
ORIGINAL ARTICLE: ARTIFICIAL INTELLIGENCE
Development of a dynamic machine
learning algorithm to predict clinical
pregnancy and live birth rate with
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Objective: To evaluate the feasibility of generating a center-specific embryo morphokinetic algorithm by time-lapse microscopy to
predict clinical pregnancy rates.
Design: A retrospective cohort analysis.
Setting: Academic fertility clinic in a tertiary hospital setting.
Patient(s): Patients who underwent in vitro fertilization with embryos that underwent EmbryoScope time-lapse microscopy and
subsequent transfer between 2014 and 2018.
Intervention(s): None.
Main Outcome Measure(s): Clinical pregnancy.
Result(s): A supervised, random forest learning algorithm from 367 embryos successfully predicted clinical pregnancy from a training
set with overall 65% sensitivity and 74% positive predictive value, with an area under the curve of 0.7 for the test set. Similar results
were achieved for live birth outcomes. For the secondary analysis, embryo growth morphokinetics were grouped into five clusters using
unsupervised clustering. The clusters that had the fastest morphokinetics (time to blastocyst ¼ 97 hours) had pregnancy rates of 54%,
whereas a cluster that had the slowest morphokinetics (time to blastocyst ¼ 122 hours) had a pregnancy rate of 71%, although the
differences were not statistically significant (P¼ .356). Other clusters had pregnancy rates of 51%–60%.
Conclusion(s): This study shows the feasibility of a clinic-specific, noninvasive embryo morphokinetic simple machine learning model
to predict clinical pregnancy rates. (Fertil Steril Rep� 2022;3:116–23. �2022 by American Society for Reproductive Medicine.)
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E mbryo quality assessment has
historically relied on a variety
of snapshot morphological pa-
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morphology of the pronuclear stage
(2), early embryo cleavage (3, 4), the
presence of multinucleation (5, 6),
and zona pellucida characteristics (7).
However, standard grading only pro-
vides a brief view of embryonic
morphology at a specific time point,
while developmental changes over
multiple time points may provide a
more robust impression of the implan-
tation potential (8). To obtain objec-
tive, real-time embryo morphologic
data with potential clinical relevance,
we focused on time-lapse microscopy
as a noninvasive method to charac-
terize embryo quality. Many studies
have identified parameters associated
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with improved clinical outcomes, including time of appear-
ance and fading of two pronuclei (9), the timing of cell
cycle events (10, 11), the time between 2- to the 8-cell
cleavage stage (12–15), cleavage events (16), cytokinesis
duration (17), time to initiation of blastulation (18–20),
and combined morphokinetic and morphologic or
molecular parameters (21–27). Other studies showed that
no differences were found in the time-lapse parameters of
euploid embryos that led to miscarriages (28). Given the
divergent findings, site-specific algorithms have been
proposed (29).

Recently, machine learning has also been employed to
predict clinical pregnancy using demographic and clinical
data alongside embryo scoring qualities as training data
(30–32). Other machine learning techniques aim to predict
embryo morphological grading using inputs of still images
or videos with high accuracy (33, 34) and also to predict
pregnancy rates with high accuracy (35–37). Numerous
variables, including demographics, clinical data, patterns in
imaging, or video data, have been used to train artificial
intelligence (AI) algorithms. Many AI approaches begin
with a multistep process of first extracting representations
of these complex variables using hand-crafted methods
such as feature-engineering or using unsupervised learning
(38) before training an algorithm. Factors that may confound
or affect the outcome include laboratory parameters (intracy-
toplasmic sperm insemination), embryo quality, and patient
diagnoses (age, prior treatment, ovarian response, endome-
trial quality) (39, 40), and therefore need to be addressed in
AI approaches. For instance, an increase in maternal age
was associated with faster early morphokinetics and slower
morula and blastocyst formation (40). When computational
resources are devoted to high quantity, complex data, the
resultant complexity of many parameters can possibly nega-
FIGURE 1

Visual abstract of morphokinetic data gathering. Illustration of embryo d
studied, including individual time points.
Yang. Embryo selection by machine learning. Fertil Steril Rep 2022.
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tively affect the accuracy of algorithms (41, 42). Additionally,
this requires expensive, time-consuming multiprocessing
cores, a resource to which few laboratories have access. To
ameliorate the computational burden and simplify the selec-
tion of clinically relevant parameters tied to embryo quality,
we hypothesized that a simple machine learning algorithm
could be trained on characteristic embryo morphokinetic
time points to predict pregnancy outcomes with high accu-
racy. Our secondary outcome was pregnancy rates in
clusters generated by unsupervised machine learning as a
proof of concept.
MATERIAL AND METHODS
Study Criteria

A retrospective cohort study was approved by the Institu-
tional Review Board (protocol no. H39094) at Baylor Col-
lege of Medicine, Houston, Texas. Inclusion criteria were
all autologous and donor cycle embryos that were incu-
bated in the EmbryoScope time-lapse microscope (Vitrolife,
Sweden) and were subsequently transferred, with in vitro
culture of embryos to the blastocyst stage (day 5 to
day 7), resulting in a clinical pregnancy (defined by fetal
heartbeat after 6 weeks) or no clinical pregnancy (not
excluding biochemical pregnancies) from 2014 to 2018 at
the Texas Children’s Hospital Family Fertility Center. Exclu-
sion criteria included embryo culture in other incubators,
embryos without morphokinetic data or incomplete
annotations, and dual embryo transfers with discordant
outcomes. The sample size was chosen based on other
studies that have found significant patterns in <200 em-
bryos and validation cohorts <100 embryos (29). There
were no ectopic gestations included in the data sets.
evelopment following fertilization and the morphokinetic parameters
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FIGURE 2

Workflow diagram of supervised machine learning.
Yang. Embryo selection by machine learning. Fertil Steril Rep 2022.
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Ovarian Stimulation and Oocyte Retrieval

Patients included were women who underwent oocyte
retrieval and subsequent embryo transfer at a single site aca-
demic fertility center. For each stimulation, an individualized
antagonist ovarian stimulation protocol was employed using
follicle-stimulating hormone follitropin alfa (Gonal F; EMD
Serono, Rockland, MA) or (Follistim; Merck, and Co.), and
follicle-stimulating hormone/luteinizing hormone menotro-
pin (Menopur; Ferring Pharmaceuticals, NJ). Antagonist ce-
trorelix acetate (Cetrotide; Freedom Fertility Pharmacy,
Byfield, MA) was initiated when a lead follicle reached 13
mm. Oocyte trigger was performed with 3–10,000 units of
chorionic gonadotropin (Novarel, Ferring Pharmaceuticals)
or leuprolide 36 hours before oocyte retrieval when two or
more follicles measured greater than 18 mm and in conjunc-
tion with appropriate estradiol values. Follicular number and
size were obtained via transvaginal ultrasound during
ovarian stimulation monitoring, and serum samples were
collected via peripheral venipuncture taken within 1 hour of
the ultrasound measurement. Transvaginal oocyte aspiration
was performed under total intravenous sedation 36 hours
post-trigger. The demographic data collected included age
and the patient’s medical diagnosis.
Fertilization and Embryo Incubation

Oocyte-cumulus complexes were cultured for 3 hours in 60
mm organ culture dishes containing Quinn’s Advantage
Fertilization Media (Cooper Surgical, Trumbull, CT) with
10% serum protein supplement (Cooper Surgical) and overlaid
with OVOIL (Vitrolife, Englewood, CO) in a Planer BT37
benchtop incubator (Cooper Surgical).

After exactly 3 hours, oocytes were denuded using hyal-
uronidase (Cooper Surgical) and assessed for nuclear maturity
as evidenced by the presence of a polar body. Identified meta-
phase II oocytes underwent intracytoplasmic sperm injection
(ICSI) or conventional insemination. After ICSI, the oocytes
were immediately placed in the EmbryoScope time-lapse
incubator (Vitrolife, Englewood, CO) and were cultured in
Sage 1-Step media at 37 oC in 5.5% CO2 and 6% O2. Embryos
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were assessed beginning at 16–18 hours after insemination
using the EmbryoScope viewer. For conventional insemina-
tion, zygotes were placed in the EmbryoScope after fertiliza-
tion. Embryo quality was graded on day 3, day 5, and day 6
using established morphological grading criteria (43, 44).

From April 2014 to July 2015, embryos were cultured in
sequential media (Quinn’s Advantage Plus media and Quinn’s
Advantage Blastocyst Plus media). From September 2015 on-
wards, embryos were cultured in Sage 1-Stepmedia. Both cul-
ture conditions were compared, and no changes in blastocyst
development were observed locally (45), similar to findings at
other centers (46).

Embryos selected for preimplantation genetic testing
(PGT) underwent assisted hatching by laser on day 3 and
were biopsied on day 5 or 6. Embryos were vitrified with
Vit-Freeze kits (Irvine Scientific, Santa Ana, CA) using the
manufacturer’s protocol. Embryos for frozen transfers were
warmed using Vit-Thaw Kit (Irvine Scientific) at least 3 hours
before the transfer. After warming, assisted hatching was per-
formed by laser (Hamilton-Thorne Beverly, MA) on embryos
that had not been previously biopsied for PGT.
Time-Lapse Microscopy and Morphokinetic
Parameters

The interval image acquisition for the EmbryoScope was
every 10 minutes at seven focal planes; images were ob-
tained starting from the time after fertilization until the em-
bryo was either transferred or cryopreserved. All
morphokinetic parameters starting from the fading of pro-
nuclei to blastocyst formation were annotated manually us-
ing EmbryoViewer software. The morphokinetic parameters
were determined by a team of trained personnel that
included two physicians and one embryologist. Morphoki-
netic annotation, measurement consistency, and internal
quality control were verified by the senior embryologist to
decrease annotator bias. For ICSI, t0 was the time of insem-
ination, and for conventional in vitro fertilization (IVF), t0
was defined as the time of addition of sperm to oocytes,
similar to other reported studies (23, 47, 48). Parameter in-
formation collected included: pronuclei fade (PNf), time to
2-cell (t2), t3, t4, t5, t8, t9, time to morula (defined as
50% cells with indistinct membranes), time to start of early
blastulation, time to blastocyst (Fig. 1).
Embryo Transfer and Clinical Outcomes

All embryo transfers were performed under ultrasound guid-
ance as fresh (n¼ 30) or frozen (n¼ 350) transfers. All frozen
embryos were transferred on day 5 after progesterone admin-
istration of approximately 5 days. Luteal support was pro-
vided by vaginal progesterone gel (Crinone, Juniper
Pharmaceuticals) and continued if pregnancy occurred. Em-
bryo selection was based on a standard grading system of
morphologic characteristics (43, 49) for both PGT for aneu-
ploidy (PGT-A) and non-PGT-A tested embryos. Serum b hu-
man chorionic gonadotropin (hCG) levels were obtained 9–10
days after embryo transfer. Once a positive b-hCG was estab-
lished, a repeat hCG test was performed 48–72 hours later, and
VOL. 3 NO. 2 / JUNE 2022



FIGURE 3

Receiver operating characteristic (ROC) curve based on clinical pregnancy and live birth rate outcomes. Two ROC curves developed from the training
and test sets based on morphokinetics in orange and blue, respectively, based on clinical pregnancy outcome (A). Two ROC curves developed from
the training and test sets were based on morphokinetic parameters of time to pronuclei fade, t4, time to morula, t9, and time to blastocyst (B). The
area under the curve (AUC) is noted next to the graph. The x-axis is the true positive rate. y-axis is the false positive rate (1 � specificity).
Yang. Embryo selection by machine learning. Fertil Steril Rep 2022.
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then a transvaginal ultrasound was performed between 6 and
7 weeks of gestational age to determine the presence of clin-
ical pregnancy as defined by a detectable fetal heartbeat.
Supervised Classification Training

Embryo morphokinetic data were randomly divided into 70%
training sets and 30% test sets (Fig. 2). The ratio of data
assignment to training and test was set by the operator
(70%/30%), and this parameter was entered into a ranger. Em-
bryo assignment was achieved with the use of a randommod-
ule in python based on the Mersenne Twister function that
assigns a pseudo-random number starting with an original
number or seed, such as 1, that changes with each iteration
for each embryo (50). Learning curves were developed using
scikit-learn (51) to assess the optimal number of training sam-
ples, which was at least 150 samples. (Supplemental Fig. 1,
available online). Total variables used included all morphoki-
netic time points. Data were trimmed manually by removing
time points that had high collinearity with variable inflation
factor >10 which resulted in the use of only six-time points
(Supplemental Fig. 2A). Binary outcomes included either pos-
itive or negative pregnancy (Supplemental Fig. 2B). Models
trained included logistic regression, XGBoost, decision tree,
and random forest using Exploratory and ranger (52)
(Fig. 2). For each model, the training set was used to develop
an algorithm using the training variables and applied to the
data on the test set.
Model Comparison

For each model, the predicted probability of pregnancy was
calculated for each embryo and compared with the actual
outcome. A receiver operating characteristic curve was devel-
oped by graphing the true positive rate (sensitivity) with the
false positive rate (1 � specificity). The area under the curve
(AUC) was calculated for each receiver operating
characteristic curve.
VOL. 3 NO. 2 / JUNE 2022
Unsupervised Clustering

All morphokinetic time points were normalized and used in
K-means clustering (Supplemental Fig. 3A). To determine
the number of clusters, the average sum of squares (distances
between all points per cluster) was graphed against the num-
ber of clusters using the Elbow method (53) (Supplemental
Fig. 3B). Thus, 5 clusters were selected. The Hartigan-Wong
algorithm was used to group the data into 5 clusters with a
random seed of 1 and amaximum iteration of 10. The normal-
ized number of hours per cluster and the pregnancy rate per
cluster were calculated.

RESULTS
Out of 479 embryos surveyed, a total of 367 embryos met the
inclusion criteria for the current study (Supplemental Fig. 4A).
Embryos were transferred based on morphology. Embryo
development from fertilization to blastocyst formation
(Fig. 1) was manually annotated hours postinsemination.
No differences were observed between the frequency of donor
eggs, patient age, and diagnoses (Supplemental Fig. 4B). Mul-
tiple types of algorithms were tested and compared, including
logistic regression, XGBoost, decision tree, and random forest
(Supplemental Table 1), using six morphokinetic parameters
as described in the Methods section. The best performing al-
gorithm was random forest, which was named Yang-Peavey
Embryo Enhancement Algorithm, with an AUC of 0.91 and
0.69 in the training and test sets, respectively (Fig. 3A). The
calculated sensitivity was 65%, specificity 60%, positive pre-
dictive value 74%, and negative predictive value 50% from
the validation data set only, not including the training set.
To address whether PGT-A or single embryo transfer status
affected the quality of the algorithm, we incorporated both
statuses as covariates (Supplemental Fig. 5B and C, respec-
tively). Similar AUC was achieved (0.92). However, lower pre-
dictive power was noted in the test sets as the sample size
reached n ¼ 4 in one of the arms (Supplemental Figs. 6 and
7). When the algorithm was applied to live birth rate data,
119



FIGURE 4

Unsupervised clustering characteristics. Distribution of values of each normalized morphokinetic parameter grouped by cluster (A). Box plot
includes the first and third quartile with minimum and maximum. The center of the box plot presents the median. The x-axis is a cluster. The
y-axis is the normalized value. The key for each morphokinetic time point is listed in the figure legend—frequency of embryos with positive
outcomes in each cluster (B). Blue indicates no pregnancy. Orange indicates pregnancy.
Yang. Embryo selection by machine learning. Fertil Steril Rep 2022.
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we found similar predictive power with the AUC of 0.85 and
0.64 in the training and test sets, respectively (Fig. 3B).

For our secondary analysis, we sought to understand the
pattern of embryo growth in an unbiased manner by unsuper-
vised machine learning. We asked whether the embryos could
be grouped based on shared morphokinetic characteristics.
Given the large range of the number of hours from 19 hours
to 160 hours, the data were normalized or rescaled from �3
to 3. Data were grouped into 5 clusters by the distance be-
tween each time point (range, n ¼ 21 to n ¼ 97) (Fig. 4B).
The normalized morphokinetic values were compared for
each cluster showing high and low normalized values
(Fig. 4A). Notably, cluster 4 had higher normalized values
or slower time points, and cluster 5 had lower values or faster
time points (Fig. 4A). The differences in pregnancy rates
among the 5 clusters were not statistically significant (c2

test P¼ .356). When we compared the pregnancy rates among
the clusters, cluster 4 (71%) and cluster 2 (60%) had a trend of
higher rates of pregnancy, whereas clusters 1 (51%) and clus-
ter 3 (51%) had lower rates (Fig. 4B). In this patient popula-
tion, a small group of embryos (cluster 4, n ¼ 25) with high
rates of pregnancy (71%) developed overall more slowly,
whereas another cohort of embryos (cluster 2, n ¼ 78) with
faster compaction and blastulation had a 60% pregnancy
rate (Fig. 4B and Supplemental Table 2) and may represent
intrinsic embryo qualities for future hypothesis testing. Over-
all, cluster 5 represented a group of embryos with faster over-
all morphokinetics, and cluster 4 represented those with
slower morphokinetics (Supplemental Fig. 8).
DISCUSSION
We show that simple machine learning can be used to develop
an algorithm to predict clinical pregnancy rates with as few as
200 embryo outcomes with AUCs of 0.91 and 0.69, respec-
tively, in the training and test cohorts. The algorithm also pre-
dicted live birth rate outcomes. When PGT-A and single
120
embryo transfer statuses of each embryo were incorporated,
the predictive power of the training set declined, likely due
to the overfitting of the data because of the small samples
size ranging from 4 to 50 patients per arm (Supplemental
Figs. 6 and 7). Embryos that had faster blastulation and
compaction and a select few with slower development were
also associated with favorable pregnancy outcomes. A small,
distinct group of embryos with slower development was noted
to have higher pregnancy rates, although it was not statisti-
cally significant. This is in contrast to other studies that
have reported faster development associated with more favor-
able outcomes (19). Most likely, there was sample size bias, or
there was likely an embryo-related biological bias associated
with this small group of embryos, or other factors such as
uterine or environmental factors unrelated to the embryo.

This algorithm is unique in that it distills innumerable
clinical, laboratory, and genetic factors into a few quintessen-
tial features to predict pregnancy, assuming that these char-
acteristics are represented by individualized embryo
morphokinetics. Many studies use over 32 demographic, lab-
oratory, or grading criteria in the algorithms (1, 30, 47) or
complex imaging processing (35, 36), which increases model
learning difficulty requiring complex calculations (41). This
algorithm can be run on any platform on-site at the labora-
tory and can be quickly adapted or retrained to the changes
in laboratory conditions such as media with input from
only 200 embryos. This technology is also noninvasive and
may aid in embryo selection after PGT-A. Further tests are
needed to determine whether the Yang-Peavey Embryo
Enhancement Algorithm can predict pregnancy rates in em-
bryos that did or did not undergo PGT-A.

Whereas previous studies emphasized single parameters
or ratios of time points as the best predictors of blastulation
(8, 54) or implantation (10, 17) or that parameters cannot be
used to predict blastulation (55), our data demonstrate that
a prediction model is best developed frommultiple morphoki-
netic time points (56) and can successfully predict pregnancy.
VOL. 3 NO. 2 / JUNE 2022
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Reassuringly, our model is also consistent with other reports
of time to morula and time to blastocyst time points being
predictive of implantation (17, 19, 20, 57). Further work is
needed to explore whether a few key morphokinetic parame-
ters can universally predict implantation using the built-in
EmbryoViewer software (58, 59).

A limitation of this study is that all transferred embryos
underwent morphologic grading, which influenced embryo
selection. Our findings were made after standard morphologic
grading. Future randomized studies are needed to compare
predictions between the algorithm and morphological
grading. Other limitations include multiple transfers per pa-
tient and donor embryos that could be affected by maternal
factors. Another limitation is that laboratory parameters
included many varying treatments, including ICSI and con-
ventional insemination, PGT-A or untested, assisted hatch-
ing, fresh and frozen embryo transfer cycles, and fresh and
frozen oocytes.

Time of insemination (t ¼ 0) in conventional IVF may
affect or skew the embryo morphokinetics compared with
that of ICSI. Some studies reported up to a 1.5-hour delay in
early morphokinetics and up to 4.1 hours of advancement
in development to the blastocyst stage in conventional IVF
compared with ICSI (60). Because of conventional insemina-
tion, only time points after time to PNf (48) were included in
our study. In our data, a 1.5-hour difference is within the SD
(1.7 to 3.5 hours) at the time to PNf, and a 4.1-hour advance-
ment is also within the SD at the blastocyst stage (3.6 to 6.5
hours) observed among the morphokinetic groups by unsu-
pervised clustering (Supplemental Table 2). However, more
validation studies are needed to determine whether t0 in con-
ventional IVF significantly impacts morphokinetics from that
of ICSI. For instance, to control for the exact time of t0, one
would need to study embryos that underwent ICSI only for
future larger cohorts as part of a continuously updated, dy-
namic algorithm.

Assisted hatching was performed for all samples under-
going PGT testing and could have been accounted for by
studying PGT status. In the analysis, including PGT-A status,
we did not observe an improvement in predictive power
because of low sample numbers. The addition of confounding
factors likely depletes the accuracy of the model given the low
representative sample numbers. Therefore, it would be useful
to analyze the effect of assisted hatching with a larger data
set. In addition, sex selection based on PGT-A results could
confound results. However, in our cohort, the few patients
who requested sex selection had embryos that were trans-
ferred based on morphological grading. These factors could
be included in the algorithm for future predictions with larger
cohorts or applied to a cohort with similar characteristics as
the current cohort. If conditions change, the algorithm would
need to be updated to be applied prospectively. One of the
challenges of applying this algorithm is the need for manual
annotation for each embryo prospectively which requires
additional time by a trained embryologist or technical staff.
Unfortunately, at this facility, there was no access to software
that performed automated annotations. In the future, the al-
gorithm could be combined with automated annotation soft-
ware to improve efficiency.
VOL. 3 NO. 2 / JUNE 2022
Another limitation is a lack of radiological examination
to confirm zygosity to distinguish the difference between
two embryo transfers that resulted in monozygotic duplica-
tion and loss of the other embryo compared with true implan-
tation of both embryos.
CONCLUSION
We demonstrate that embryo morphokinetics are associated
with pregnancy outcomes in a dynamic machine learning al-
gorithm that is specific to a clinic. We also showed that em-
bryos that exhibit slow overall morphokinetics (time to
blastocyst¼ 122 hours vs. 97 hours) had higher rates of preg-
nancy (71% vs. 54%). As a proof of concept, machine learning
can be used at a local IVF center to design a selection algo-
rithm with as few as 200 embryos. As the sample size and
the parameters and characteristics change with time, a new
model will need to be continually optimized. Rather than us-
ing a single universal model, we demonstrate that a model
tailored to the local embryo and laboratory characteristics
with continuous updates could be used.
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