
Peripheral blood gene expression profiles in metabolic 
syndrome, coronary artery disease and type 2 diabetes

Britney L. Grayson1, Lily Wang2, and Thomas M. Aune1,3

1Department of Microbiology and Immunology, Vanderbilt University School of Medicine, 
Nashville, TN 37232, USA

2Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA

3Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA

Abstract

To determine if individuals with metabolic disorders possess unique gene expression profiles, we 

compared transcript levels in peripheral blood from patients with coronary artery disease, type 2 

diabetes and their precursor state, metabolic syndrome to those of control subjects and subjects 

with rheumatoid arthritis. The gene expression profile of each metabolic state was distinguishable 

from controls and correlated with other metabolic states more than with rheumatoid arthritis. Of 

note, subjects in the metabolic cohorts over-expressed gene sets that participate in the innate 

immune response. Genes involved in activation of the pro-inflammatory transcription factor, NF-

κB, were over-expressed in coronary artery disease while genes differentially expressed in type 2 

diabetes play key roles in T cell activation and signaling. RT-PCR validation confirmed 

microarray results. Furthermore, several genes differentially expressed in human metabolic 

disorders have been previously shown to participate in inflammatory responses in murine models 

of obesity and Type 2 diabetes. Taken together, these data demonstrate that peripheral blood from 

individuals with metabolic disorders display overlapping and non-overlapping patterns of gene 

expression indicative of unique, underlying immune processes.
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Introduction

Type 2 diabetes (T2D) is a metabolic disorder of peripheral insulin resistance resulting in 

hyperglycemia and ultimately decreased insulin secretion from the pancreas. Risk factors for 

T2D include obesity, physical inactivity and family history of metabolic disorders or 

atherosclerosis1. Diabetes currently affects 6.3% of the United States population and 

approximately 90% of these cases are non-insulin dependent, or T2D2. Coronary artery 

disease (CAD) results from atherosclerotic plaque development in coronary arteries. These 

fibrous, fatty deposits can ultimately block the flow of blood resulting in angina and/or 

myocardial infarction. Hyperlipidemia predisposes to the development of these plaques, 

making obesity and physical inactivity also risk factors for CAD3. The prevalence of CAD 

in the United States is 4.1% 4. Metabolic syndrome (MetS #0) is a precursor state to both 

T2D and CAD5-13. The International Diabetes Federation (IDF) defines this pre-disease 

state as central obesity plus any 2 of the following 4 characteristics: hypertriglyceridemia, 

low high-density lipoprotein (HDL) cholesterol, hypertension or raised fasting plasma 

glucose. The prevalence of MetS in the United States is as high as 39% using the IDF 

criteria. Diagnosis of MetS confers a 1.5-2.6 relative risk of developing CAD and a 3.5-7.5 

relative risk of developing T2D. Additionally, the Framingham study determined that a 

portion of these relative risks persist even in the absence of obesity. This trio of disorders 

poses a significant threat to public health in the United States.

Inflammatory processes are involved in the pathogeneses of T2D and CAD. Visceral 

adipose tissue, present in abundance in many patients with T2D, produces inflammatory 

cytokines like IL-6 and TNF-α that are known to aid in the impairment of insulin signaling 

in adipocytes. These cytokines can activate a systemic immune response and recruit 

inflammatory cells, like lymphocytes, to visceral adipose tissue14. In the case of CAD, the 

lesion is not visceral adipose tissue, but rather fatty deposits in the vasculature. These 

deposits contain fat-laden macrophages and immunoreactive T-cells3.

Gene expression profiling of blood or tissue samples is one way to assess cellular changes 

due to cell differentiation and aging15; 16, disease pathogenesis17-19 or pharmacological 

responses20; 21. One example of this is tumor typing; gene expression signatures are 

presently used to classify tumor types in breast cancer biopsies. This method can also be 

used to assess changes in peripheral whole blood of patients with common, complex 

diseases22-24. Individuals with autoimmune diseases [type 1 diabetes, multiple sclerosis, 

systemic lupus erythematosus and rheumatoid arthritis (RA)] display unique gene 

expression signatures in peripheral whole blood. Portions of these signatures are expressed 

in first degree unaffected relatives25 however, disease-specific signatures are also found in 

peripheral blood and are sufficient to distinguish individuals with disease from control 

individuals26. Moreover, peripheral blood gene expression profiling can give insight into 

disease processes and suggest specific functional defects in cells. For example, peripheral 

blood gene expression in patients with RA contains low transcript levels of the tumor 

suppressor protein, p53. Consequently, T cells from patients with RA are resistant to 

gamma-radiation induced apoptosis, a p53 dependent pathway27. Gene expression profiling 

may also aid in diagnosing patients who have these often difficult to diagnose diseases; 

therefore, analysis of peripheral blood gene expression represents one approach to assessing 
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immune system changes, predicting cellular defects and diagnosing patients with immune-

related disease in a minimally invasive way.

T2D, CAD and their precursor, MetS are not autoimmune diseases but feature inflammation 

as a possible pathogenic component. The purpose of our studies was to assess if these 

diseases also possess unique peripheral blood gene expression profiles and if so, what do the 

profiles indicate about the relationships among MetS, CAD and T2D. To address this 

question, we compared profiles of each disease state to control (CTRL) subjects, to an 

autoimmune disease, RA, and to each other.

Results

Peripheral blood gene expression profiling using microarrays has been shown sufficient to 

distinguish between phenotypically distinct cohorts of patients22-24. We sought to determine 

if subjects with MetS, CAD or T2D also possessed a gene expression signature in blood 

sufficient to distinguish these subjects from CTRL subjects and, if so, did this signature bear 

any resemblance to the signature of an autoimmune disease, RA. To do so, we recruited 

subjects with MetS, CAD and T2D (n=6, n=6, n=8, respectively), 6 subjects with RA, and 9 

subjects who had never been diagnosed with a chronic illness, and were not presently taking 

medications for any diagnosed state, to serve as the CTRL cohort.

We analyzed all 35 peripheral blood samples for gene expression using the human exonic 

evidence-based oligonucleotide (HEEBO) array. Next, we normalized the data to a sum total 

intensity of 10,000, giving an average intensity per oligonucleotide probe of 0.2. Genes, 

with an average intensity of greater than 0.2, were used as data points for clustering analysis. 

The intensity values of the filtered set of genes for each array were inputted into The 

Institute for Genomic Research’s multi-experiment viewer.

Initially the samples were imported in sets of control plus one disease or pre-disease state 

(RA, MetS, CAD or T2D, respectively) and then all samples were imported together. Using 

the Support Tree function, we created a dendrogram based on unsupervised clustering of 

each group of samples by similarity (Fig. 1). In other words, all samples were considered as 

1 group for analysis even though they represented several different cohorts. Comparing 

CTRL and RA in an unsupervised manner created a dendrogram that gave 100% support to 

a separation of 2 groups, however, 3 CTRL samples were branched with the entire RA 

cohort. The unsupervised dendrograms of CTRL + MetS, CTRL + CAD and CTRL + T2D 

show similar trends towards clustering of the cohorts away from each other, but without 

100% support. When all samples were imported in one analysis, we see loose clustering of 

the RA, T2D, CTRL and CAD cohorts, represented by those samples being placed in close 

proximity on the dendrogram. By clustering samples in an unsupervised analysis, the data 

suggest differences in gene expression between disease cohorts and control and also patterns 

that can be seen when all samples are considered together.

To further investigate differences in the gene expression profiles, we compared the RA, 

MetS, CAD and T2D groups individually to the CTRL cohort using a supervised 

significance analysis for microarray function. Each list of significantly differentially 
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expressed genes was used to run a bootstrap hierarchical clustering to determine the 

similarity of the patient samples to each other within each disease and their similarity to 

CTRL, which was known to be a separate group in the algorithm (Fig. 2). Although these 

were small sample sizes, the main branches of each support tree (denoted in black) represent 

100% statistical support based upon bootstrap hierarchical clustering analyses. A black bar 

separates two main branches neatly clustering the RA cohort away from the CTRL cohort 

based on gene expression. For the T2D cohort, two T2D patients clustered with the CTRL 

group and conversely, the same 2 CTRL patients clustered on a branch with the MetS and 

CAD groups in their individual comparisons with CTRL. These separations indicate that the 

majority of subjects with RA, MetS, CAD or T2D are more like each other than the CTRL. 

Hierarchical clusters confirmed that expression of genes in peripheral whole blood was 

sufficient to distinguish between the autoimmune disease, RA, and CTRL, as well as the 

inflammatory metabolic states of MetS, CAD and T2D and CTRL. Further similarities and 

differences can be seen amongst the disease-affected subjects. In the RA group at least one 

further branch with 100% support was seen, indicating that gene expression is not entirely 

homogenous within this group.

Additionally, when all samples were analyzed together, the support tree indicates that 8/9 

CTRL subjects cluster, with 100% support, on one branch with 2 T2D subjects, one of those 

being patient T2D 03 who previously clustered on the CTRL branch in the CTRL:T2D 

analysis (Fig. 2). The second branch features just one CTRL patient and the remainder of the 

patients in the disease cohorts. Five of the 6 RA patients cluster together on this branch, 

indicating that the RA signature is more like that of the metabolic diseases than CTRL; 

however, the RA patients are more like each other than the metabolic cohort patients. 

Furthermore, the remaining metabolic disease patients did not cluster in any particular 

pattern suggesting similarity amongst the MetS, CAD and T2D peripheral blood gene 

expression profiles. Taken together, this analysis demonstrates that subjects with MetS, 

CAD or T2D each possess a common gene expression signature in blood sufficient to 

distinguish them from CTRL and that these signatures may have overlapping components.

One possible source of differential gene expression in leukocytes is an alteration in the 

underlying genetic code28. Extensive genome wide analyses have been performed in RA, 

CAD and T2D revealing a number of single nucleotide polymorphisms (SNPs) associated 

with each individual disease. We probed our expression dataset to determine if genes 

associated with these SNPs showed differential expression in peripheral blood of subjects 

with disease versus CTRL subjects in any of our cohorts. A list of SNPs associated with RA, 

CAD or T2D was populated from The National Human Genome Research Institute29 and a 

recent pathway based SNP analysis by Torkamani, et al.30. For the SNPs present in gene 

coding regions (45 SNPs associated with RA, 61 SNPs associated with T2D and 25 SNPs 

associated with CAD), we calculated expression levels of the encoded gene as an average 

for the RA, CAD and T2D groups. Each set of genes was analyzed for expression in disease 

groups and we found a number of correlations between a SNP, its encoded gene and 

differential expression of that gene. Eight genes with a disease-associated SNP were 

differentially expressed in the corresponding disease group-CD244, IL2RA, PRKCA, 

SLC22A4 and TRAF1 in RA, and ADAMTS9, ANXA11 and KCNQ1 in T2D (Table 1). IL2RA 
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and TRAF1, genes identified by SNP studies in RA, were also differentially expressed in 

T2D and the T2D SNP-identified genes ADAMTS9 and KCNQ1 were differentially 

expressed in RA. While SNPs are known to influence gene expression, we only found 

associations in RA and T2D, not CAD. Altered gene expression was not confined to just one 

disease state; differential expression of certain genes was shared between RA and T2D.

A second possible source of differential gene expression among individuals or disease 

groups was presence or absence of pharmacologic therapies. We performed this analysis and 

did not find differences in gene expression among the different subject groups associated 

with common therapies.

Because hierarchical clustering demonstrated differences in gene expression profiles of each 

metabolic disorder cohort versus CTRL and potential overlap amongst the signatures of the 

metabolic states, we further analyzed the relationships of gene expression within and 

amongst the 4 disease or pre-disease states in the context of gene sets. A gene set is defined 

as a group of genes with a common purpose, derived from the Gene Ontology project31. For 

further information on gene sets, normalization, and calculations, see the Methods section. 

Complete analysis with p-values for each gene set as well as the p-value and fold change for 

individual genes considered in each gene set comparison are also available (Supplemental 

Tables 1 and 2). Gene set analysis showed that genes driving the differential expression in 

MetS, CAD and T2D are associated with overlapping activation of the innate immune 

response, activation of the pro-inflammatory transcription factor NF-κB in CAD, and over-

expression of genes involved in T cell activation and signaling in T2D.

Rheumatoid Arthritis

Rheumatoid Arthritis is an autoimmune disease characterized by systemic inflammation that 

extends into and damages peripheral joints32. Patients with RA have robust and 

distinguishable gene expression profiles in peripheral whole blood22. This finding was 

repeated using the HEEBO slide as the array format. Our analysis identified 5 gene sets of 

particular significance (Table 2). BIRC4 is over-expressed in gene set 110, Cell 

Development, and is involved in activation of the transcription factor NF-κB. NF-κB 

regulates expression of many pro- inflammatory genes. Immune System Process, gene set 

271, includes over-expression of LAT2 and NFAM1, genes involved in B cell signaling and 

development. Additional genes, BAT1, LIG4 and ILF2, are expressed in lymphocytes and 

differentially expressed in gene set 435. BAT1 is an HLA-associated transcript mutated in 

patients with RA. LIG4 encodes a protein essential for V(D)J recombination and non-

homologous end joining as part of DNA repair. ILF2 is involved in T cell expression of 

IL-2, a potent stimulator of proliferation of lymphocytes. The IL2-receptor alpha, IL2RA, is 

also over-expressed in this cohort and is found in gene set 753, Signal Transduction. 

Differential expression of genes involved in activation, maturation and signaling of 

lymphocytes is in agreement with the gene expression profile of RA seen previously22. 

Other genes significantly differentially expressed in this gene set included the IL9-receptor, 

IL9R, which supports IL-2 and IL-4 independent T cell growth, and MAP2K6, which 

activates p38 MAP kinase in response to inflammatory cytokines. LILRB4 was significantly 

under-expressed as part of the Signal Transduction gene set. This gene is an immune-cell 
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receptor for MHC-I that transduces a signal to inhibit the immune response; increased 

expression of LILRB4 on antigen presenting cells renders the cells tolerant, therefore 

decreased expression might allow for increased autoreactivity33. Finally, in gene set 706, 

Response to External Stimulus, CHST2, encoding a protein expressed by vascular 

endothelium to attract lymphocytes, and F11R, encoding another protein expressed by 

vascular endothelium and involved in leukocyte transmigration, were over-expressed. Over-

expression of genes encoding proteins with key roles in lymphocyte activation and growth 

could influence activation and expansion of self-reactive lymphocytes believed to cause 

joint destruction in individuals with RA.

Metabolic Syndrome

The triad of MetS, CAD, and T2D are typically considered metabolic, not immune, diseases 

although aspects of each involve inflammation, sometimes systemically. Nevertheless, each 

of these pathogenic states was characterized by an identifiable peripheral blood gene 

expression distinguishing each state from CTRL (Fig. 1). Here, we identify the differentially 

expressed genes driving these signatures.

The gene expression profile characterizing MetS consisted of many genes involved in innate 

immune responses (Table 2). Gene set 13, Acute Inflammatory Response, featured up-

regulation of CFHR1, a complement factor gene, and ORM1, an acute phase reactant. Acute 

phase reactants may be present at increased levels as a consequence of hyperlipidemia-

induced liver injury. CD1D, involved in antigen presentation of lipids and glycolipids to 

activate NKT cells, is over-expressed in gene set 316. Under-expression of TNFAIP3 is 

found in gene set 407, Negative Regulation of Signal Transduction. This gene encodes a 

protein that inhibits NF-κB activation and terminates NF-κB responses. Decreased 

expression of this gene, as with LILRB4 in RA, limits at least one way in which an immune 

response is attenuated. Also decreased in expression were two apoptosis-related genes: 

DAXX, involved in TNF-mediated apoptosis, and MOAP1, involved in caspase-mediated 

apoptosis, in the Regulation of Developmental Process gene set. MAP3K5, also in gene set 

615, shows increased expression. MAP3K5 activates MAP2K6 which in turn activates p38 in 

response to inflammatory cytokines. This pathway was also over-expressed in RA.

Coronary Artery Disease

Peripheral blood gene expression in CAD was also distinguishable from the CTRL cohort 

(Fig. 1). This profile is defined by genes that impact activation and expression of NF-κB 

(Table 2). While some genes encoding proteins that impact NF-κB were differentially 

expressed in RA and MetS, the CAD gene expression profile encompassed a far greater 

number of NF-κB associated genes. Gene set 499, Positive Regulation of Immune Response, 

includes the over-expressed genes IKBKG and TLR8. IKBKG is a regulator of the IKK 

complex, which activates NF-κB; TLR8 also activates NF-κB as part of the innate immune 

response. MAP3K7IP2, TNFAIP3 and TNFRSF10B are differentially expressed in gene set 

636. IL-1 initiated activation of NF-κB is mediated by MAP3K7IP2, TNFRSF10B is also an 

activator while previously mentioned TNFAIP3, an inhibitor of NF-κB, is under-expressed 

in this disease cohort, as well as in MetS. TRIB3 in gene set 412, Negative Regulation of 

Transferase Activity, was highly over-expressed. This gene encodes a protein that is induced 
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by NF-κB and acts as a feedback regulator of this transcription factor, thus sensitizing the 

cells to apoptosis. Downstream effects of activation of NF-κB include increased expression 

of many genes involved in inflammation and also of genes that protect the immune cells 

from apoptosis, allowing further expansion of the inflammatory response.

Type 2 Diabetes

The T2D peripheral blood gene expression signature was robust and included many protein-

coding genes involved in T cell signaling and function (Table 2). Three of these, gene sets 

271, 435 and 753, were also significantly differentially expressed in RA and gene sets 435 

and 753 specifically showcase the T cell associated genes. Gene set 435, Nucleobase 

Nucleoside Nucleotide and Nucleic Acid Metabolic Process, includes over-expression of the 

T cell genes ILF2, or nuclear factor of activated T cells, which modulates IL-2 expression, 

NFATC4, a gene involved in the inducible expression of cytokines and NP, a gene encoding 

an enzyme that, when lacking, compromises cell-mediated immunity. In gene set 753, 

Signal Transduction, the trio of receptors IL1RL1, IL4R and IL9R were over-expressed. 

IL1RL1 is a receptor induced by inflammatory cytokines, IL4R promotes differentiation of T 

cells to T helper type 2 cells, and IL9R encodes a receptor that supports IL-2 and IL-4 

independent growth of the T cell population. This gene set also features decreased 

expression of the leukocyte immunoglobulin-like receptors LILRB2 and LILRB4, both of 

which serve to limit the immune response. MAPK11, encoding a protein activated by pro-

inflammatory cytokines, is over-expressed in this gene set along with GPX1, a glutathione 

peroxidase. Finally, levels of TNFRSF13B transcripts are increased; this gene serves to 

stimulate lymphocyte function. A number of other gene sets were significantly differentially 

expressed in T2D. Cell Cell Signaling, gene set 104, includes up-regulation of the 

complement component C1QA and the chemotaxin CXCL5. Gene set 117 features increased 

expression of CD276, another regulator of T cell mediated immunity and IL2RA, a gene also 

over-expressed in RA and involved in proliferation of lymphocytes. The Immune System 

Process gene set 271 includes many of the previously discussed differentially regulated 

genes as well as decreased expression of CTLA4, a gene encoding a protein expressed on the 

surface of helper T cells that transduces an inhibitory signal. The gene expression profile of 

T2D was distinct from CTRL subjects in the differential expression of many genes involved 

in the activation of and signaling in T cells, reflecting the possibility that components of the 

adaptive immune system may contribute to the pathogenesis of T2D.

Correlation Among Disease States

To further investigate the overlap in gene expression profiles of the metabolic disorders 

suggested by hierarchical clustering (Fig. 2), we explored interrelationships of these profiles 

in the gene set analysis. To do so, we created a list of gene sets whose average expression 

level differed significantly from that of CTRL (p<0.05) for any of the four comparisons. 

Next, we assessed the relationships among RA, MetS, CAD and T2D by estimating pairwise 

Spearman Correlation coefficients based on the p-values for the gene sets derived from the 

comparison of each state to CTRL. The thickness of the line connecting one state to another 

is based on the estimated Spearman’s correlations (Fig. 3A). The sole autoimmune disease, 

RA, showed the lowest correlation with the other diseases. We found the highest degrees of 

correlation in comparisons among MetS, CAD and T2D demonstrating strong overlap in the 
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peripheral blood gene expression profiles of these inflammatory disease states. Correlation 

among this trio ranged from Spearman’s rho 0.44296 to 0.53772, all with significance of 

p<0.0001. There were 618 genes significantly differentially expressed in 2 or more of MetS, 

CAD or T2D versus CTRL comparisons (Fig. 3B). Within the genes differentially expressed 

in all three states versus CTRL, FCGR1A, an Fc receptor for immunoglobulin-gamma 

involved in both innate and adaptive immunity, AGER, a receptor for the immunogenic 

advanced glycation end products, the innate immunity-related complement stabilizer CFP, 

and the acute phase reactant, CP, were over-expressed. These genes and their related 

pathways may all lead to activation of the innate immune response. PPARA, a peroxisome 

proliferator receptor, also showed increased expression. IL2RA, the NF-κB activator 

TNFRSF1A, and the inflammatory signaling molecule MAPK11 showed increased 

expression in both CAD and T2D. IL-1 mediates synthesis of acute phase reactants and the 

IL-1 receptor associated protein, IL1RAP, was differentially expressed in both MetS and 

T2D along with the NF-κB associated NFKB2. Differentially expressed in both CAD and 

MetS were the innate immune activator LILRA5, MAP3K5 involved in the activation of p38 

MAP kinase in response to inflammatory cytokines, and the NF-κB associated NFKBIB. 

Gene expression profiles of MetS, CAD and T2D were significantly correlated with each 

other and, to a lesser degree, with RA.

Given that MetS is a precursor to both CAD and T2D, an analysis was performed to 

eliminate those gene sets that overlap amongst CAD or T2D and MetS in order to isolate the 

genes and gene sets that may be involved in progression of MetS to its sequelae. We 

selected gene sets that were not significantly differentially expressed in MetS but were 

significantly differentially expressed in CAD or T2D (Table 2). As MetS progresses to its 

sequelae, CAD, we found differential expression of an increased number of genes involved 

in activation of and signaling in macrophages. The predominance of genes participating in 

activation of NF-κB, seen in the comparison of CAD to CTRL, was also found in the 

comparison of CAD to MetS. The increased expression of monocyte and macrophage 

related genes can be found primarily in gene set 753, Signal Transduction. CD14 is a 

monocyte surface marker, CXCL14 encodes a chemokine for monocytes, and MST1R 

encodes a protein that serves as the receptor for macrophage stimulating protein. All 3 of 

these genes were over-expressed in CAD compared to MetS. In addition, three MAP 

kinases, MAP2K7, MAPK11 and MAPK13, were over-expressed in this gene set, all of 

which are involved in mediating the immune response to pro-inflammatory cytokines. Gene 

sets 482 and 682 feature a number of genes involved in the activation of the pro-

inflammatory transcription factor NF-κB. CARD14 interacts with BCL10 to positively 

influence NF-κB activation; IKBKG and TNFRSF1A also activate NF-κB. Gene set 372, 

Negative Regulation of Biological Processes, contains differentially expressed CLCF1, a B 

cell stimulatory cytokine, F2, or coagulation factor II, associated with vascular 

inflammation, and MPO, encoding the protein myeloperoxidase, an enzyme found in 

neutrophils. In addition to the over-expression of NF-κB activating genes, also seen in the 

direct comparisons of CAD to CTRL and MetS, monocyte and macrophage related genes 

were also over-expressed in CAD.
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Differences in peripheral blood gene expression of T2D as contrasted with MetS were much 

more subtle than the comparison of CAD with MetS. Of note are CD276, LAT and LCK, in 

gene sets 271, 478 and 596. CD276 is involved in regulation of cell-mediated immune 

responses in T cells, LAT is a component of the cell surface T cell receptor complex, and 

LCK is a protein involved in the maturation of T cells. Also significant, ILF2, encoding a 

protein that regulates IL-2 and proliferation of T cells, was over-expressed in T2D relative to 

MetS. Finally, CXCL5, a chemotactic cytokine, was increased in expression in gene set 104, 

Cell Cell Signaling. T2D and MetS were the two most closely correlated disease states (Fig. 

3A). The gene expression profiles of these two states differ primarily in the over-expression 

of T cell associated genes in T2D.

PCR Validation

To quantitatively measure differences in transcript levels of a select group of genes 

identified by the array analysis, we performed quantitative-reverse transcriptase PCR (RT-

PCR). We analyzed 19 of the original 35 samples used for the microarray analysis (group 1). 

In addition, we obtained 61 independent samples from CTRL, MetS, CAD and T2D subjects 

(group 2). We determined the fold difference between each experimental group and its own 

CTRL group, eg. group 1 or group 2, using the ΔΔCt method (Table 3). A ‘pooled’ p value 

was calculated by pooling results from groups 1 and 2. From the MetS peripheral blood gene 

expression profile, CD1D also showed increased expression while the decreased expression 

of DAXX, MOAP1 and TNFAIP3 was similarly validated. Of interest, our additional analysis 

demonstrates that CD1D and DAXX were also differentially expressed in the CAD cohort. 

Expression of MOAP1 and TNFAIP3 was also decreased in all three metabolic cohorts 

relative to the level in the CTRL cohort in both group1 and group 2. Three genes over-

expressed in the CAD signature were also confirmed by RT-PCR measurements, CD14, 

CFHR1 and CXCL14. These genes also showed significant differential expression in MetS 

(CFHR1), T2D (CXCL14) or both (CD14). Finally, the differences in expression of CTLA4, 

GPX1, IL4R and NP, from the T2D microarray signature, were confirmed by the RT-PCR 

experiments. CTLA4 also displayed decreased transcript levels in CAD and GPX1 and IL4R 

showed increased and decreased expression, respectively, in all 3 metabolic cohorts. Besides 

validating results obtained from microarray analyses in independent cohorts by an 

independent method, these experiments also identify expression patterns of individual genes 

unique to one or two metabolic disorders or shared by all three metabolic disorders.

Discussion

Our analysis of peripheral blood gene expression in CAD, T2D and their precursor state, 

MetS, by microarray shows that these disorders feature unique gene expression signatures. 

We included individuals with RA in these studies as an example of a disease with a known 

peripheral blood gene expression profile and for purposes of comparing the metabolic 

expression signatures to that of an autoimmune disease. As expected, gene expression of the 

RA cohort was sufficient to distinguish these individuals from CTRL. In each of MetS, 

CAD and T2D, there were sufficient numbers of genes differentially expressed to cluster the 

majority of each group away from the CTRL cohort with 100% support. Additionally, when 

all 4 disease states were included in the analysis, 24/26 subjects from the disease cohorts 
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branched together with 100% support. Within that branch, the RA patients clustered together 

while the metabolic cohorts showed considerable overlap. Thus, the metabolic cohorts have 

peripheral blood gene expression signatures that are more similar to RA than CTRL, but also 

more similar to each other than RA.

The gene expression signature of MetS centers on dysregulation of genes involved in the 

innate immune response. One component of MetS is hypercholesterolemia, specifically, 

greater levels of very low density lipoprotein (VLDL). VLDL stimulates release of acute 

phase proteins from the liver. Activation of the innate immune response in peripheral blood 

could be a response to increased amounts of circulating VLDL. Fatty acids are known to 

activate innate immune signaling molecules, like TLR434. The gene expression signature of 

MetS shares much in common with that of CAD and T2D; many of the gene sets 

differentially expressed in the individual comparisons of MetS, CAD and T2D to CTRL also 

overlap among the three disorders. Spearman’s test for correlation showed clear association 

of the three metabolic disorders, an association that was also significant, but to a lesser 

extent when correlated to RA. The gene sets and corresponding genes driving this similarity 

are those associated with activation of the innate immune response, an association not seen 

in the RA cohort.

In addition to activation of the innate immune response, many genes involved in activation 

of the pro-inflammatory transcription factor, NF-κB, are differentially expressed in the CAD 

profile. Comparing CAD and T2D directly to their precursor, MetS, is a more appropriate 

analysis to determine genes and pathways involved in progression of pre-disease to disease. 

The comparison of CAD to MetS revealed that monocyte and macrophage associated genes 

are more prominently differentially expressed. In addition to the hyperlipidemia of MetS, 

diagnosis of CAD indicates the presence of atherosclerotic plaques in the lumen of 

peripheral blood vessels. CAD gene expression profiles uncovered here reflect systemic 

inflammation and activation of monocytes. Many of these activated monocytes may migrate 

from the lumen to become the lipid-filled macrophages seen in the core of these plaques35. 

One possible interpretation of these results is that immunological processes occurring at the 

site of disease are reflected in peripheral blood.

In the gene expression profile of T2D, a disease that represents more refractory insulin 

resistance than MetS, we see increased expression of genes associated with activation, 

signaling and function of T cells. This was also the case in a direct comparison of gene 

expression between MetS and T2D. Many of these T cell activation genes are also 

differentially expressed in RA; however unlike T2D, in RA there is a documented role of T 

cells in the pathogenesis of disease: as the effector cells of joint-specific destruction32. The 

up-regulation of T cell activation seen in these studies may be a byproduct of enhanced 

activation of the immune response by adipocytes. Recent studies have shown activated T 

cells to be present in abundance in visceral adipose tissue of mice with T2D36.

This independent study also replicates a number of findings in the literature with regards to 

altered expression of genes in states of insulin resistance and obesity. The monocyte surface 

antigen CD14, upregulated in MetS, CAD and T2D is also upregulated in mice with insulin 

resistance37. CXCL14 null female mice are protected from obesity-induced hyperglycemia 
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and do not develop insulin resistance38. Our results show that expression of CXCL14 is 

elevated in both CAD and T2D relative to CTRL raising the possibility that elevated 

CXCL14 may also contribute to insulin resistance in human disease. Additional correlations 

can be seen in human studies showing that a SNP in the IL4R gene is associated with 

increased body mass index39 an our studies documenting decreased IL4R expression in 

MetS, CAD and T2D.

Taken together, our data support a hypothesis whereby MetS produces a state of general 

systemic inflammation mediated by the innate immune system. This inflammation persists 

as the pre-disease state progresses to CAD or T2D. Peripheral blood gene expression in 

CAD and T2D identifies additional immune processes that may underlie these two disease 

phenotypes; NF-κB activation in CAD, T cell activation in T2D; however, PCR analysis of 

these genes in independent cohorts suggest that differential expression may overlap in MetS, 

CAD and T2D to a greater extent than was evident by microarray analysis. This result is in 

accordance with the overlap in biological processes and risk factors underlying the disease 

states. However, in spite of this, there was enough uniqueness to separate the cohorts by 

microarray. PCR analysis allowed us to further investigate these differences. A certain 

relatedness could be seen amongst MetS, CAD and T2D, for example, the expression of 

CXCL14 appears to be on a gradient where expression was increased around 3-fold in group 

1 MetS, and greater than 10-fold in CAD and T2D (Table 3). Another reason for this may be 

the overlap in criteria defining each disease and propensity for having undiagnosed CAD in 

a patient with T2D, for example. While the advanced statistics in the microarray analyses 

detected differences enough to delineate MetS, CAD and T2D, the overlap in criteria and 

incidence of these three states was more accurately defined in the quantitative PCR 

experiments. PCR validated many of our initial findings and thus, the gene expression 

profiles of MetS, CAD and T2D present convincing evidence that systemic inflammation is 

a component of the pathogenesis of all 3 states. Furthermore, this study identifies a 

minimally invasive system that could be used in longitudinal studies to better understand 

progression of MetS to its sequelae.

Materials and Methods

Patient Recruitment

Rheumatoid arthritis is defined by the American College of Rheumatology Criteria. Patients 

displayed four or more of the following symptoms for greater than 6 months: morning 

stiffness, swelling in 3 or more joints, swelling of finger and/or wrist joints, symmetric 

swelling, rheumatoid nodules, positive rheumatoid factor, or radiographic erosions in the 

hand and/or wrist40. Metabolic syndrome is defined by the International Federation of 

Diabetes as central obesity plus any 2 of the following 4 characteristics: 

hypertriglyceridemia, low HDL cholesterol, hypertension or raised fasting plasma glucose41. 

Coronary artery disease was diagnosed in each patient using imaging techniques to detect 

flow-limiting coronary artery stenoses42. Three of the 6 patients with coronary artery disease 

participating in this study were post coronary artery bypass graft or myocardial infarction. 

All patients in this cohort are also being treated for systemic hypertension. Diabetes is 

defined by the WHO criteria of classic symptoms of diabetes (polydipsia, polyuria, 
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polyphagia and weight loss) and a plasma glucose >200 mg/dl, a fasting plasma glucose of 

>126 mg/dl or a 2 h plasma glucose during an oral glucose tolerance test of >200 mg/dl. 

Type 1 diabetes is differentiated from T2D by a number of clinical criteria including history, 

clinical presentation and laboratory findings. Type 2 diabetics are more likely to have a high 

body mass index and less likely to need insulin in restoring normal plasma glucose levels5. 

Control patients have not ever received any of the previous diagnoses, have not been 

diagnosed with any autoimmune or other chronic disease, and are not currently taking 

medication for any illness or condition. The study was approved by the Institutional Review 

Board of Vanderbilt University and all subjects provided written informed consent.

Microarray Gene Expression Experiments

Peripheral whole blood was drawn directly into PreAnalytiX PAXgene tubes (VWR, West 

Chester, PA). RNA was isolated using the PreAnalytiX protocol “Manual Purification of 

Total RNA from Human Whole Blood Collected into PAXgene Blood RNA Tubes.” 

Amplified CTRL and sample RNA was coupled to Cy3 or Cy5 dyes (GE Healthcare, 

Piscataway, NJ), respectively, using the Vanderbilt Functional Genomics Shared Resource 

(FGSR) coupling protocol, found at [array.mc.vanderbilt.edu]. The reverse transcription 

reaction used 6 μg of Oligo dT and the superscript III reverse transcriptase (Invitrogen, 

Carlsbad, CA). Labeled cDNA was purified using the Qiagen QiaQuick PCR purification kit 

and resuspended in 2X hybridization buffer (50% formamide, 10X SSC and 0.2% SDS) and 

1 μl polyA RNA. Labeled, resuspended cDNA was heated to 100°C for 2 min and 

hybridized to the Human Exonic Evidence-Based Oligonucleotide (HEEBO) array at 42°C 

for 16 h in a heating oven. The HEEBO slide was designed by the Stanford Functional 

Genomics Facility (microarray.org). Oligo probes are commercially available (Invitrogen, 

Carlsbad, CA) and the slides were printed by Microarrays Inc (Hudson Alpha Institute, 

Huntsville, AL). We washed and dried the slides per the FGSR protocol and scanned them 

into the GenePix Pro4.1 Software using a 400B scanner (Axon Instruments, Union City, 

CA). We analyzed intensity data using GenePix software in combination with The Institute 

for Genomic Research’s TM4: Microarray Suite programs43.

Microarray Data Analysis

The Institute for Genomic Research’s Multi-Experiment Viewer was used to visualize 

intensity data. We used Significance Analysis of Microarray (SAM) to determine a group of 

significantly under- and over-expressed genes in the comparisons of each disease group 

versus CTRL. Each group’s input consisted of array intensity values normalized to an 

average intensity of 0.20. For each comparison the individual disease cohort (Fig. 1) or all 

disease cohorts combined (Fig. 2) were assigned to group A while the control cohort was 

assigned to group B and the SAM analysis was performed with 1,000 permutations. The 

median number of falsely significant genes was set to ≤2. The results of these analyses 

served as the input for support tree analysis using the bootstrap statistical method with an 

additional 1,000 permutations, which created hierarchical clustering trees for the 4 

comparisons of each disease versus CTRL as well as for the comparison of all diseases 

versus control. . For statistical analysis of gene sets, we normalized microarray data using 

the print-tip lowess normalization algorithm as implemented in the Bioconductor package 

marray44. We used maximum expression levels from multiple probe sets corresponding to 
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the same gene to represent the gene expression level. To ensure reliable gene expression 

estimates, we included genes with intensity values for more than 6 CTRL samples and more 

than 3 samples for each of the other groups. There were 14,558 genes left after this step. To 

identify groups of functionally related genes differentially expressed for different patient 

groups, we conducted gene set analysis using the mixed effects models approach45; 46. Gene 

sets used in these analyses were derived from the controlled vocabulary of the Gene 

Ontology (GO) project, http://www.broad.mit.edu/gsea/msigdb/index.jsp. For each gene set, 

the mixed models included gene expression levels as outcome, group (disease group vs. 

CTRL group) as the fixed effect and batches as the random effects. In addition, we included 

random effects based on eigenvectors of gene-gene correlation matrix to account for 

correlation patterns of the genes46. Because we examined many gene sets, to control for the 

rate of false positive findings by chance, we adjusted nominal p-values using the method of 

false discovery rate47. To study the relations between T2D, MetS, CAD and RA, we 

estimated pairwise Spearman correlation coefficients for these disease groups based on 

nominal pathway p-values from comparing each disease group versus CTRL. We used 

Cytoscape software48 to visualize these associations.

The data discussed in this publication have been deposited in NCBI’s Gene Expression 

Omnibus49 and are accessible through GEO Series accession number GSE23561 (http://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE23561).

RT-PCR

RT-PCR was performed on a subset of samples from the original microarray analysis and a 

subset of new samples. Samples were selected from the original experiments for further 

testing based on the sole criteria of sufficient RNA remaining to perform RT-PCR analysis. 

All samples with sufficient RNA were analyzed by RT-PCR. Gene expression was 

determined by RT-PCR using a TaqMan Low Density Array (TLDA). Fold change 

expression levels were determined by the ΔΔCt method, comparing expression of test gene 

to an average of two independent measurements of GAPDH, and then comparing the disease 

cohort versus CTRL. Significance was determined using a t-test on the ΔCt raw values.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Unsupervised hierarchical clustering of individual disease cohorts with CTRL. .To 

determine if differential patterns of gene expression could be found among combinations of 

samples, normalized intensity data points from oligos with an average intensity of ≥0.20 

(average array intensity) were inputted into The Institute for Genomic Research’s Multi-

Experiment Viewer. For each comparison, gene intensity averages were calulcated and those 

≥0.20 were selected as input in each comparison. The CTRL v RA input was 4,969 gene and 

gene splice data points; CTRL v MetS input was 4,225 data points; CTRL v CAD input 

contained 4,271 data points and the CTRL v T2D comparison featured an input of 4,983 

data points. For the comparison of all disease cohorts and CTRL, the input was 40,538 data 

points. These samples were inputted into a bootstrap analysis resulting in the hierarchical 

clustering trees shown in this figure. Statistical support for each branch of the tree is shown 

by color, legend to the right. CTRL= control, RA= rheumatoid arthritis, T2D= type 2 

diabetes, MetS= metabolic syndrome and CAD= coronary artery disease.
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Fig. 2. 
Supervised hierarchical clustering of cohorts versus CTRL. To determine if the gene 

expression profiles of the disease cohorts were distinguishable from that of the 9 CTRL 

patients and determine the similarity and difference of the profiles of each disease cohort to 

each other in the presence of CTRL, the groups from Fig. 1 were analyzed by significance 

analysis of microarray, with a median number of falsely significant genes set to ≤2. This 

yielded lists of significant genes in each comparison, This list was inputted into a bootstrap 

analysis resulting in the hierarchical clustering trees shown. CTRL= control, RA= 

rheumatoid arthritis, T2D= type 2 diabetes, MetS= metabolic syndrome and CAD= coronary 

artery disease.
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Fig. 3. 
Correlative relationships among disease cohort gene expression. (A) Gene sets that 

significantly differed in expression versus CTRL were the input for this Spearman’s 

correlation coefficient based diagram. Thickness of the bar represents a combination of 

Spearman’s rho and statistical significance of the correlation. RA= rheumatoid arthritis, 

T2D= type 2 diabetes, MetS= metabolic syndrome and CAD= coronary artery disease. For 

the RA-T2D comparison Spearman’s rho=0.10396, p=0.0555, RA-CAD rho=0.28462, 

p<0.0001, RA-MetS rho=0.19942, p=0.0002. T2D compared to CAD rho=0.42389, 

p<0.0001, T2D-MetS rho=0.53772, p<0.0001 and for the comparison of CAD to MetS 

rho=0.44296, p<0.0001. (B) A Venn diagram representing the number of genes with 

significantly different expression in each disease state versus CTRL that overlap among 2 or 

more of the states.
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Table 2

Differentially expressed gene sets

Gene Set Gene Set Name p-value

RA v CTRL

110 Cell Development 0.0045

271 Immune System Process 0.0116

435
Nucleobase Nucleoside Nucleotide and
   Nucleic Acid Metabolic Process 2.13E-08

706 Response to External Stimulus 0.0078

753 Signal Transduction 1.03E-11

MetS v CTRL

13 Acute Inflammatory Response 0.048

316 Lymphocyte Differentiation 0.004

407 Negative Regulation of Signal Transduction 0.051

615 Regulation of Developmental Process 0.023

CAD v CTRL

412 Negative Regulation of Transferase Activity 0.014

499 Positive Regulation of Immune Response 0.020

636
Regulation of I KappaB Kinase NF KappaB
   Cascade 0.051

T2D v CTRL

104 Cell Cell Signaling 0.0048

117 Cell Proliferation Go 0008283 0.002

271 Immune System Process 1.7E-06

435
Nucleobase Nucleoside Nucleotide and
   Nucleic Acid Metabolic Process 9.7E-28

753 Signal Transduction 4.8E-13

CAD v MetS

372 Negative Regulation of Biological Process 5.7E-04

482 Positive Regulation of Cellular Process 0.008

682 Regulation of Transcription 0.019

753 Signal Transduction 0.009

T2D v MetS

271 Immune System Process 0.043

478 Positive Regulation of Caspase Activity 0.033

596 Regulation of Cellular Metabolic Process 0.052

104 Cell Cell Signaling 0.030
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