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Abstract: Public health management can generate actionable results when diseases are studied in
context with other candidate factors contributing to disease dynamics. In order to fully understand
the interdependent relationships of multiple geospatial features involved in disease dynamics, it is
important to construct an effective representation model that is able to reveal the relationship patterns
and trends. The purpose of this work is to combine disease incidence spatio-temporal data with other
features of interest in a mutlivariate spatio-temporal model for investigating characteristic disease
and feature patterns over identified hotspots. We present an integrated approach in the form of
a disease management model for analyzing spatio-temporal dynamics of disease in connection
with other determinants. Our approach aligns spatio-temporal profiles of disease with other
driving factors in public health context to identify hotspots and patterns of disease and features of
interest in the identified locations. We evaluate our model against cholera disease outbreaks from
2015–2019 in Punjab province of Pakistan. The experimental results showed that the presented model
effectively address the complex dynamics of disease incidences in the presence of other features
of interest over a geographic area representing populations and sub populations during a given
time. The presented methodology provides an effective mechanism for identifying disease hotspots
in multiple dimensions and relation between the hotspots for cost-effective and optimal resource
allocation as well as a sound reference for further predictive and forecasting analysis.

Keywords: cholera dynamics; health data analytic; integrated health modeling framework; public
health; spatio-temporal analysis

1. Introduction

With big data in healthcare as well as other domains being generously generated, it presents
endless possibilities for creating meaningful public health analytical models. Big data in health comes
from multiple health-related interdependent or independent sources including Electronic Health
Records (EHR) or Electronic Medical Records (EMR), laboratory tests and results, pharmaceuticals,
prescriptions, medical imaging, genomics, etc. [1]. The data acquired are examined for subsequent
analysis using predictive modeling and analysis [2,3]. The research investigations and their results
have tremendously affected the health care sectors including clinical settings, medical services,
pharmaceuticals, public health and other related segments [4–6].

In order to meaningfully utilize and manipulate big data in health, it is important to channel its
flow from the source to systems where it can be managed, analyzed and used for analytical purposes.
With an increase in data analysis, storage and dissemination capabilities, a framework used to acquire,
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integrate, analyze and distribute data at multiple scales can be implemented. Such a framework is
able to support top-down analytical approach for example, from the individual to the gene level,
as well as the bottom-up approach, for example, data aggregation from individual to population level.
In addition, using the breadth of evidence base will allow representing populations from individual
cases and a shift from passive to active surveillance systems in real-time as presented in our prior work.
The data are obtained from multiple heterogeneous resources in a standardized way ensuring privacy
and security while making it accessible to multiple facilities supporting research and evidence-based
public health policy and intervention program designing [7]. Furthermore, there are various types and
sources on population data that can be effectively analyzed for meaningful patterns for public health
intervention programs while staying privacy-compliant [8,9] .

Traditionally, public health data acquisition and analysis use aggregated data. However, many
infectious diseases, including cholera, have complex driving factors involved. Given the high
variability of disease dynamics with respect to environmental and other driving factors, it is important
to study individual case incidences as the evidence base for the population [10]. For instance, in the
case of disease management, instead of analyzing a generalized view of disease distribution, we need
to identify the time and location where incidences create a dense hotspot or a meaningful pattern.

In this paper, we present a mathematical model to represent diseases and associated factors and
operations applied to them to study disease patterns. The purpose of our model is to elicit aspects of a
disease in a comprehensible, quantitative and generalized manner. This generalized representation
will help to investigate the quantitative dynamics and relationships among diseases and their features.
In particular, we study the cholera dynamics in the Punjab province of Pakistan using point process
representation and apply data mining techniques to identify cholera hotspots and relationships among
the identified hotspots based on selected features.

The rest of the paper is organized as follows. Section 2 gives the related work conducted in a
similar manner. Section 3 describes the disease management model, data representation and operations
performed to obtain the desired results. The section also outlines the data used to validate the model in
the declared study region. Section 4 gives the results and discussion of the results when the proposed
methodology is applied to the dataset of cholera incidences.

2. Related Work

Mathematical models to represent diseases date back to 1909 and are still widely used to
represent disease transmission [11–14]. Mathematical modeling represents elements of disease
transmission dynamics and other candidate factors of interest. The mathematical model construction
has allowed applications of solutions from other domains such as network theories [15–17], artificial
intelligence [18,19], machine learning [20–22] and game theories [23–25] to disease dynamics. Due to a
strong relationship between cholera and other environmental factors, cholera transmission models
frequently include other features of interest [26–28].

Stochastic or point processes have been effectively applied in studies that involve disease analysis
in the population or sub-population in a region. These processes use two or three-dimensional space to
represent disease incidences and thus, constitute a spatial study of the incidences [29–32]. The spatial
and spatial-temporal models are different from each other in terms of time. Introducing the element of
time into spatial analysis constitutes a spatio-temporal analysis. Spatial analysis is performed using
two or three-dimensional space represented as (x, y) or (x, y, z) respectively. The time element can be
introduced as third dimension z, that is, (x, y, t) or as an additional data feature, that is, [(x, y) + f )]
where f is the datetime feature [33]. These representations are frequently utilized in multiple analytical
modeling methods including spatial filtering, Bayesian method, cluster identification and regression
modeling techniques [34–36].

Significant research has been conducted in spatio-temporal analysis for multiple domains
including sociology, criminology, economics, biology, health and environmental sciences etc. [37–44].
In the context of health data clustering, using the above-mentioned mechanisms can greatly affect the
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resulting clusters since the process of clustering is sensitive to space and time scales [45]. Different
space and temporal data ranges can result in a different set of clusters. Creating spatial hotspots
is a relatively straightforward task with many successful statistical techniques available including
Getis–Ord Gi* [46], local Moran’s I [47], score statistic [48], and independent component analysis [49]
etc. In addition to statistical techniques, data mining attempting to uncover previously unknown
interesting patterns in the disease data are also applied. These techniques, although based on statistical
foundations, integrate data mining including Machine Learning (ML) and Artificial Intelligence
(AI) based methods [50–52]. However, when there are other factors affecting the disease incidence,
it becomes a complex phenomenon [53]. The candidate driving factors can be incorporated into the
model as a third feature or a set of features. For example, factors such as population, socio-economic
status, education, water sanitation index, pollution index can be incorporated in the framework
one at a time. Combining all candidate features of interest in disease incidence representation for
spatio-temoral analysis is not as straightforward and requires a systematic approach towards modeling
and analyzing the complex phenomenon.

We introduce a layer-based approach for similar hotspots cluster detection or hotspot relationship
mining based on correlation identified factors. We use a multi-step process involving partition-based
hotspot detection and distance-based similarity approach for mining relationships between the
hotspots. Our approach allows identification of similar hotspots based on multiple determinants
or factors that are related to each other in a spatio-temporal region. The model presented contributes
towards disease modeling and understanding its spatial, temporal dynamics as well as dynamics
of other candidate factors driving or contributing to disease spread and their patterns over time.
Specifically, the case study presented describes the mechanism for hotspot detection and their evolution
over time given a geographic area. In addition, the work contributes towards assessing the similarity
of different hotspots based on selected features of interest. This can lead to actionable information
including simulation of hotspots trajectories to evaluate the impact of public health interventions given
different spatio-tempoiral scales.
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Figure 1. Punjab, a province of Pakistan, is identified as the study area with population density for
different districts. Punjab is the highest populus province of Pakistan with 38 districts.

3. Methods and Materials

3.1. Study Area

This study was conducted for the cholera outbreak during 2015 to 2019 in the Punjab province of
Pakistan. Punjab is the most populated province of Pakistan with a population of over 110 million and
a population density of 536 persons per square kilometers shown in Figure 1. The urban population
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is about 40 million and rural up to 70 million according to Pakistan Bureau of the Statistics Census
Results 2017 [54]. The varying dynamics of climatic conditions and an increasing urbanization rate of
the province have put a burden on its water resources and has resulted in increased water-related and
water-borne diseases including cholera. In addition, Punjab has a complex network of rivers, lakes
and water bodies and has a history of flood incidences spawned over years [55].

3.2. Dataset

Cholera remains a global threat for public health. It is caused due to contaminated water or food
that results in an acute diarrhea and can lead to death within hours if not taken seriously. It has been
estimated that up to four million of the world population suffer from cholera annually and up to
143 thousand people die [56]. The data set for cholera incidents in Punjab, Pakistan is obtained from
the passive disease surveillance system operated by Punjab Information Technology Board (PITB) [57]
where data is reported through all levels of health authorities in Punjab as well as from online portal,
mobile application and WHO reports. The data consist of disease name, patient location, date and time
for disease incidences from 2015–2019 over multiple locations over all the districts in Punjab province.
There were 40,332 cases reported during the time frame. We applied pre-processing steps to the data
including, removal of records that had any of the three attributes missing, since they were necessary
for spatio-temporal analysis. 35,720 records are obtained based on the pre-processing steps.

The population data were obtained from Federal Bureau of Statistics in Pakistan [54], whereas
features of interest including weather attributes are obtained from World Weather Online [58] based
on one reading per day, that is, an interval of 24 h using WorldWeatherOnline historical weather data
API wrapper v 0.0.4 into pandas v.0.25.1 frame and csv files in python version 5.7.8. The data is
downloaded through the API using latitude and longitude of each geocoded disease incidence. Data
from the year 2015 to 2019 were analyzed. The presented modeling framework described in Section 3.3
is applied to the case reports from 2015-2019 to underlying incidence cases from the study region of
38 districts.

3.3. Disease Management Model

Mathematical models for disease and epidemiology representation help to study disease infection
and transmission dynamics. A sub-population with a single disease infection transmitting to a
secondary group of individuals can be represented using Poisson distribution [59–61]. However, with
increasingly changing infectious disease dynamics, it is apparent that many external factors including
environmental attributes, climatic conditions, population demographics, industrialization, living
standards and conditions, education and migration etc affect the disease dynamics in a population and
make up the determinants of diseases. The relationship between disease incidences and other features
of interest or determinants is not, however, very straight forward. Active research is being conducted to
evaluate the causal and effectual relationship between the two entities. An effective model for disease
dynamics must be able to represent and link, in a meaningful way, all possible factors of interest
in addition to clinically available disease data. We present a modeling and analytical framework
for public health disease management based on spatio-temporal disease incidence integrated with
candidate features for evidence-based public health decision support. An overview of the proposed
model is provided in Figure 2. We present here the mathematical definitions used in the model.
Formally, we define F, as a set of all factor types important in disease transmission dynamics ranged
over by f and D as a set of all diseases ranged over by d. Table 1 lists variables and their descriptions
defined in the model. Each incidence of a disease d is defined as a tuple

dik = (xi, yi, tk) (1)

where di is an instance of disease incidence at a location, defined by a pair of coordinates (x, y), and t
is the time of the occurrence incident.
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Figure 2. The conceptual model for disease management involving complex interdependent driving
factors integrated over spatial and temporal regions. At Layer 1, the data were divided into a series
of time slices and each disease incidence is represented in space by (x,y) in corresponding time slice.
Layer 2 represents a single time slice, where additional features of interest are added in a given time
frame for particular hotspots. Layer 3 presents the trend of hotspots in each hotspot location over all
time slices or identification of similar and different hotspots based on all space and time data analysis.

Table 1. Variables and their descriptions defined in the mathematical model for disease management.

Variable Description Variable Description Variable Description

d disease incidence m cluster size f z z-score of feature

C cluster d′ subset of d that
belongs to C M distance matrix

H hotspot F set of all features Mb binary distance matrix

f set of features selected
based on correlation L time step R relationship between

hostspots
k interval length A mean of sequence G graph connecting hotspots
ρ correlation coeffecient S Standard Varitaion ⊕ cross correlation function
r autocorrelation σ conditional operator w f value for feature f

3.3.1. Hotspot Detection

Clustering works as a high performance algorithm for hotspot detection in spatio-temporal
data [62,63]. We employ a spatial algorithm for finding dense disease incidence areas called hotspots.
We use a partition-based algorithm to find the disease spatial hotspots where a distance function is
used to find locations with a high occurrence of diseases called hotspots. The time is scaled based
on time step values within the clusters to identifying patterns among clusters. A disease incidence
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data stream is clustered into n clusters where each cluster Cj with j = 1, ..., n is defined by a tuple as in
Equation (2).

Cj = (idj, Hj, d′j, mj), (2)

where id is the cluster identification, H is the centroid or hotspot in the cluster, d′ is the subset of d
that belongs to cluster C and mj is the number of total disease incidences in cluster Cj. Each hotspot is
represented by a latitude and longitude, that is,

H = (x, y), (3)

where x, y are represented in the form of longitude and latitude representing location of the hotspot.

3.3.2. Correlation Based Factor Selection

To find the potential causal relationship between the disease incidence and external factors,
we measure the relationship between the factors f ⊂ F and disease incidence using correlation.
The sequence d(ik) is a time series sequence at location i and is a mapping function from a set of dates
with a unit interval, for example, one day. In this case, the time step L is defined as

Lk(t) = d(t− k) or L−k(t) = d(t + k), (4)

where k = 1 for a day interval and k = 30 for a month interval. This allows finding auto-correlation of
d given by (5), as well as cross-correlation of d with F represented as (6) and calculated using (5).

rk =
T

∑
t=k+1

(dt−ad)(dt−k−ad)/(dt−ad)
2, (5)

where T is the time boundary and ad is the mean of the sequence. The factor values are agrregated
over time based on the selected k and over space based on the defined hotspot locations. Our goal is
to select most significant factors that are affecting the disease burden. For this purpose we find the
correlation of each factor independently with the disease burden given by (6)

ρk = d⊕ fi, (6)

where i = 1, ..|F| and ⊕ is used represent correlation function. We then select factors contributing
towards disease burden based on threshold4ρ. Therefore, all factors with correlation greater than
4ρk are contributing towards disease incidences as given by (7).

f = σcF, (7)

where f is a set of all those factors that satisfy the condition c = ρk < 4ρk

3.3.3. Intgrating Spatio-Temporal and Determinant Factors

Each hotspot H, given by (8), is defined by its location, in terms of (x, y) and values of set of
features f satisfying a condition given by (7).

H = [(x, y) + ( f1, f2, .., fn)], (8)

where n is the total number of correlated external factors. For example, (3) can represent a cholera
disease hotspot at a certain location, (long, lat) with values of temperature, population density,
pollution index averaged over L where f1 = temperature_value, f2 = populationdensity_value,
f 3 = pollutionindex_value.
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3.3.4. Feature Based Hotspot Relation Mining

Hotspot relation mining is based on neighborhood tagging that involves identifying a pattern in
the disease data that is based on multiple determinants. Based on Ld−k(t) in (4), we define a sequence
of consecutive time slices s1, s2, ..., sT . Now that each H is defined in terms of multi-dimensional factors,
in addition to space and time, we explore each cluster for the defined time slice and tag neighbors.
Note that the definition of the neighborhood includes, x, y, t,+ f1, f2, ..., fn, that is, the similar intensity
of disease cases occurring close to each other geographically and temporally and the features of interest
of that area for the given time slice are also similar. In this way, we are able to identify if any given
location within a cluster is different from the rest of the areas given all the factor values. This allows
us to create a distance matrix and heatmaps for hotspots combining multiple factors of interest that
can be analyzed for trend. This constitutes a traditional hotspot analysis but only it is based on more
factors than the traditional space and time. For example, at any given location and time, we combine
the number of cases, population density, humidity, rainfall and temperature for cholera incidents. We
find the similarity between two hotspots based on the distance among the selected factors. In order
to avoid skewed results because of different units involved, we calculate the z-score f z for all factor
readings as (9)

f z = w f−A/S, (9)

where w f is the value for feature f , A and S are the mean and standard deviation for the factor
f . Given two spots Hi and Hj, we find the distance between the locations based the corresponding
features in a time slice

dist(Hi, Hj) =

√√√√ n

∑
p=1

( f z
pi − f z

pj)
2 (10)

This distance allows us to cluster similar locations based on selected features. (10) creates a
distance matrix M between all the hotspots with elements Mij representing dist(Hi, Hj). We define a
binary distance matrix Mb by defining a threshold ρth over M to determine whether Hi and Hj are in
the same cluster based on ρth.

Mb =

{
0, if Mij ≥ ρthor i = j
1, otherwise

(11)

Mb is determined for all time slices and added over the sequence to determine the frequency
of each feature over the study period. We then apply threshold over the frequency based matrix to
identify four categories of similarity among the hotspots. This allows us to define a graph G consisting
of non empty set of hotspots represented as node as H(G) and a set of edges E represented as pair
e = uv where an edge e connects u, v ⊂ H(G) if they are similar and fall in the same similarity group.
Therefore, we define the graph G as a set containing an ordered pair Hi and Hj and a relation R

G = ((Hi, Hj), R), (12)

where R = {very similar, similar, di f f erent, very di f f erent}
Therefore, we are able to identify locations that have similar feature patterns when disease

intensity was higher. This allows us to find trends of features in similar locations for the predictive
analysis. This also enables us to identify if the neighboring hotspots are similar or different from
each other when more determinants are taken into account. The model also gives an important
reference for optimized resource allocation and predictive analysis for any disease outbreak based on
identified features.

4. Results and Discussion

We applied our disease management model to cholera incidence data in 38 districts of Punjab,
Pakistan from 2015–2019. We geocode the cholera incident locations to obtain disease incidence dataset
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using reported incidence location. Each disease incidence is converted to georeferenced point on
the map. For identification of high disease incidence hotspots in the province, we used scikit-learn
machine learning in Python, a partition-based k-means clustering algorithm and identified 15 locations
as cholera hotspots. The weekly distribution of these clusters over time is analyzed. Figure 3 illustrates
the incidence rate within each hotspot across the weeks. Figure 4 shows the distribution of disease
incidence data in each cluster based on the minimum, first quartile, median, third quartile, and
maximum values. We find the cluster centroid location as the hotspot and identify the corresponding
tehsil and district based on the coordinates. Table 2 gives each H location’s corresponding tehsil and
district with a number of cases, that is, m in the corresponding cluster. Since the analysis is based on the
location of reported incidence data, the administrative area can be identified to any granularity level.

Figure 3. Weekly disease incidence for 15 hotspots.
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Figure 4. Cholera incidence data distribution in the 15 clusters.

Table 2. The 15 hotspots identified with their corresponding tehsil and district as well as the number of
cases within each hotspot cluster.

District Tehsil No. of Cases

Bahawalnagar Chishtian 220
Bahawalpur Khairpur Tamewali 3266
Faisalabad Tandlianwala 7257
Faisalabad Sammundri 2699
Jhelum Choa Saidan Shah 406
Kasur Kasur 3462
Khanewal Ahmadpur Sial 321
Khushab Khushab 3664
Lahore Ferozewala 1756
Layyah Layyah 416
Okara Okara 481
Pakpattan Pakpattan 123
Rawalpindi Kallar Sayyedan 1936
Rawalpindi Fateh Jang 1091
Toba Tek Singh Toba Tek Singh 6306

In addition, in order to study the trend of each hotspot independently and in relation to other
hotspots, each hotspot is analyzed with respect to other hotspots for every week. This allows us to
identify the most significant hotspot, significant hotspot, significant cold spot and most significant
coldspot every weak among the different hotspots locations. The cholera dataset ranged over 180
weeks. For each week, we classify each hotspot as belonging to the given categories. For example,
Figure 5a shows a significant coldspot at week starting from 1 December 2016 with 24 number of cases,
at an identified lat long falling under Faisalabad district. Similarly, Figure 5b,c show a significant
hotspot in the first week of August in 2016 with 19 number of cases and a most significant cold spot in
the first week of April in 2018 with 10 number of cases respectively at Toba Tek Singh district while
Figure 5d shows a most significant hotspot at Faisalabad district with 92 number of cases starting in
the first week of September in 2017. This creates a pattern of all hotspots over time with a time step
equal to a week and defines temporal hotspots for a spatial region as shown in Figure 6. Since the
interpretations are more subjective and may not be objectively true, therefore, in order to make maps
more meaningful and comprehensible for the decision making personnel, our model must represent
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the data so that it is objectively true and unbiased to the underlying methodology. The results of the
analysis of the weekly hotspots pattern over time in the presented model show that each weak has a
different threshold for the number of cases for a hotspot to be assigned to a certain category. Similarly,
each hotspot over a period of time, belongs to different categories based on different incidence cases.
For example, the hotspot in the Faisalabad district had 92 cases in the first week of September, was a
very significant hotspot while the same location also became the most significant hotspot with only 34
cases in the first week of October in 2016. This information is valuable in investigating a location’s
trend over time for resource allocation and location dynamics for disease patterns. Furthermore,
the analysis can be applied to any spatial and temporal resolutions.

(a) (b)

(c) (d)

Figure 5. Weekly pattern for four categories of hot and coldspots in at all cluster locations. (a) Significant
coldspot. (b) Significant hotspot. (c) Most significant coldspot. (d) Most significant hotspot.
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Figure 6. Hotspot trend in an interactive 3D plot over 180 weeks.

As additional factors of interest in studying cholera disease patterns, we used nine weather
attributes including maximum temperature, minimum temperature, temperature, sun hour, ultraviolet
(UV) index, humidity, cloud cover, precipitation and heat index. However, any other related features
such as distance of hotspot from water bodies, flood-affected areas and sanitation index can also
be included in the model to identify similar hotspots. We calculated z-scores corresponding to
the probability of distribution across weeks of data among all clusters. We found a symmetrical
set of disese incidences. The points in the normal quantile plot lie reasonably close to a straight
line. We used the Pearson correlation coefficient since the data followed the normal distribution.
We find the weekly correlation of each weather attribute with the disease incidence at each hotspot.
The features with correlation confidence of 95% and above are selected for inclusion in further analysis.
Precipitation, humidity and cloud cover were selected as three climatic features having a p-value less
than 0.05 and correlation confidence greater than 95% (see Figure 7). We also include population
density as an external feature for further analysis. We then integrate the determinant factors with
disease incidence rate at each hotspot location and find the distance among these locations based on
Equations (10) and (11), followed by the summation of the correlation matrices over the weekly range.
Figure 8 gives the heat map for distances among the hotspots based on all the candidate factors. Based
on these distances, we categorize each pair of locations as different, similar, very similar, and weak
similar. Figure 9 shows the final connected pair of hotspots for each category. For example, Table 3
gives a list of 23 location pairs that are very similar to each other in terms of selected features. The tehsil
level of these locations was identified, and it comes under the district level in the province. Similarly,
34 location pairs were identified as different, 10 location pairs as similar and 29 location pairs as weak
similar based on hotspot relationship mining algorithm.
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Figure 7. Weekly correlation confidence for nine weather attributes with cholera disease incidence.

Figure 8. Heatmap for feature-based distance among all hotspot locations.

(a) (b)

Figure 9. Cont.
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(c) (d)

Figure 9. Hotspot relation mining based on features and incidence rate. Width of the line shows similar
to different areas. Graph shows location pair connected for: (a) Very similar hotspots. (b) Similar
hotspots. (c) Weak similar hotspots. (d) Different hotspots.

Table 3. Location pairs with very similar conditions identified scaled to the tehsil level.

S. No Location A Location B

1 Chishtian Layyah
2 Khairpur Tamewali Ahmadpur Sial
3 Ahmadpur Sial Choa Saidan Shah
4 Chishtian Kallar Sayyedan
5 Toba Tek Singh Khushab
6 Toba Tek Singh Kallar Sayyedan
7 Toba Tek Singh Layyah
8 Toba Tek Singh Kasur
9 Kasur Kallar Sayyedan
10 Chishtian Toba Tek Singh
11 Chishtian Okara
12 Layyah Khushab
13 Chishtian Khushab
14 Khushab Kallar Sayyedan
15 Layyah Kallar Sayyedan
16 Pakpattan Khushab
17 Layyah Kasur
18 Ferozewala Kallar Sayyedan
19 Pakpattan Layyah
20 Chishtian Fateh Jang
21 Pakpattan Toba Tek Singh
22 Kallar Sayyedan Fateh Jang
23 Okara Fateh Jang
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The analysis of results represented by Figures 7 and 9 show an interesting perspective of the
hotspots. There are cities where weather may have played a key role in the spread of Cholera, however,
there are others where we find weak or very weak correlation among the disease hot spots with similar
weather conditions. This indicates other factors besides weather that must have contributed towards
its spread. We have found that many of these hotspots are at locations that are flood-stricken over the
selected time-period. The analysis of Figure 9. gives us a reason to look for other factors that may
also be included along with traditionally studied factors like floods, construction of major projects,
the spread of other diseases, healthcare facilities etc. While other potential factors were not included in
this study due to the unavailability of data, the model can take multiple parameters and see their strong
and weak-correlation to infer similarities to address the spread. In our case, we have currently taken
weather information, but we can easily extend this by considering other factors like floods in the area,
socioeconomic conditions and the spread of other diseases. The locations and their corresponding
features can be further explored for optimized resource allocation or as a foundation for predictive
analysis for forecasting disease patterns in other locations with similar feature patterns.

It is important to allow multiple representations of the analysis to aid the decision-making
process. Hotspot analysis presented in this research minimizes the subjectivity present in density-based
methods. In addition,the hotspots are statistically significant with respect to the higher number of
disease incidences that are based on the z-value. The patterns are identified based on the quantification
of confidence. We use z-score for meaningful pattern identification confidence. The quantifiable pattern
mining allows important decision-making based on the analysis, such as resource allocation to high
disease clusters having a positive impact. When more factors are thrown into the model, the spatial
representation does not remain as straightforward as a traditional spatial analysis. The neighboring
hotspots in this case may not be in the same spatial neighborhood. The presented model allows a
seamless introduction of any number of related features of interest selected through correlation and
allows their representation in the model for their inclusion in further analysis.

The presented model framework, however, has its own set of challenges and limitations. First,
the identification of hotspots is dependent upon the availability of accurate spatial and temporal data.
The data collected in this study were obtained based on hospitals and health care entities under the
direct administration of the provincial government. There are many incidences in the region that
go unreported, thus affecting the accuracy of the disease distribution model. Second, the incidence
addresses and date–time entry method is not standard across all healthcare entities. The obtained data
collected needs to be preprocessed for typing or human errors, duplicates and missing information.
More than 98% of the dataset needed minor preprocessing since it was obtained through hospital
EHR systems and was geocoded successfully to the tehsil and district level. The patient privacy was
protected by using minimum tehsil level resolution when identifying hotspots. However, the hotspots
identification process used each incidence’s unabstracted location for precise and accurate results.

Infectious public health diseases, including cholera have complex dynamics involving multiple
climatic, ecological, social and environmental factors. Our presented work serves as a reference for
further investigations involving other determinants of public health interests in the region. For example,
with extensive rivers network in the Punjab province, there are multiple flood-stricken areas during
the selected time period. Flood data, if supplemented in the model can significantly affect the disease
characteristic and pattern mining process results. The availability of relevant data on the required
scale can be used by the presented model to accurately provide information for predictive analysis on
real-time data to characterize the dynamics of disease in the region.

5. Conclusions

The integration of multiple data sources combined with big data technologies enables the
exploration of new data relationships. Healthcare data, including disease incidence data combined
with data from other sources such as epidemiology data, geographic data, census data, climate data
and social determinants data etc., allows conversion of big health data into smart data using data
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mining and other artificial intelligence techniques. We present a model combining disease incidence
data with features of interest in the public-health context for enriching evidence for smart decision
support systems. The data elements and operations performed on them reveal disease hotspots,
disease trends and hotspot locations categorized based on similarity on the basis of selected features.
In addition, one of the major goals of public health policies is to manage cost by optimally utilizing
available resources to high disease density areas. The model allows exploration of identified disease
hotspots in multiple dimensions that can be continuously enriched by introducing new factors in
the model.
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