañeda R, Zingg B, Matho KS, Chen X, Wang Q, Foster NN, Li A, Narasimhan A, 
Hirokawa KE, Huo B, Bannerjee S, Korobkova L, Park CS, Park Y-G, Bienkowski MS, Chon U, 
Wheeler DW, Li X, Wang Y, Naeemi M, Xie P, Liu L, Kelly K, An X, Attili SM, Bowman I, 
Bludova A, Cetin A, Ding L, Drewes R, D’Orazi F, Elowsky C, Fischer S, Galbavy W, Gao L, 
Gillis J, Groblewski PA, Gou L, Hahn JD, Hatfield JT, Hintiryan H, Huang JJ, Kondo H, Kuang 
X, Lesnar P, Li X, Li Y, Lin M, Lo D, Mizrachi J, Mok S, Nicovich PR, Palaniswamy R, Palmer 
J, Qi X, Shen E, Sun Y-C, Tao HW, Wakemen W, Wang Y, Yao S, Yuan J, Zhan H, Zhu M, 
Ng L, Zhang LI, Lim BK, Hawrylycz M, Gong H, Gee JC, Kim Y, Chung K, Yang XW, Peng 
H, Luo Q, Mitra PP, Zador AM, Zeng H, Ascoli GA, Josh Huang Z, Osten P, Harris JA, Dong 
H-W, 2021. Cellular anatomy of the mouse primary motor cortex. Nature 598 (7879), 159–166. 
doi:10.1038/s41586-021-03970-w. [PubMed: 34616071] 

National, 2022a. Geographic Society Encyclopedic entry Atlas. https://www.nationalgeographic.org/
encyclopedia/atlas/.

National, 2022b. Geographic Society Encyclopedic entry Border. https://www.nationalgeographic.org/
encyclopedia/border/.

Newson JJ, Thiagarajan TC, 2019. EEG Frequency bands in psychiatric disorders: a review of 
resting state studies. Front. Hum. Neurosci 12, 521. doi:10.3389/fn-hum.2018.00521. [PubMed: 
30687041] 

Revell et al. Page 21

Neuroimage. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.nationalgeographic.org/encyclopedia/atlas/
https://www.nationalgeographic.org/encyclopedia/atlas/
https://www.nationalgeographic.org/encyclopedia/border/
https://www.nationalgeographic.org/encyclopedia/border/


Otsu N, 1979. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man 
Cybern 9 (1), 62–66. doi:10.1109/tsmc.1979.4310076.

Park B, Eo J, Park H-J, 2017. Structural brain connectivity constrains within-a-day variability of direct 
functional connectivity. Front. Hum. Neurosci 11, 408. doi:10.3389/fnhum.2017.00408. [PubMed: 
28848416] 

Perlaki G, Horvath R, Nagy SA, Bogner P, Doczi T, Janszky J, Orsi G, 2017. Comparison of accuracy 
between FSL’s FIRST and freesurfer for caudate nucleus and putamen segmentation. Sci. Rep 7 
(1), 2418. doi:10.1038/s41598-017-02584-5. http://www.nature.com/articles/s41598-017-02584-5 
[PubMed: 28546533] 

Proix T, Bartolomei F, Guye M, Jirsa VK, 2017. Individual brain structure and modelling predict 
seizure propagation. Brain 140 (3), 641–654. doi:10.1093/brain/awx004. [PubMed: 28364550] 

Revell AY, Silva AB, Mahesh D, Armstrong L, Arnold TC, Bernabei JM, Stein JM, Das SR, Shinohara 
RT, Bassett DS, Litt B, Davis KA, 2021. White matter signals reflect information transmission 
between brain regions during seizures. bioRxiv doi:10.1101/2021.09.15.460549.

Royer J, Rodríguez-Cruces R, Tavakol S, Larivire S, Herholz P, Li Q, de Wael RV, Paquola C, 
Benkarim O, Park B. y., Lowe AJ, Margulies D, Smallwood J, Bernasconi A, Bernasconi N, 
Frauscher B, Bernhardt BC, 2021. An open MRI dataset for multiscale neuroscience. preprint 
doi:10.1101/2021.08.04.454795. 10.1101/2021.08.04.454795

Salehi M, Greene AS, Karbasi A, Shen X, Scheinost D, Constable RT, 2020. There is no single 
functional atlas even for a single individual: functional parcel definitions change with task. 
Neuroimage 208, 116366. doi:10.1016/j.neuroimage.2019.116366. [PubMed: 31740342] 

Sathian K, Crosson B, 2015. Structure-function correlations in stroke. Neuron 85 (5), 887–889. 
doi:10.1016/j.neuron.2015.02.031. [PubMed: 25741715] 

Schaefer A, Kong R, Gordon EM, Laumann TO, Zuo X-N, Holmes AJ, Eickhoff SB, Yeo BTT, 2018. 
Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. 
Cerebr. Cortex 28 (9), 3095–3114. doi:10.1093/cercor/bhx179.

Shah P, Ashourvan A, Mikhail F, Pines A, Kini L, Oechsel K, Das SR, Stein JM, Shinohara RT, 
Bassett DS, Litt B, Davis KA, 2019. Characterizing the role of the structural connectome in 
seizure dynamics. Brain: A J. Neurol doi:10.1093/brain/awz125.

Shmueli G, 2010. To explain or to predict. Stat. Sci 25 (3). doi:10.1214/10-sts330.

Sinha N, Peternell N, Schroeder GM, Tisi J, Vos SB, Winston GP, Duncan JS, Wang Y, Taylor PN, 
2021. Focal to bilateral tonic-clonic seizures are associated with widespread network abnormality 
in temporal lobe epilepsy. Epilepsia 62 (3), 729–741. doi:10.1111/epi.16819. 10.1111/epi.16819 
[PubMed: 33476430] 

Smith RE, Tournier JD, Calamante F, Connelly A, 2015. SIFT2: enabling dense quantitative 
assessment of brain white matter connectivity using streamlines tractography. Neuroimage 119, 
338–351. doi:10.1016/j.neuroimage.2015.06.092. [PubMed: 26163802] 

Sporns O, 2011. The human connectome: a complex network. Ann. N. Y. Acad. Sci 1224, 109–125. 
doi:10.1111/j.1749-6632.2010.05888.x. [PubMed: 21251014] 

Sporns O, Tononi G, Kötter R, 2005. The human connectome: a structural description of the human 
brain. PLoS Comput. Biol 1 (4), e42. doi:10.1371/journal.pcbi.0010042. [PubMed: 16201007] 

Syversen IF, Witter MP, Kobro-Flatmoen A, Goa PE, Navarro Schröder T, Doeller CF, 2021. Structural 
connectivity-based segmentation of the human entorhinal cortex. Neuroimage 245, 118723. 
doi:10.1016/j.neuroimage.2021.118723. [PubMed: 34780919] 

Taylor PN, Sinha N, Wang Y, Vos SB, de Tisi J, Miserocchi A, McEvoy AW, Winston GP, Duncan 
JS, 2018. The impact of epilepsy surgery on the structural connectome and its relation to outcome. 
Neuroimage Clin 18, 202–214. doi:10.1016/j.nicl.2018.01.028. [PubMed: 29876245] 

Thomas Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, 
Smoller JW, Zöllei L, Polimeni JR, Fischl B, Liu H, Buckner RL, 2011. The organization of 
the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol 106 (3), 
1125–1165. doi:10.1152/jn.00338.2011. [PubMed: 21653723] 

Van Essen DC, Smith SM, Barch DM, Behrens TEJ, Yacoub E, Ugurbil K, WU-Minn HC, 2013. 
The WU-minn human connectome project: an overview. Neuroimage 80, 62–79. doi:10.1016/
j.neuroimage.2013.05.041. [PubMed: 23684880] 

Revell et al. Page 22

Neuroimage. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/articles/s41598-017-02584-5


Van Horn JD, Irimia A, Torgerson CM, Chambers MC, Kikinis R, Toga AW, 2012. Mapping 
connectivity damage in the case of phineas gage. PLoS ONE 7 (5), e37454. doi:10.1371/
journal.pone.0037454. [PubMed: 22616011] 

Wagenaar JB, Brinkmann BH, Ives Z, Worrell GA, Litt B, 2013. A multimodal platform for cloud-
based collaborative research. IEEE doi:10.1109/ner.2013.6696201.

Wang HE, Scholly J, Triebkorn P, Sip V, Medina Villalon S, Woodman MM, Le Troter A, Guye M, 
Bartolomei F, Jirsa V, 2021. VEP Atlas: an anatomic and functional human brain atlas dedicated 
to epilepsy patients. J. Neurosci. Methods 348, 108983. doi:10.1016/j.jneumeth.2020.108983. 
[PubMed: 33121983] 

Willner P, 1984. The validity of animal models of depression. Psychopharmacology (Berl.) 83 (1), 
1–16. doi:10.1007/BF00427414. [PubMed: 6429692] 

Wirsich J, Perry A, Ridley B, Proix T, Golos M, Bnar C, Ranjeva JP, Bartolomei F, Breakspear M, Jirsa 
V, Guye M, 2016. Whole-brain analytic measures of network communication reveal increased 
structure-function correlation in right temporal lobe epilepsy. Neuroimage Clin 11, 707–718. 
doi:10.1016/j.nicl.2016.05.010. [PubMed: 27330970] 

Wu Z, Xu D, Potter T, Zhang Y, The ADNI, 2019. Effects of brain parcellation on the characterization 
of topological deterioration in alzheimer’s disease. Front. Aging Neurosci 11, 113. doi:10.3389/
fnagi.2019.00113. [PubMed: 31164815] 

Young JJ, Friedman JS, Panov F, Camara D, Yoo JY, Fields MC, Marcuse LV, Jette 
N, Ghatan S, 2019. Quantitative signal characteristics of electrocorticography and 
stereoelectroencephalography: the effect of contact depth. J. Clin. Neurophysiol 36 (3), 195–203. 
doi:10.1097/WNP.0000000000000577. [PubMed: 30925509] 

Zalesky A, Fornito A, Harding IH, Cocchi L, Ycel M, Pantelis C, Bullmore ET, 2010. Whole-brain 
anatomical networks: does the choice of nodes matter? Neuroimage 50 (3), 970–983. doi:10.1016/
j.neuroimage.2009.12.027. [PubMed: 20035887] 

Zhu J, Zhang H, Chong Y-S, Shek LP, Gluckman PD, Meaney MJ, Fortier MV, Qiu A, 2021. 
Integrated structural and functional atlases of asian children from infancy to childhood. 
Neuroimage 245, 118716. doi:10.1016/j.neuroimage.2021.118716. [PubMed: 34767941] 

Revell et al. Page 23

Neuroimage. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. Many brain atlases are available in the neuroscience literature.
| a, In common usage, an atlas refers to a “collection of maps”National (2022) that defines 

geo-political borders at different scales. Although borders(National, 2022) are usually 

consistent across atlases of the world, they are typically not consistent across atlases 

of the brain. Four separate atlases (left-to-right: CerebrA, AAL, Hammersmith, Harvard-

Oxford) may define the superior temporal gyrus differently. The lack of consistency across 

these labels poses a problem for reproducibility in cognitive, systems, developmental, and 

clinical studies, as well as metanalyses describing the involvement of different regions of 

the brain in various diseases (Bohland et al., 2009). This challenge has been previously 

referred to as the Atlas Concordance Problem. b, Atlases can have varying features 

(see also Table 1). c, Thus, all current connectivity studies in neuroscience may not 

accurately reflect some fundamentally “true” architecture. For example, atlases with either 

large or small parcels may affect the structural connectivity matrices that are used to 

define the ”true” network architecture of the brain, and subsequently that are used to test 

hypotheses or make predictions about the brain. d, When combined with white matter 

tracts reconstructed from diffusion MRI, atlases can be used to measure how different 

regions of the brain are structurally connected (i). Similarly, intracranial EEG (iEEG) 

implants can record neural activity to measure how different regions of the brain are 

functionally connected (ii). Technologies such as fMRI, MEG, and many others can also 

Revell et al. Page 24

Neuroimage. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



measure functional connectivity. The statistical similarity between structural and functional 

connectivity measurements can be calculated (e.g., structure–function correlation; SFC). 

Such estimates have been used to better understand the pathophysiology of disease. In this 

study, we evaluate how the varying atlases may alter the power to test a specific hypothesis 

about the brain’s structure–function relationship in epilepsy.
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Fig. 2. Atlas morphology: sizes and shapes.
| a, Volume distribution of atlas parcellations demonstrating the diversity of parcellation 

sizes. b, Parcellation sphericity distributions illustrating how the shapes of different 

parcellations may not be uniform. c, Volumes versus sphericity showing how some atlas 

parcellations may be small and spherical, while others may be large and non-spherical. This 

illustrates the non-uniformity in atlas parcellations. d, Volumes and sphericity of random 

atlases showing the uniformity of sphericity with changing volumes. Random atlases allow 

us to study (1) the effect of parcellation scale without the confound of shape effects and 

(2) the need for accurate anatomical boundaries to test a hypothesis about the structure–

function relationship in the brain at seizure onset. Numbers in legend represent the number 

of parcellations for each random atlas. Remaining atlases are in Fig. S2.
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Fig. 3. Structural network differences between atlases.
| a, Density, mean degree, mean clustering coefficient, characteristic path length, and small 

worldness were calculated for structural connectivity networks. A subset of atlases is shown. 

Remaining atlases studied are shown in Fig. S3. The average parcellation volume was 

calculated for each atlas and the corresponding network measure was graphed as the mean of 

all subjects (N=41; 13 controls, 28 patients). b, Controls and patients were not significantly 

different in density for the AAL2 atlas (Mann-Whitney U test), illustrating that global 

structural network measures are similar between cohorts. However, specific edge-level 

connections between cohorts may be different, and characterizing these differences is out 

of the scope of this manuscript. Controls and patients were separated and shown in Fig. S4. 

Network measures using different threshold are shown in Fig. S5.
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Fig. 4. Structure–Function correlation in a single patient using different atlases.
| a, Example atlases and structural connectivity matrices. b, Functional connectivity matrices 

are computed from SEEG recordings during the interictal, preictal, ictal, and postictal 

periods. During each period, the SEEG data is binned into non-overlapping windows (the 

vertically stacked matrices) to create time varying representations of functional connectivity. 

Broadband cross correlation matrices are shown for sub-patient07 at 6 h before seizure 

onset, 90 s before seizure onset, 40 s after seizure onset (t = 40), 88 s after seizure 

onset (seizure duration = 89 s), and 180 seconds after seizure onset (or 91 s after seizure 

termination). c, Each functional connectivity matrix is correlated to a structural connectivity 

matrix of a given atlas. Spearman Rank Correlation is measured between all time points and 

all atlases for each patient. Lines of best fit are for visualization purposes only. d, SFC is 

graphed at each time point for four example standard atlases (Hammersmith, Craddock400, 

AAL2, and CerebrA), and four example random atlases (30, 100, 1k, and 10k parcellations). 

SFC increases during seizure state for some standard atlases (Craddock 400, AAL2, and 

CerebrA atlases). This result follows previous SFC publications with ECoG (Ashourvan 

et al., 2021; Shah et al., 2019). However, SFC does not increase for the Hammersmith 

atlas. These findings highlight that the power to detect a change in the structure–function 
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correlation at seizure onset, and thus the ability to probe the hypothesis that seizure activity 

is correlated to brain structure, may be reduced using some atlases. The use of different 

atlases may contradict previous studies.
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Fig. 5. Structure–Function Correlation in multiple patients using different atlases.
| SFC for ten standard atlases and five random atlases using SEEG broadband cross-

correlation matrices averaged across all patients with clinically annotated seizures (N = 10). 

Resting state SFC (rsSFC) is the SFC during the interictal period. The change from preictal 

to ictal SFC is ΔSFC. SFC was similarly calculated for random atlases and shows that rsSFC 

and ΔSFC may change with parcellation scale. These findings may be concerning given 

that the inherent structure—function relationship in the brain is not necessarily changing at 

resting state, but its measurement is greatly affected by atlas choice alone.
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Fig. 6. The power to test a hypothesis about epilepsy pathophysiology changes depending on atlas 
choice
| a, Resting state SFC (rsSFC) decreases with larger parcellation volumes (moving left 

to right). Random atlases are shown in blue, and select standard atlases are shown in 

red. Points represent the average across all patients, and bands represent 95% confidence 

intervals. b, ΔSFC increases with larger parcellation volume (moving left to right). Broadly, 

DeltaSFC may be interpreted as the change in SFC with respect to disease (e.g. a seizure) 

and non-disease states, and this change has been used to characterize and make inferences 

on many neurological diseases. These results exemplify that parcellations that are either 

too coarse (large volumes) or too fine (small volumes) may not adequately capture the 

underlying SFC of the brain or its dynamics with relation to a neurological disease. c, A 

subset of atlases show a difference in preictal and ictal SFC. d, The effect size between 

preictal and ictal SFC is calculated for all 55 atlases used in this study. Many atlases 

commonly used in the neuroscience literature have comparable effect sizes to random 

atlases. The standard atlases with the greatest effect size (and thus power) are the Harvard-

Oxford and AAL3 atlases. These atlases outperform many random atlases (where anatomical 

boundaries are not followed) and may indicate that their parcellation scheme captures the 

structure–function relationship in the brain at seizure onset with DTI and iEEG.
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Fig. 7. A Framework for brain atlases.
| a, Which atlas should be chosen for a study? We propose a framework that helps select 

an atlas in the context of its descriptive, explanatory, and predictive validity. Descriptive 
validity means the features of an atlas appropriately resembles the experimental system. 

An atlas is also a tool to solve a variety of problems in neuroscience. It may be 

used as part of a methodology to explain causality (explanatory validity), or it may 

be used to make predictions (predictive validity). These two goals are distinct, and 

the differences between explanation and prediction ”must be understood for progressing 

scientific knowledge”Shmueli (2010). These aspects (to explain or to predict) should be 

considered when selecting an atlas. b, Non-mutually exclusive atlas features related to 

descriptive validity. c, A list of questions to consider when choosing an atlas. Gray lines 
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connect related questions. d, An algorithm for atlases selection a priori and post hoc. Please 

see the main text for further details.
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Table 1
Atlases.

|Atlas sources are detailed in Table S1 and abbreviations are in the glossary. S: Structurally defined atlas; 

F: Functionally defined atlas; M: Multi-modally defined atlas; V: A variably defined atlas that may be 

structurally, functionally, or multi-modally defined; ROI: region of interest; HCP: Human connectome project 

dataset (Van Essen et al., 2013); MS: multiple sclerosis.
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