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Diversity and compositional analysis are the most common approaches in deciphering microbial commu-
nity differences. However, these approaches neglect microbial structural differences driven by microbial
interactions. In this study, the microbiota data were generated from 12 rectal digesta samples collected
from steers in which the Shiga toxin 2 gene (stx2) was not expressed (defined as Stx2� group) in the bac-
teria, and those with stx2 expressed (defined as Stx2+ group) and used to explore whether microbial net-
works affect gut microbiota and foodborne pathogen virulence in cattle. Although the Shannon and
Chao1 indices of rectal digesta microbial communities did not differ between the two groups
(P > 0.05), 24 and 13 taxa were identified to be group-specific genera for Stx2� and Stx2+ microbial com-
munities, respectively. The network analysis indicated 12 and 14 generalists (microbes that were densely
connected with other taxa) in microbial communities for Stx2� and Stx2+ groups, and 8 out of 12 gen-
eralists and 6 out of 14 generalists were designated to Stx2� and Stx2+ group-specific genera, respec-
tively. However, the 66 core genera were not classified as network generalists. Natural connectivity
measurements revealed that the higher stability of the Stx2� microbial network in comparison to the
Stx2+ network, suggesting that the structure of each microbial community was inherently different even
when their diversity and composition were comparable. Group-specific genera intensely interacted with
other taxa in the co-occurrence network, indicating that characterizing microbial networks together with
group-specific genera could be an alternative approach to identify variation in microbial communities.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Assessing microbial profiles using diversity, composition, and
abundance measurements are broadly adopted approaches that
have been widely applied to determine the role of the microbiome
in host health. For example, the lower richness of human fecal
microbiota is associated with dyslipidemia and insulin resistance
leading to obesity [1], and higher evenness of milk/teat microbiota
is associated with dairy cowmastitis [2]. In addition to these quan-
titative measures, microbial taxa interact within ecological niches,
forming ‘‘micro-communities” that may function collectively [3].
Such microbial interactions can be influenced by the host, which
in turn affect the host’s physiological activities. Hence, microbial
interactions, together with microbial-host interactions, are critical
for the establishment, maintenance, and function of microbiota [4].
The traditional and commonly used approach to identify micro-
bial interactions is the construction of microbial co-occurrence
networks using a correlation-based method (Pearson’s or Spear-
man’s correlation coefficient) [2,3,5,6]. This method is prone to
detecting spurious correlations among low abundance taxa [7]
and can lead to an ill-defined understanding of microbial interac-
tions. These conventional methods also adopt subjective thresh-
olds to define significant microbial interactions largely based on
known biological information, while appropriate thresholds are
hard to select, particularly for less studied and low abundant
microorganisms [4,8]. Hence, effective ways to construct microbial
co-occurrence networks are needed to enable an in-depth under-
standing of structural differences in microbial communities and
how these could affect host-microbial interactions.

Shiga toxin-producing Escherichia coli (STEC) cause foodborne
diseases that can lead to severe human infections (i.e. bloody diar-
rhea, hemolytic uremic syndrome) [9]. Cattle are the main asymp-
tomatic carriers of STEC with the rectal-anal junction (RAJ) being
the main colonization site [10]. As the result, cattle can shed STEC
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to the ambient environment and therefore promote cattle-cattle/
human transmission [11,12]. Our recent research has reported that
host (i.e. host genes, immunity, microRNAs [13–16])-microbial
interactions may play a role in affecting STEC colonization in cattle.
In addition, Shiga toxins (stx) are major virulence factors in STEC
with prototype toxins being designated as Shiga toxin 1 (stx1)
and Shiga toxin 2 (stx2) [17] and our recent study revealed that
stx2 expression was associated with host immune gene expression
and potential STEC colonization [18]. Although the distinctive fecal
microbial communities has been reported in super-shedder (cattle
shed >104 STEC in feces per gram, SS) compared to non-shedders
[19], little knowledge is derived from stx2 in STEC and its relation-
ships with RAJ microbiota and microbial interactions. We specu-
lated that microbial interactions together with the diversity and
composition of RAJ microbiota are associated with stx2 expression
and STEC colonization in cattle. Hence, this study aimed to assess
the rectal microbial communities and interactions in response to
stx2 expression in STEC at the RAJ, and the role of microbiota diver-
gent in abundance among microbial interactions using the random
matrix theory (RMT)- based method [20] and within-/among-
module connectivity [21]. We aimed to identify keystone taxa
and low abundant taxa contributing to microbial interaction net-
works and structural stability for better understanding the role of
rectal microbiota in stx2 expression and potential STEC coloniza-
tion in beef cattle.
2. Materials and methods

2.1. Animal study and sample collection

The animal trial followed the Canadian Council of Animal Care
guidelines and was confirmed by the Animal Care and Use Com-
mittee, University of Alberta with Animal Care Committee protocol
number AUP00000882. The animal trial and identification of stx2
gene abundance and expression were described in Pan et al. [18].
Briefly, ten cm2 recto-anal junction (RAJ) tissue and 10 mL rectal
contents were collected from a total of 143 feedlot cattle (585.84
± 64.99 kg) within 30 min after slaughter at a federally approved
abattoir.

DNA was extracted from 0.1 g powdered tissue using repeated
bead beating and a column (RBBC) method [22], purified using
the QIAmp Stool Mini Kit (Qiagen, Germany) and assessed based
on absorbance at 260 and 280 nm using ND-1000 spectrophotome-
ter (NanoDrop Technologies, Wilmington, USA). RNA was isolated
from 0.1 g powered tissue using trizol reagent (Invitrogen Corpora-
tion, Carlsbad, CA, USA) method followed by manufacturer’s proto-
cols and assessed using Agilent 2200 TapeStation (Agilent
Technologies, Santa Clara, CA, USA) and Qubit 3.0 Fluorometer
(Invitrogen, USA). Tissue extracted DNA was subjected to detection
of stx2 gene abundance using quantitative PCR (qPCR) with primers
50-ACTCTGACACCATCCTCT-30 and 50-CACTGTCTGAAACTGCTC-30

[23]. Tissue extracted RNA was subjected to the identification of
stx2 transcript using reverse transcription real-time quantitative
PCR (RT-qPCR) with the aforementioned primers [23]. Both PCR
and RT-qPCR were conducted in triplicates for each sample and fol-
lowed the same thermal program on a StepOnePlusTM Real-Time
PCR System (Applied Biosystems, Foster City, CA, USA): one cycle
at 95 �C for 20 s followed by 40 cycles of 3 s at 95 �C, 30 s at
60 �C. Twelve rectal digesta samples collected from steers whose
mucosal samples were confirmed to possess stx2 gene without
expression (defined as Stx2� group) in the bacteria, and those with
stx2 and were expressed (defined as Stx2+ group, n = 6) in STEC
were selected with minimized differences in body weight and
age at slaughter between two groups based on one-way ANOVA
(Pbody weight = 0.07, Pslaughter age = 0.30, Table S1).
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2.2. Amplicon sequencing and microbial community analysis

Total genomic DNA was extracted from frozen rectal digesta
samples using the RBBC method [21], purified using the QIAmp
Stool Mini Kit (Qiagen, Germany) following the manufacturer’s
protocols. The concentration and quality of DNA were further
determined using the NanoDrop 2000 Spectrophotometer (Thermo
Fisher Scientific, USA).

To generate the rectum bacterial compositional profiles, the
bacterial V1-V3 region of the 16S rRNA gene was amplified using
bacterial primers Bac9F (50-GAGTTTGATCMTGGCTCAG-30) and
Ba515Rmod1 (50-CCGCGGCKGCTGGCAC-30) [20]. The PCR amplifi-
cation products were verified using agarose gel (2%) electrophore-
sis. Two-step PCR was performed for PCR amplicon generation and
barcoding. In detail, the PCR was conducted with the following
thermal program of initial denaturation at 94 �C for 2 mins, fol-
lowed by 33 cycles of 94 �C for 30 s, annealing at 58 �C for 30 s,
elongation at 72 �C for 30 s, and at last a final elongation at
72 �C for 7 mins. Furthermore, the second PCR was performed
using amplicons produced in the first step for barcoding with the
following program: initial denaturation at 95 �C for 10 mins, fol-
lowed by 15 cycles of 95 �C for 30 s, 60 �C for 30 s, 72 �C for
60 s, and a final elongation at 72 �C for 3 mins.

All amplicon libraries were sequenced using an Illumina MiSeq
pair-end 300 bp platform at Centre d’expertise et de services
Génome Québec (Quebec, Canada). The raw sequence data were
assigned to each sample according to the corresponding barcode
and were processed using QIIME2 (Version 2019.10) [24]. Quality
control, denoising, removal of chimeric sequences, and generation
of amplicon sequencing variants (ASVs) were performed using the
QIIME2 plugin DADA2 [25]. Taxonomic classification was per-
formed in QIIME2 using a taxonomic classifier with the SILVA data-
base (version 132) as the reference. The Good’s coverage index was
used to evaluate the adequacy of sequencing depth to generate
bacterial profiles in each sample. For diversity analyses, alpha
diversity was estimated using Shannon (evenness) and Chao1
(richness) indices. Beta diversity was evaluated based on Weighted
Unifrac distance using phylogenetic distances across identified
taxa in a phylogenetic tree and the abundance of each feature to
determine the similarity between Stx2� vs. Stx2+ groups. All
diversity metrics were calculated using scripts implemented in
QIIME2. The visualization of alpha- and beta- diversity was per-
formed using the ggplot2 package in R. Differentially abundant
(DA) genera (Absolute log2 fold change > 1 and false discovery rate
<0.05) between Stx2� vs. Stx2+ groups were identified using the
DESeq2 package in R. The cut-off of DA genera and group-specific
taxa is a relative abundance >0.1% and presence in at least two
out of six animals in each group.

2.3. Construction of microbial co-occurrence networks

The random matrix theory (RMT)-based method [8] was
employed to construct the microbial co-occurrence network to
identify microbial interactions using molecular ecological network
analysis (MENA) (http://ieg4.rccc.ou.edu/mena) [8]. Briefly, the
absolute abundance of microbial genera data was uploaded. The
absolute abundance microbial genera dataset was appropriately
standardized and the pairwise Pearson correlation suggested by
the author’s manual was employed to generate correlation coeffi-
cients and a similarity matrix firstly [8]. The similarity matrix
was subsequently transformed into an adjacency matrix by apply-
ing the automatic generated threshold to the correlation values
based on the RMT approach [8]. In this study, a connection stands
for a strong (Pearson’s r > 0.85) and significant (P < 0.01) correla-
tion. The visualization of the co-occurrence network was per-
formed using gephi (0.9.2).
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2.4. Characterization of topological properties of co-occurrence
networks

The modularity of each network was estimated using MENA
along with the evaluation of other topological properties, including
the clustering coefficient [26,27], average path length [28], graph
density [29], and average degree [28]. Random networks and
power-law distribution assessments were generated to evaluate
whether empirical networks were prone to error and to identify
microbiota interactions that were due to non-random patterns that
represent the empirical structure of microbial communities
[30,31]. Random networks were constructed based on the
Maslov-Sneppen method [31] using MENA, which kept numbers
of nodes (microbial taxa) and edges (connections) unchanged,
but rewired positions of all links in the network.

From the network modularity perspective, taxa could be classi-
fied intonetworkhubs,modulehubs, connectors that represent gen-
eralists in the community, and peripherals that represent specialists
in the community [32]. Generalists refer to taxa that are highly con-
nectedwith others bothwithin and amongmodules (networkhubs),
within a module (module hubs), and among different modules
within a network (connectors). Specialists represent peripheral taxa
that interact less with other taxa (including a node that is only con-
nectedwithin amodule or at least 60% linkswithin themodule) [32].
Within-module connectivity (Zi) and among-module connectivity
(Pi) were computed based on the following algorithm [32]:

Zi ¼ ki � kSi
rksi

where ki is the number of links of node i to other nodes in its module

si, kSi is the average of k across all nodes in si, rksi represents the stan-
darddeviationof k in si. Hence, Zi (within-module connectivity) char-
acterizes to what extent node i is connected to others in its module.

Pi ¼ 1�
XNM

s¼1

kis
ki

� �2

where kis is the number of links of nodes i to nodes in module s, ki is
the total degree of node i within a network. Therefore, Pi (among-
module connectivity) of a node stands for evenly distribution of
links among all modules if its value is close to 1, and 0 if all its links
are within its own module.

Zi and Pi were characterized using MENA with the classification
as follows: network hubs (Zi > 2.5; Pi > 0.62), module hubs (Zi > 2.5;
Pi < 0.62), connectors (Zi < 2.5; Pi > 0.62); peripherals (Zi < 2.5;
Pi < 0.62) [21]. The thresholds for classifying nodes into aforemen-
tioned four roles in the network were determined by both heuristic
determinations and the concept of ‘basin of attraction’ [21]. Briefly,
Zi and Pi were both computed for each node in the network, and
density plots were adopted to visualize the gradient of the value
of Zi and Pi that can ‘flow’ to the local minimum (termed as ‘basin
of attraction’). In other words, the region of the space that ‘flow’
toward a certain minimum value is therefore regarded as the opti-
mal threshold for Zi and Pi being 2.5 and 0.62, respectively [21].

Network stability is a critical component that tests if a network
is resilient to perturbations sourced from external factors other
than interactions [33,34]. Here, natural connectivity [35] was
introduced to describe network stability differences in response
to the stx2 expression in STEC. The estimation of natural connectiv-
ity was based on the following algorithm:

aveðkÞ ¼ lnð1
N

XN
i¼1

eki Þ

where aveðkÞ is the natural connectivity, N is the number of nodes
in the network, ki is the eigenvalue of the adjacency matrix. A total
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of 137 nodes representing 80% of total nodes were randomly
removed from the adjacency matrix and ki and aveðkÞ were re-
calculated after each removal. The visualization of the natural con-
nectivity was performed using the ggplot2 package in R.

The identification of potential hub microbial taxa in the net-
work was validated using Lasso regression in R package ‘glmnet’.
Twelve samples were regarded as the training data with 9 samples
(6 Stx2+; 3 Stx2�) as the external test data. The accuracy rate (the
number of samples recognized correctly / total number of samples)
was estimated to determine the model classification performance.

2.5. Data availability

All the sequencing data used in the current study has been sub-
mitted to NCBI Sequence Read Archive (SRA) under the accession
numbers from SRR14769039 to SRR14769050 (BioProject ID
PRJNA736180).
3. Results

3.1. Taxonomic assessment of the RAJ content-associated microbiota

A total of 179,917 filtered pair-end reads were generated with
14,993 ± 437 (mean ± SE) sequences per sample, and a total of
2,798 amplicon sequence variants (ASVs) were identified ranging
from 174 to 275 (Table S2). The Good’s coverage was >99.9% for
all samples, indicating adequate sequencing depth.

From all samples, >99% of reads were classified into 13 phyla,
with Firmicutes (72.7 ± 2.0%) and Bacteroidetes (24.6 ± 1.9%) being
the most predominant phyla (relative abundance >10%, Additional
file 1). At the family level, 59 families were identified with 7
unclassified and 52 classified (Additional file 1), of which
Ruminococcaceae (47.2 ± 1.5%), Lachnospiraceae (9.2 ± 1.2%), and
Prevotellaceae (8.8 ± 1.1%) were the most predominant families.
At the genus level, 154 taxa were identified (Additional file 1, 20
unclassified; 134 classified), of which Ruminococcaceae UCG-005
(23.1 ± 2.1%) and coprostanoligenes group (9.1 ± 0.7%) from
Ruminococcaceae family and Christensenellaceae R-7 group
(7.3 ± 0.7%) from Christensenellaceae family were the most abun-
dant genera. The most frequently detected genera (average relative
abundance >0.5%, Additional file 1) belonged to Firmicutes (19 out
of 27, 4 unclassified, 15 classified) and Bacteroidetes (8 out of 27, 1
unclassified, 8 classified), respectively.

There were 52 to 75 genera identified from each sample with 15
core genera shared by all 12 samples (Fig. 1A, Table S4). Specifi-
cally, 30.7% (4 out of 13 phyla, Firmicutes, Bacteroidetes, Acti-
nobacteria, Proteobacteria), 18.6% (11 out of 59 families, 6 out of
11 belonged to Firmicutes; 5 out of 11 belonged to Bacteroidetes;
Additional file 1) and 9.7% (15 out of 154 genera, 9 out of 15
belonged to Firmicutes; 6 out of 15 genera belonged to Bacteroide-
tes; Fig. 1A, Table S4,) were present in all samples. In addition,
twenty-four genera were Stx2� specific and 13 genera were Stx2
+ specific with 66 genera shared by both groups (Fig. 1B). Genera
belonging to Firmicutes were the most predominant taxa in Stx2�
(10 out of 24) and Stx2+ (4 out of 13) groups (Table S5).

3.2. Comparable diversity and composition of RAJ content-associated
microbiota between Stx2� and Stx2+ groups

Neither Shannon nor Chao1 indices differed (Kruskal Wallis
test, P > 0.05, Fig. 2A) between the bacterial communities from
Stx2� and Stx2+ groups. Further comparison of the similarity of
microbial communities between the two groups using ANOSIM
(Analysis of similarities) revealed no clustering patterns
(P = 0.52, Fig. 2B) at the phylum (P > 0.5, Fig. 3), family, or genus



Fig. 2. Comparison of diversity metrics between Stx2� and Stx2+ groups. A. Shannon and Chao1 indices were used to estimate the evenness and richness between Stx2� and
Stx2+ groups, respectively. The horizontal bars within boxes represent medians. The tops and bottoms of boxes represent the 75th and 25th percentiles, respectively. The
upper and lower whiskers extend to data no >1.5� the interquartile range from the upper edge and lower edge of the box, respectively. The Kruskal-Wallis test was used to
determine whether indices between the two groups were significant. (P � 0.05). B. Principal coordinate analysis (PCoA) was used for visualization of Weighted Unifrac
distance. The PERMANOVA was used to test for the similarity of clustering patterns between Stx2� and Stx2+ groups. Differences were considered significant at P � 0.05.

Fig. 1. Shared and specific genera between Stx2� and Stx2+ groups. A. The flower plot was used for visualization of the number of core genera shared by each sample (in the
center) and the number of specific genera found in each sample (in the petals). B. Genera detected in Stx2+ and Stx2� group. Detected genera, total relative abundance of 0.1%
within at least two samples in each group.
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(Both P > 0.1) levels. No differentially abundant taxa at the phylum,
family, or genus level were identified between Stx2� and Stx2+
groups.

3.3. General co-occurrence patterns in each co-occurrence network

The non-random co-occurrence patterns were observed based
on the significant power-law distribution in each group
(R2

Stx2+ = 0.98, P < 0.05; R2
Stx2� = 0.97, P < 0.01) as well as the greater

value of structural properties in the empirical as compared to the
random networks (Table 1). Hence, non-random empirical
co-occurrence networks were established to uncover real-world
microbial interactions. The empirical network consisted of 86 nodes
(genera) with 322 edges (a mean of 7.49 edges per node) for
Stx2� (Table 1, Fig. 4A), and 77 nodes with 243 edges for Stx2+
(Table 1, Fig. 4B). The average network distance between all paired
nodes (average path length, APL) was 2.84 edges with a diameter
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(longest distance) of 8 edges in the Stx2� network and 2.86 edges
with a diameter of 7 edges in the Stx2+ network, respectively
(Table 1). The clustering coefficient (the degree to which nodes tend
to cluster together) was 0.32 for the Stx2� network and 0.33 for the
Stx2+ network, respectively (Table 1). The modularity index was
0.44 for the Stx2� network and 0.46 for the Stx2+ network (values
>0.4 suggest that the network has a modular structure [36])
(Table 1).

3.4. Identification of keystone taxa and their associations with
different co-occurrence patterns

High modularity was observed for both networks with 7 and 6
observed modules in the Stx2� and Stx2+ co-occurrence networks,
respectively (Fig. 4A, B) with no network hubs being identified.
More than 80% of nodes (Stx2�: 74 out of 86, 86.0%; Stx2+: 62
out of 77, 80.6%) with an abundance >0.2% were classified as



Fig. 3. Comparison of average relative abundance at the phylum level between Stx2� and Stx2+ groups. Circos plots were used for visualization of average relative abundance
at the phylum level between Stx2� and Stx2+ groups. Phyla in each group with a total relative abundance of >0.1% in at least three samples were included. The Kruskal-Willas
test was used to determine the average relative abundance of phyla was comparable (P > 0.05) between Stx2� and Stx2+ groups. P-values were false discovery rate (FDR,
q = 0.05) adjusted.

Table 1
Topological properties of empirical and random network between Stx2� and Stx2+ groups.

Empirical network Random network

Group Stx2� Stx2+ Stx2� Stx2+
Nodes 86 77 86 77
Edges 322 243 322 243
Modularity (MD) 0.44 0.46 0.29 (±0.011) 0.31 (±0.012)
Clustering coefficient (CC) 0.32 0.30 0.12 (±0.014) 0.12 (±0.016)
Average path length (APL) 2.84 2.86 2.47 (±0.030) 2.58 (±0.033)
Graph density (GD) 0.088 0.083 0.09 0.08
Average degree (AD) 7.49 6.31 7.49 6.31

Fig. 4. Co-occurrence networks of bacterial genera in (A) Stx2� and (B) Stx2+ groups. The size of each node is proportional to the number of connections (that is, degree); the
color of connections between two nodes represents a positive (red) or a negative correlation (blue). Each module is presented as a specific color. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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peripherals (Fig. 5A). Only 14% (connectors: 11 out of 86; module
hubs: 1 out of 86; Stx2� group) and 19.4% (connectors: 14 out of
77; module hubs: 1 out of 77; Stx2+ group) of taxa from Stx2�
6004
and Stx2+, respectively, were designated as specialists (Fig. 5A).
Specifically, >85% (23 out of 27) of connectors had a lower abun-
dance (<0.2%) with a high Pi value (0.62 � 0.77) (Fig. 5B).



Fig. 5. Distribution and average relative abundance of genera based on their network roles. A. Distribution of bacterial genera based on their network roles. Nodes in the
network were classified as peripherals, modular hubs, or connectors. No network hubs were identified in networks from both groups. B. Average relative abundance of
connectors.

Table 2
Stx2� and Stx2+ generalists at genus level and their belonged bacterial phyla.

Phylum Genus Group-specific

Stx2� group
Actinobacteria Parvibacter Stx2� specific
Bacteroidetes f_Bacteroidales RF16 group

f_ Prevotellaceae Stx2� specific
Cyanobacteria o_ Gastranaerophilales Stx2� specific
Firmicutes f_ Veillonellaceae Stx2� specific

Acetitomaculum Stx2� specific
f_ Veillonellaceae

Patescibacteria Candidatus saccharimonas Stx2� specific
Planctomycetes p-1088-a5 gut group
Proteobacteria Parasutterella

o_ Rhodospirillales Stx2� specific
Tenericutes o_ Izimaplasmatales Stx2� specific
Stx2+ group

Actinobacteria Saccharopolyspora rectivirgula
Streptomyces Stx2+ specific

Bacteroidetes Prevotellaceae Ga6A1 group Stx2+ specific
Prevotellaceae UCG-001

Parabacteroides
Chloroflexi Flexilinea Stx2+ specific

Firmicutes Oscillibacter
Ruminiclostridium 9 Stx2+ specific
Ruminococcus 1 Stx2+ specific

f_ Erysipelotrichaceae
Cellulosilyticum

Planctomycetes p-1088-a5 gut group
Proteobacteria Acetobacter Stx2+ specific

Parasutterella
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Furthermore, generalists formed differential clustering patterns
between Stx2� and Stx2+ networks. Generalists were evenly dis-
tributed across identified ecological clusters in the Stx2� network.
Four out of fourteen generalists belonged to module 3, whereas
other generalists were in module 1 (3 out of 11), module 2 (2 out
of 11), module 4 (1 out of 11), module 5 (1 out of 11) and module
6 (1 out of 11). However, in the Stx2+ network generalists were not
evenly distributed with 7, 4, 3, and 1 out of 14 generalists belong-
ing to modules 1, 3, 2, and 4, respectively.

Moreover, decreased stability of the network was evidenced by
reduced natural connectivity in the Stx2+ network in comparison
to the Stx2� network (Fig. 6). The natural connectivity that sup-
ported network stability in each group gradually decreased with
the increasing number of removed nodes, while natural connectiv-
ity in the Stx2+ network always being lower than that in the Stx2�
network regardless of the numbers of nodes removed from each
network (Fig. 6).

3.5. Group-specific taxa as keystone taxa in microbial interactions

More than 50% of the group-specific genera (8 out of 12 in
Stx2�; 6 out of 12 in Stx2+, Table 2) belonged to generalists with
a lower abundance (relative abundance <0.2%). Group-specific
generalists in the Stx2� network included: Parvibacter, Candidatus
saccharimonas, Acetitomaculum, as well as unknown genera within
the Bacteroidetes, Proteobacteria, Tenericutes, Cyanobacteria, and
the Veillonellaceae. Besides, among generalists in the Stx2+ net-
work, Prevotellaceae Ga6A1 group, Flexilinea, Ruminiclostridium 9,
Ruminococcus 1, Acetobacter, and Streptomyces were group-
specific genera in microbial communities in the Stx2+ group. All
Fig. 6. The natural connectivity representing the network stability of co-occurrence
networks in both Stx2� and Stx2+ groups.
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the core microbes shared by two groups (Fig. 3B) were regarded
as specialists that were poorly connected with other taxa within
networks.
4. Discussion

This study assessed microbial interactions in response to stx2
expression in STEC at RAJ in beef steers, shedding light on micro-
bial mechanisms regulating STEC colonization as well as providing
novel approaches to understanding differences in microbial com-
munities. The compositional profiles of microbial communities
identified in our study were comparable to those identified from
the rectum content of dairy cattle [37], and fecal microbiota of beef
cattle [19,38] with the most dominant phyla being Firmicutes and
Bacteroidetes with an accumulative relative abundance of up to
94.1%, 89.5%, and 80.6%, respectively. The proportion of three main
families (Ruminococcaceae (47.2 ± 1.5%), Lachnospiraceae
(9.2 ± 1.2%), and Prevotellaceae (8.8 ± 1.1%)) were also similar to
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the bacterial taxa identified in a study where cattle were shedding
>104 cfu/g of E. coli O157 in that 31.8%, 10.5%, 9.0% of total reads
from fecal microbiota were assigned to Ruminococcaceae, Prevotel-
laceae, and Lachnospiraceae, respectively [19]. Although all cattle
were raised under the same high-grain diet and management con-
ditions and were similar in age and body weight, individual varia-
tions of microbial communities were still observed including the
relative abundance of each microbial community and the propor-
tion of predominant taxa shared by each microbial community.
Variation in the microbial fecal profile of individual cattle has been
previously reported [19], a finding that has been attributed to dif-
ferences in age, weight, and diet. As these variables were relatively
consistent in our study, other host factors along with microbial
crosstalk within the microbiota might be the main drivers for the
individualized microbial composition.

Despite highly similar microbial profiles including comparable
alpha and beta diversity between Stx2� and Stx2+ groups, micro-
bial interactions within the microbiota varied. Microbes can inter-
act with each other for the purpose of co-evolution [39] leading to
adaptation and specialization [39] of certain microbial taxa, which
promote future alterations in the microbial community. To date,
the widely used approaches to study the microbial interactions is
based on network construction mainly using correlation-based
(Pearson’s and Spearman correlation coefficient) and maximal
information coefficient (MIC) methods that have proven to be less
useful in inferring microbial ecological networks assessed by area
under the precision-recall curves (AUPR) [3]. These metrics (i.e.,
correlation-based approaches, MIC) are less applicable to microbial
compositional data as the assumption of independent variables can
be satisfied, leading to the generation of spurious correlations
[3,40], and therefore are less powerful for inferring real microbial
interactions. To overcome such limitations in this study, similarity
matrix was first established using Pearson’s correlations and then
the RMT-based approach was employed to determine the reference
point which enables automatic threshold selection and minimizes
noise. The RMT-based approach was established based on two uni-
versal roles of random matrix theory: the distribution of two near-
est eigenvalues follows Gaussian orthogonal ensemble (GOE)
statistics correlations exist (a true correlation will follow GOE dis-
tribution in RMT theory), while it follows Poisson distribution if
there is no correlation [41]. Particularly the transition between
GOE and Poisson distribution serves as the reference point to dis-
tinguish non-random relationships (that is true correlations) in
the data matrix from background noise [41]. In other words, a cor-
relation refers to the GOE distribution while non-correlation repre-
sents the Poisson distribution and the transition point from GOE to
Poisson distribution is the reference point for the automatic gener-
ated threshold used for the construction of the microbial network
and the identification of meaningful correlations from the noise
(i.e. certain correlations might not follow GOE and therefore could
be noise or spurious correlations). Hence, compared to studies that
only adopt correlations (Pearson’s and Spearman correlation coef-
ficient) for constructing microbial networks, the RMT-based
approach is more effective at identifying true interactions within
the response networks to stx2 expression.

Comparison of random and empirical networks based on topo-
logical properties, confirmed constructed networks were effective
for investigating interactions between stx2 expression and micro-
bial communities. Particularly, modules (clusters) were powerful
topological features to reflect network differences, referring to
the fundamental units whose constituent elements (nodes) are
functionally similar in terms of specific chemical, and biological
processes [42]. Previous explorations in soil-microbial interactions
revealed that clusters in the network have specific and different
functions that enable microbes to respond to different soil condi-
tions [43,44]. For instance, three major modules with diverse func-
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tions (electron-transfer, biogeochemical C- and N- cycles, organic
contaminant degradation) were characterized for microbial com-
munities from soil contaminated with oil [44], Clusters were
shown to be crucial components of microbial communities in the
network and necessary to develop an understanding of modularity
in networks and microbial interactions. The Stx2� and Stx2+
groups formed comparable numbers of clusters while clusters in
each group included different taxa, suggesting functions of clusters
in each group differed in their interactions in response to stx2
expression in STEC at RAJ. Regardless, the highly connected genera
among densely connected clusters of nodes (that is, modules) were
observed in both Stx2� and Stx2+ groups resulting in the forma-
tion of ‘small world’ topologies, indicative of empirical networks
that are more clustered than random networks.

Identifications of generalists also furthered the understanding
of microbial community structure and differential microbial inter-
actions, which play an empirical rather than theoretical role among
microbial interactions. Particularly, identified generalists in our
study are group-specific taxa, which are with low relative abun-
dance but might play unique roles such as regulating microbial
interactions within each network through nutritional supplemen-
tation or competition. E. coli O157:H7 can utilize ethanolamine
as the free nitrogen source in the bovine small intestine, thus the
presence or absence of ethanolamine utilizing bacteria could be a
contributing factor to diverse microbial communities [19,45]. In
our study, Streptomyces identified as Stx2+ specific genera were
capable of metabolizing ethanolamine [46], which might generate
a niche for the survival of stx2 expressed bacteria. However, not all
group-specific generalists in microbial communities play a role in
nutrient supplementation for STEC. For instance, Acetobacter (a
group-specific generalist from the Stx2+ group) is capable of con-
verting ethanol to acetic acid which can inhibit STEC [47]. A similar
case is also observed in Stx2� group that Acetitomaculum (a group-
specific generalist from Stx2� group), an acetogenic bacteria [48],
may also suppress STEC. It is noticeable that >85% (23 out of 27)
generalists were low abundant taxa with an average abundance
<0.2%, highlighting the irreplaceable role of rare abundant taxa
among microbial interactions. For instance, rare Methanotrophs
(i.e. Methylocaldum) acting as ‘primary producers’ in methane-
driven food webs [49], rare symbionts (i.e. Symbiodinium) increase
coral-algal assembly stability with environmental alterations [50].
Hence, these results raise the possibility that less abundant group-
specific generalists contribute to the differential degradation of
organic matter and play a practical role in microbial interactions
by mediating nutrient availability in a manner that may have pos-
itive or negative effects on STEC colonization. The lack of well-
defined approaches for determining keystone taxa from networks
embedded our understanding of microbial interactions. Previous
studies adopted global topological properties (i.e. betweenness
centrality) for inferring keystone taxa [51], which neglects the fact
that networks tend to be modular. Identification of generalists (or
keystone taxa) following the concept of among/within- module
connectivity provides the added advantage for further understand-
ing of microbial interactions. Thus, the approach in our study of
using the concept of modularity to compute the role of each node
is more representative of network modularity and the role of each
node with/among the overall structure.

As a supportive approach, lasso regression revealed group-
specific microbes contributed to the mucosa-associated stx2
expression. Among the 7 selected genera based on lasso regression,
2 out of 7 were core and 3 out of 7 were group-specific genera
(Table S6). However, all of the core microbes were identified as
peripherals that were poorly connected with other taxa and were
not expected to affect the robustness of the network [52]. Com-
pared to studies that emphasize the value of core microbiota in
the maintenance of microbial communities, group-specific genera
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exhibiting diverse functions could potentially interact with the
host and Stx2-carrying/Stx2-expressed bacteria, leading to the
establishment of a different co-occurrence network. Hence, our
study highlights the valuable role of group-specific taxa in the
microbial co-occurrence network which advances the understand-
ing of microbial interactions in terms of stx2 expression and poten-
tial STEC colonization. It is noticeable that the identified microbial
networks should be validated in the future. In addition to the
mathematical algorithm that reduces spurious correlations, adding
stable isotope probes in the DNA-derived microbial community
and analyzing heavy-isotope enriched DNA could be alternative
approach, which could differentiate inactive microbial interactions
from ecological meaningful microbial crosstalk left [53,54]. For
instance, a DNA-based stable isotope probing approach using
[13C]CH4 has been employed to identify real microbial interactions
by co-occurrence analysis in ombrotrophic peatlands [53]. How-
ever, using heavy isotope probes to examine true microbial inter-
actions within the dense microbial communities of the gut needs
further evaluation.

5. Conclusions

Overall, our results revealed comparable diversity and composi-
tion of RAJ microbiota were observed between Stx2� and Stx2+
animals with >60% genera recognized as members of the core
microbiome. However, RMT-based network analysis revealed var-
ried microbial interactions, keystone taxa, and stability of micro-
bial communities in response to stx2 expression. Group-specific
taxa play an unusual role in the network which might drive
microbiota-stx2 interactions. This study also constitutes an in-
depth understanding of host-STEC interactions and highlights the
possibility of altering the gut environment to mitigate stx2 expres-
sion through modifying the gut microbiota. However, future vali-
dations using a larger sample size are needed to verify the
proposed methods for deciphering microbial community differ-
ences as well as the principles of microbe coexistence that deter-
mine microbial interactions. Regardless, our findings highlight
the critical role of group-specific genera among microbial interac-
tions and shed light on using an integrated approach that inte-
grates group-specific genera with network analysis to identify
and characterize differences in microbial communities with com-
parable microbial profiles.
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