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Abstract

Flavin-dependent halogenases catalyse halogenation of aromatic compounds. In most

cases, this reaction proceeds with high regioselectivity and requires only the presence of

FADH2, oxygen, and halide salts. Since marine habitats contain high concentrations of

halides, organisms populating the oceans might be valuable sources of yet undiscovered

halogenases. A new Hidden-Markov-Model (HMM) based on the PFAM tryptophan halo-

genase model was used for the analysis of marine metagenomes. Eleven metagenomes

were screened leading to the identification of 254 complete or partial putative flavin-depen-

dent halogenase genes. One predicted halogenase gene (brvH) was selected, codon

optimised for E. coli, and overexpressed. Substrate screening revealed that this enzyme

represents an active flavin-dependent halogenase able to convert indole to 3-bromoindole.

Remarkably, bromination prevails also in a large excess of chloride. The BrvH crystal struc-

ture is very similar to that of tryptophan halogenases but reveals a substrate binding site that

is open to the solvent instead of being covered by a loop.

Introduction

In many bioactive compounds, halogen substituents are an important factor for the biological

activity [1]. Haloperoxidases and cofactor- and metal-free haloperoxidases (perhydrolases)

were the first known halogenating enzymes. These require hydrogen peroxide for the haloge-

nation reaction and lack substrate specifity and regioselectivity [2,3]. Flavin-dependent halo-

genases (FHals) play an essential role in the regioselective halogenation of natural products

such as chloramphenicol [4,5], vancomycin [6,7], or cryptophycin [8,9]. Chemical halogena-

tion of aromatic compounds often requires harsh reaction conditions using catalysts like

Lewis acids and often lacks regioselectivity. FHals have the potential to overcome the draw-

backs of conventional chemical approaches, as they work under more environmentally

friendly conditions [10,11]. Only halide salts, oxygen, and the cofactor FADH2 are required
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for regioselective halogenation [10]. Moreover, it is possible to combine chemical synthesis

with enzymatic halogenation in one-pot reactions. Frese et al. combined enzymatic halogena-

tion of tryptophan with a subsequent Suzuki-Miyaura cross-coupling reaction leading selec-

tively to C5-, C6- or C7-aryl-substituted tryptophan derivatives [12]. Preparative amounts of

halogenated products can be obtained using immobilisation of the halogenases and their auxil-

iary enzymes as cross-linked enzyme aggregates (CLEAs) [13].

FHals can be divided into two major classes based on their substrate preference [14]. Halo-

genases belonging to variant A accept free soluble substrates. The tryptophan 7-halogenases

RebH [15] and PrnA [16,17], the tryptophan 6-halogenase Thal [18] as well as the tryptophan

5-halogenase PyrH [19] belong to the most prominent members of this variant which can be

subdivided into two subgroups with one group catalysing the halogenation of tryptophan

and indole derivatives, whereas the other group only accepts phenol and pyrrole derivatives

[20,21]. In contrast, variant B halogenases require substrates that are bound to carrier proteins.

These halogenases catalyse a step in non-ribosomal peptide synthesis or polyketide synthesis.

CndH and PltA are examples of enzymes that halogenate such carrier-bound tyrosyl- or pyrro-

lyl-residues during the biosynthesis of chondrochloren or pyoluteorin, respectively [14,22].

Most of the known FHals are of bacterial origin, but during the last years, fungal FHals have

been identified as well. Rdc2, which is responsible for catalysing the halogenation of radicicol,

was the first identified fungal FHal [23]. Recently, the fungal FHals, RadH and MalA, which are

able to halogenate complex substrates, have been identified [24,25]. RadH is highly similar to

Rdc2 on amino acid level and is able to halogenate monocillin II in radicicol biosynthesis [24].

MalA is involved in the synthesis of malbrancheamide and halogenates premalbrancheamide.

It is proposed that MalA may be a part of a new class of FHals, which possess a Zn2+-binding

C-terminus and a flexible active site for the halogenation of complex substrates [25].

Halogenases have the potential to provide a clean biocatalytic alternative to chemical halo-

genation. Yet, only a few FHals have been fully characterised. One of the major reasons for this

is the cumbersome identification of the natural substrate that is being accepted by the enzyme,

especially in case of variant B halogenases that act on carrier-bound intermediates of biosyn-

thetic pathways. Hence, mainly FHals catalysing the regioselective halogenation of freely solu-

ble tryptophan in different positions have been characterised until now. Based on the crystal

structures of PrnA [26], RebH [27] and PyrH [21], a reaction mechanism has been suggested:

FADH2 reacts with molecular oxygen forming a flavin-hydroperoxide (FAD-OOH). This

intermediate is attacked by a halide ion, leading to the formation of hypohalous acid (HOX)

within the flavin binding site. The HOX is then transferred within the enzyme through a tun-

nel of 10 Å in length to the substrate binding site. A conserved lysine residue (K79 in PrnA

[26]) is responsible for the electrophilic aromatic substitution of the substrate [21, 26, 27]. The

putative influence of an N-haloamine of this particular lysine residue suggested on the basis of

experimental evidence on the halogenation reaction is still under debate. Besides this, a con-

served glutamic acid (E346 in PrnA) [26] is essential for appropriate orientation and further

activation of HOX prior to halogenation [28]. Two additional regions are highly conserved in

flavin-dependent halogenases: the FAD binding module (GxGxxG) [29,30] and a WxWxIP

motif suggested to prevent the enzyme from functioning as a monooxygenase [26]. These con-

served regions provide a promising basis for the identification of new FHals from other organ-

isms based on a bioinformatic approach.

Considerable effort was put into the investigation of novel halogenases in the recent years.

For example, directed evolution led to more thermostable halogenases [31]. The Lewis group

used structure information for switching the regioselectivity of a halogenase [32]. In 2005,

Zehner and coworkers positively identified the Trp 5-halogenase, PyrH in the model organ-

ism Strepomyces rugosporus LL-42D005 based on conserved regions by using degenerative

A flavin-dependent halogenase from metagenomic analysis prefers bromination over chlorination

PLOS ONE | https://doi.org/10.1371/journal.pone.0196797 May 10, 2018 2 / 21

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0196797


primers for PCR amplification [19]. Recently, Smith et al. identified a novel FHal from the

metagenome of the marine sponge Theonella swinhoei WA that halogenates 5-hydroxytryp-

tophan. Specific primers were used for identification of this novel halogenase [33]. Bioinfor-

matic analyses for the identification of novel enzymes have so far been successfully carried

out for different biotechnologically relevant enzymes, albeit not for FHals. For example, an

unknown laccase-like enzyme [34] and an active chitinase [35] have been identified from

metagenomic data sets by applying bioinformatics analyses. For the identification an adapted

Hidden-Markov-model (HMM) was applied, which detected conserved regions of the partic-

ular enzymes [34,35].

Halides like chloride and bromide are present in high concentrations in marine habitats.

Although the chloride concentration (19.345 ‰) is much higher than the bromide concentra-

tion (0.066 ‰) [36], many brominated natural products have been found in marine organisms

[37]. It was reported that terrestrial halogenases mainly use chloride while marine halogenases

tend to prefer bromide. Therefore, the ocean is a beneficial habitat for the evolution of bromi-

nating enzymes [20]. However, many of these potential enzymes are encoded by genes origi-

nating from microorganisms that are uncultivable under standard laboratory conditions. In

this study, different marine metagenomes were screened for FHals by employing a HMM that

is based on the PFAM tryptophan halogenase model (Trp_halogenase, PF04820). We expected

to find novel enzymes from cultivable as well as from uncultivable organisms using metage-

nomic data sets in order to increase the scope of possible halogenases.

Materials and methods

Materials

The chemicals and solvents were obtained, unless otherwise noted, from commercial suppliers

in highest purity suitable for analytical applications (p. a.).

The plasmid vector pET-21_ADH encoding for alcohol dehydrogenase was kindly donated

by Prof. Dr. Werner Hummel and the plasmid pClBhis-PrnF encoding for the flavin reductase

in Pseudomonas fluorescens was a gift from Prof. Dr. Karl-Heinz van Pée. The plasmid pGro7

for the chaperone GroEL-GroES was purchased from TaKaRa Bio Inc. The plasmid pETM-11

was obtained from Gunter Stier (EMBL). Competent cells E. coli DH5α and E. coli BL21 (DE3)

were obtained from Novagen. ThermoFisher GeneArt synthesised the flavin-dependent halo-

genase genes brvH.

Analytical reversed-phase high performance liquid chromatography

(RP-HPLC)

For analytical reversed-phase high performance liquid chromatography, three different meth-

ods were used. By using method A, reactions were monitored using a Thermo Scientific

Accela 600 with Hypersil GOLD 3 μm from Thermo Scientific (150 × 2.1 mm, eluent A: H2O/

CH3CN/TFA = 95:5:0.1, eluent B: H2O/CH3CN/TFA = 5:95:0.1, flow rate 700 μl/min with a

linear gradient from 0–100% of eluent B over 5 minutes, for 1 minute with eluent B, then in

half a minute going back to 100% eluent A and staying with 100% A for 2 minutes).

In method B, reactions were monitored using a Thermo Scientific Accela 600 with

NUCLEOSHELL1 RP 18 column 18.5 μm from Macherey-Nagel (150 × 2.1 mm, eluent A:

H2O/CH3CN/TFA = 95:5:0.1, eluent B: H2O/CH3CN/TFA = 5:95:0.1, flow rate 900 μl/min,

first minute 100% eluent A, then a linear gradient from 0–100% eluent B in 5 minutes, 1 min-

ute at 100% B and in a half minute going back to 100% A. At the end staying for 2 minutes

with eluent A).
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Based on method C, reactions were monitored using a Shimadzu Nexera XR Luna1

3 μm C18(2) 100 Å, LC Column from Phenomenex (100 × 2 mm, eluent A: H2O/CH3CN/

TFA = 95:5:0.1, eluent B: H2O/CH3CN/TFA = 5:95:0.1, flow rate 500 μl/min isocratic with

35% of eluent B over 5 minutes).

For the reactions monitored by method D a column from Phenomenex (XR Luna1 3 μm

C18(2) 100 Å, LC column, 100 × 2 mm) was used. Eluent A: H2O/CH3CN/TFA = 95:5:0.1, elu-

ent B: H2O/CH3CN/TFA = 5:95:0.1, flow rate 650 μl/min isocratic with 35% of eluent B over 7

minutes.

Preparative reversed-phase high performance liquid chromatography

(RP-HPLC)

For purification of products a preparative HPLC (Merck-Hitachi LaChrom) with Thermo

Fisher Hypersil Gold 8 μm column (250 × 21.2 mm, eluent A:H2O/CH3CN/TFA = 95:5:0.1,

eluent B: H2O/CH3CN/TFA = 5:95:0.1, flow rate 10 mL/min with a linear gradient from

0–100% B over 45 minutes) was used.

Gas chromatography—Mass spectrometry (GC-MS)

For GC-MS analysis the gas chromatograph Trace GC Ultra (ThermoScientific) with a VF-5

column 0.25 μm (30 m × 0.25 mm, 5% diphenylsiloxan, 95% dimethylsiloxan was employed;

for mobile phase helium was used with temperature gradient of 5 ˚C/min from 80 ˚C to

325 ˚C) and the mass spectrometer ITQ900 from ThermoFinnigan (20 measurements per

minute, 50–750 m/z) were used.

Nuclear magnetic resonance (NMR) spectroscopy

NMR spectra were recorded on a Bruker DRX-500 spectrometer (1H: 500 MHz, 13C: 126

MHz). Chemical shifts are reported relative to residual solvent peaks (DMSO-d6:
1H: 2.5 ppm;

13C: 39.5 ppm)

General methods

Metagenomic analysis for the detection of flavin-dependent halogenases

All metagenomic data were obtained from the iMicrobe.us or gold.jgi.doe.gov databases. A

two-step approach as recently described [34] with some modifications was used for the con-

struction of a HMM for the detection of flavin-dependent halogenases. In the first step, the

PFAM model for tryptophan halogenase (PF04820) was used as basis. To improve the initial

model, conserved sequences were collected by applying BLAST [38] using known protein

sequences of already characterized FHals with a threshold of 50% sequence identity und 90%

query coverage as references. The obtained sequences were aligned using MUSCLE [39] and

the alignment was processed manually. Finally, a halogenase HMM was generated based on

the initial HMM for tryptophan halogenase and the obtained alignment using the HMMER3

package [40]. Assembly of metagenomic data was performed by applying MEGAHIT [41]. For

gene prediction, the tool Prodigal [42] was used and the predicted genes were filtered based on

their completeness and their match to the model. Completeness means that the gene contains

a start and stop codon, conserved regions are present and the size of the genes fits the size of

known halogenases. For example, the rebH gene contains 1593 base pairs, corresponding to

530 amino acids in length [15]. The predicted and translated genes were compared against the

halogenase HMM using the HMMER3 software package. Only genes with an e-value< 1x10-

150 were used for further analyses.
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Phylogenetic analyses of the positive halogenases hits

For phylogenetic analyses MEGA7 [43] was used. First, a protein alignment (MUSCLE) was

performed and then the phylogenetic tree was constructed based on neighbour joining (NJ)

method and a bootstrap of 1000.

Vector preparation, heterologous protein expression

BrvH has been identified in course of the bioinformatic approach explained above. The gene

brvH was identified in Botany Bay metagenome (2016 iMicrobe, CAM_SMPL_001699). The

gene of brvH was codon optimised for E. coli and extended with restriction sites (NdeI and

BamHI) for further cloning. The synthetic gene was obtained from Invitrogen GeneArt. The

gene was cloned into pET-28a vector and transformed to E. coli BL21 (DE3) pGro7. The

pGro7 vector codes for the expression of a chaperone system GroEL-GroES. An overnight pre-

culture (37 ˚C, 150 rpm) was used to inoculate a culture in LB medium containing the appro-

priate antibiotics (60 μg/mL kanamycin; 50 μg/mL chloramphenicol). This culture was grown

(37 ˚C, 150 rpm) up to an OD600 of 0.5. Protein expression was then induced with isopropyl-

β-D-thiogalactopyranoside (IPTG) (0.1 mM) and L-arabinose (2 g/L) and the cells were culti-

vated at 25 ˚C, 150 rpm for 22 h. Afterwards, cells were harvested by centrifugation (3220 × g,

30 min), washed with 100 mM Na2HPO4 buffer (pH7.4) and stored at -20 ˚C.

For protein crystallisation, the brvH gene was cloned into a pETM-11 vector. This vector

includes a hexahistidine tag, followed by a tobacco etch virus (TEV) protease cleavage site. The

plasmid was transformed into E. coli BL21 (DE3). An overnight preculture (30 ˚C, 100 rpm)

was used to inoculate a culture in LB medium containing 30 μg/mL kanamycin. The culture

was grown (37 ˚C, 100 rpm) to an OD600 of 0.7 and protein expression was induced using 0.1

mM IPTG. After 18 h of expression at 20 ˚C, the cells were harvested by centrifugation (see

above), and the cell pellet washed with PBS and frozen at -20 ˚C.

Site-directed mutagenesis of brvH
A PCR was carried out to mutate the conserved lysine residue to an alanine (K83A). The fol-

lowing primers were designed:

BrvH_K83A: GCAACCCAGGCAACCTGTGCGCTGGGTATTCGTTTT

BrvH_K83A-rev: AAAACGAATACCCAGCGCACAGGTTGCCTGGGTTGC

For the PCR, 70 ng of vector DNA (brvH_pET-28a), 125 ng of each primer, 2.5 U/mL Pfu

polymerase (Promega, Germany), 1 × reaction buffer and dNTP mix (200 μM of each nucleo-

tide) were used. The PCR program is shown in Table 1.

Afterwards parental DNA was digested by incubating the PCR product with DpnI restric-

tion enzyme (10 U/μl) at 37 ˚C. After 1 hour, the mutated DNA was transformed into E. coli
DH5α (DE3). Protein expression and purification was identical to the non-mutated BrvH.

Table 1. Program for the site-directed mutagenesis PCR.

Cycles Temperature [˚C] Minutes

1 95 0.5

16 95 0.5

55 1

68 7

1 68 5

https://doi.org/10.1371/journal.pone.0196797.t001
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Protein purification

For protein isolation, the cells from 1.5 L cultivation were thawed, suspended in 30 mL 100

mM Na2HPO4 buffer (pH7.4) and lysed with the French Press (3 times 1000 psig). Soluble pro-

tein was separated from insoluble compounds by centrifugation (10000 × g, 30 min, 4 ˚C).

A HisTALON matrix was employed for purification. The elution of the bound enzymes was

carried out with imidazole (300 mM imidazole, 100 mM Na2HPO4, 300 mM NaBr, pH 7.4)

and resulting enzymes were collected in 0.5 mL fractions. Afterwards fractions with pure

enzyme were pooled and a desalting column (HiTrap1 Desalting (GE Healthcare)) was used

to remove the imidazole and to change the buffer (50 mM Na2HPO4, 50 mM NaBr, pH 7.4).

For protein crystallisation, purification included Ni2+-affinity chromatography, ion

exchange (IEX) and size exclusion chromatography (SEC). The cells were first resuspended in

a lysis buffer (25 mL PBS containing cOmplete™ protease inhibitor (EDTA-free; Merck, Ger-

many) and 20 μg/mL DNase I) and lysed using a French Press (120 MPa). Soluble protein was

obtained via centrifugation (16000 x g, 30 min, 4 ˚C) and captured via Ni2+-NTA affinity chro-

matography. Bound protein was eluted with imidazole (20 mM Tris 20 mM NaCl 200 mM

imidazole pH 8) and an IEX of the protein-containing fractions was performed using an

ÄKTA Purifier (self-packed Source 15 Q column (column volume (CV) = 7 mL; GE Health-

care, UK); 1 mL/min; gradient from 0 to 500 mM NaCl in 20 mM Tris pH 8 over 20 CV; frac-

tions of 2 mL were collected). The FHal eluted in a single peak and was then subjected to an

overnight TEV protease digest (1 mg TEV per 50 mg of BrvH) at 20 ˚C in order to remove

the His6-tag. In a following Ni2+-NTA chromatography, the cleaved protein was obtained in

the flowthrough and washing fractions and concentrated using a VivaSpin column (10000

MWCO; Sartorius, Germany). For SEC, a 16/60 Superdex 200 column (flow rate 1 mL/min;

GE Healthcare, Germany) connected to an ÄKTA purifier at 4 ˚C was used (buffer 10 mM

Tris 20 mM NaCl, pH8; fractions of 2 mL were collected). Eluted protein was concentrated to

22.3 mg/mL and stored at -80 ˚C prior to crystallisation.

Cofactor regeneration system

The cofactor regeneration system consisting of flavin reductase (PrnF) and alcohol dehydroge-

nase (ADH) was generated as published previously [10].

Crystallisation and structure determination of apo BrvH

BrvH was diluted to 10 mg/mL for crystallisation. Crystallisation conditions were screened

using the JCSG Core IV Suite (Qiagen, Germany). Stacks of very thin plates were obtained

after two weeks in 1 M Na/K tartrate, 0.1 M MES pH 6.0 with a drop size of 2 μL and a ratio of

protein:reservoir solution of 1:1. Optimisation did not yield single crystals. However, using

streak seeding, single plates could be obtained in 0.95 M Na/K tartrate 0.1 M MES pH 6.0 after

one day. Prior to data collection, six-day-old crystals were transferred into the crystallisation

solution supplemented with 20% glycerol and vitrified in liquid nitrogen. Data were collected

at the ESRF, Grenoble, using the ID30 A-3 beamline (1800 frames; oscillation angle 0.15˚; x-

ray wavelength 0.9677 Å).

Raw data were processed with XDS and scaled with XSCALE [44]. The data were imported

into CCP4 and merged with aimless [45] for structure solution via molecular replacement

using Phaser (ensemble: PrnA, seq. identity 34%; PyrH, seq. identity 36%; RebH, seq. identity

33%; SttH, seq. identity 36%; [46]). An initial model was built by PHENIX AutoBuild [47] and

further improved via manual building using COOT [48]. For crystallographic refinement of

interim models, Refmac5 was used [49]. Validation with MOLPROBITY [50] was part of the

iterative building process. The statistics of the final model are presented in S1 Table and the
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crystal structure was deposited in the protein data bank (PDB ID 6FRL). Figures were gener-

ated in PyMOL [51].

FAD reconstitution

For FAD reconstitution, the purified enzyme was incubated in FAD buffer (50 mM Na2HPO4,

150 mM NaBr, 1 mM FAD, pH 7.4) over night at 4 ˚C, 5 rpm. A desalting column (HiTrap1

Desalting (GE Healthcare)) was used to change the buffer. After incubation overnight, BrvH

was washed with buffer (50 mM Na2HPO4, 50 mM NaBr, pH 7.4) to remove free FAD using a

filter device (Amicon, Ultra 4) with a 50 kDa cutoff. UV/vis spectra of the sample were mea-

sured in a quartz cuvette (Suprasil, Hellma) with a path length of 1 cm using a Shimadzu UV-

2450 spectrometer.

Assay conditions

The activity assays of PrnF and ADH were carried out as described by Frese et al. [10].

The activity assays with the novel flavin-dependent halogenases were carried out with cell

lysate containing the enzymes (250 μl in 1 mL) with 1 μM FAD, 100 μM NAD, 100 mM NaBr/

NaCl, PrnF (2.5 U/mL) and ADH (2 U/mL). Indole was dissolved in isopropanol to give a

final substrate concentration of 1 mM and 5% solvent, respectively. When tryptophan was

used as substrate, it was dissolved in water and isopropanol was added to a final concentration

of 5% (v/v). Assays were incubated for 48 h at 25 ˚C, 300 rpm. For the activity assays using

purified enzyme, a final enzyme concentration of 1.125 mg/mL was present in the reaction

mixture, while the other conditions given above were unmodified. The activity assays were car-

ried out in 1 mL or 0.5 mL volume, which was filled up with 100 mM Na2HPO4 (pH 7.4). If

appropriate, catalase (650 U/mL) was added to 500 μl reaction mixture of the activity assays to

remove peroxide intermediates.

Indole conversion on large scale by immobilised enzymes

Cross-linked enzyme aggregates (CLEAs) as described by Frese et al. [13] were used for conver-

sion of higher amounts of indole for NMR analyses. First, the E. coli BL21_pGro7 cells contain-

ing BrvH from a 1.5 L cultivation batch were disrupted using French Press and centrifuged as

described above. 2.5 U/mL PrnF (flavin reductase) and 1 U/mL alcohol dehydrogenase (ADH)

were added to the supernatant. This protein mixture was then separated into two equal parts

because one cell pellet was used for two CLEA reactions. The proteins were precipitated by add-

ing saturated ammonium sulfate solution in a tube rotator for 1 h at 4 ˚C. Glutaraldehyde was

added to a final concentration of 0.5% and the mixture was further rotated for 2 h. Finally, the

produced CLEAs were centrifuged and three times washed with 100 mM Na2HPO4 buffer

(pH7.4). For the biocatalysis with CLEAs 1.5 mM substrate, 1 μM FAD, 100 μM NAD, 15 mM

Na2HPO4, 30 mM NaBr and 5% (v/v) isopropanol were employed. The pH was adjusted with

phosphoric acid to pH 7.4. CLEAs were added to the reaction solution in a final volume of 500

mL and incubated for up to 10 days (depending on the conversion) at 25 ˚C, 150 rpm.

Results and discussion

Selection of metagenomic data sets, construction of the HMM,

bioinformatic analyses and phylogenetic reconstruction of the identified

FHal genes from Botany Bay to known FHal genes

For the identification of novel FHals, we analysed eleven metagenomes (S2 Table). For screen-

ing, we established a HMM based on a two-step approach for tryptophan halogenases like
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recently described by Ausec et al. [34] with some modifications. After that, the halogenase

HMM was applied to identify FHals within the metagenomic data sets. By applying the

improved HMM model, several potential FHal genes were identified within the screened meta-

genomes. In total, 254 predicted FHal genes were identified, but only 77 were shown to be

complete, meaning that the gene contains a start and stop codon, conserved regions are pres-

ent and its size fits to the size of known halogenases. For example, the rebH gene contains 1593

base pairs, corresponding to 530 amino acids in length. The highest number of complete genes

(42 in total) was identified from the Botany Bay metagenome (CAM_SMPL_001699). The two

variants can be distinguished by multiple sequence alignment, which can be visualised by a

phylogenetic tree. We built a phylogenetic tree with the predicted FHals from the Botany Bay

metagenome in comparison to known FHals belonging to variant A and B on amino acid

level. The tree was constructed via MUSCLE alignment and neighbour joining with a boot-

strap of 1000 replicates using MEGA7 [43] (Fig 1). In this phylogenetic tree, the FHals of both

classes cluster into two distinct clades consisting of variant A and variant B FHals. Remarkably,

all predicted genes cluster in the clade of tryptophan halogenases, but only gene 38 clusters

within the cluster of tryptophan halogenases. Some of the predicted FHal genes cluster more

distantly from the tryptophan halogenases (5, 7, 8, 9, 16, 20, 21, 23, 24, 27, 30, 31, 32, 34, 35, 37,

40, 41). The predicted gene 17 seems to be an outgroup, because it is more distant from both

the variant A and the variant B FHals. The fact that all predicted genes cluster closer to the

tryptophan halogenases may be caused by the selection criteria since our HMM consists of the

PFAM model of tryptophan halogenases. Moreover, the e-value and the gene size resembling

the length of known tryptophan halogenases were used as criteria for selection. Weichold et al.

postulated that variant B FHals seem to be around 70 amino acids shorter in comparison to

variant A FHals [52]. Therefore, it can be assumed that our selection criteria rejected predicted

genes belonging to variant B FHals and for this reason from 254 predicted genes only 77 were

assigned as complete.

Selection, expression and activity assay of a predicted FHal gene from

Botany Bay

We decided to investigate one predicted FHal gene from the Botany Bay metagenome, which

clusters close to tryptophan halogenases within the phylogenetic tree. We chose predicted gene

12 (1530 bp), which shows high similarities to tryptophan halogenases on amino acid level, but

interestingly forms its own clade within the phylogenetic tree.

Sequence comparison of gene 12 using Blastp and the nr database resulted in one hit with

100% identity on amino acid level to an annotated putative tryptophan halogenase from Bre-
vundimonas BAL3 (NCBI: Acc. # EDX81295.1), but no enzymatic activity of its gene product

had been described. Brevundimonas BAL3 is a gram-negative alphaproteobacterium that was

isolated from marine habitat (GOLD Project ID: Gp0006177). To the best of our knowledge,

no halogenated product is known from this organism to date. AntiSMASH analysis of the

genome of Brevundimonas BAL3 revealed one gene cluster leading to bacteriocin [53]. Since it

is most likely that the predicted FHal gene is from Brevundimonas BAL3, we designated gene

12 as brvH.

Gene cluster analysis revealed another FHal gene 13 (1542 bp), located upstream of gene 12

(Fig 2). Gene 12 and 13 share 42.7% pairwise identity to each other.

A multiple sequence alignment based on amino acid sequences was carried out to compare

BrvH with the tryptophan halogenases RebH, Thal and PyrH. The multiple alignment showed

that BrvH contains all three conserved amino acid regions that were used for identification: (i)

the FAD binding module, GxGxxG (amino acids (aa) 16–21), (ii) the conserved lysine residue
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(K83) and (iii) the conserved domain WxWxIP (aa 275–280). We decided to proceed with in
vitro assays of BrvH to show halogenase activity and identify possible substrates. The synthetic

gene brvH (codon optimised for E. coli) was cloned into the expression vector pET-28a. The

gene was heterologously expressed in E. coli with coexpression of the chaperones GroEL-

GroES. This resulted in adequate production of BrvH, which was obtained in soluble form and

purified using an N-terminal His6-tag with immobilised metal ion chromatography (IMAC;

S1 and S2 Figs).

Because our HMM is based on tryptophan halogenases and BrvH shows high similarities to

these enzyme class, we suspected that tryptophan is halogenated by BrvH. However, substrate

tests with cell lysate containing BrvH led to no halogenation of tryptophan, neither in presence

of chloride nor in presence of bromide. Therefore, other substrates with an indole moiety, for

Fig 1. Phylogenetic tree of positive detected FHals from the Botany Bay metagenome in comparison to known FHals on amino acid level. The

tree was constructed using neighbour joining method, bootstrap 1000, with the alignment based on amino acids by MEGA7 [43] and MUSCLE

[39]. 1–42: positive FHal hits from the Botany Bay metagenome; PyrH, PrnA, RebH, Thal: Tryptophan halogenases belonging to variant A and

accept free substrate; PltA, CrpH, BhaA, CndH: FHals belonging to variant B and require carrier bound substrate. The amino acid sequences are

shown in S3 Table.

https://doi.org/10.1371/journal.pone.0196797.g001
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example 5-hydroxytryptohan, tryptophol, indole-3-propionic acid, indole-3-acetonitrile, and

indole were tested. However, only indole was found to be accepted as substrate (Fig 3).

The bromoindole product was further investigated by GC-MS measurements (S3 Fig) as

well as NMR analyses. COSY and HMQC experiments unambiguously proved that bromina-

tion took place in position C3 of the indole ring (S4–S7 Figs). The position of halogenation

may be the reason for the non-acceptance of tryptophan. Indole and tryptophan possess an

identical basic structure, but the C3 position of the indole ring is occupied in tryptophan.

The activity of BrvH underlines the feasibility of our method for the identification of

novel FHals, showing that our HMM is able to identify active FHals only based on conserved

regions. Low specific activity of 2.5 mU/mg and a turnover number of 39.6 lead to the conclu-

sion that indole may not be the natural substrate of BrvH (Fig 4).

Nevertheless, it is challenging to find a suitable substrate for the identified halogenase if no

halogenated natural product of the related organism is known.

Noteworthily, BrvH prefers bromide to chloride as halide source. In comparison, pure

BrvH fully converts indole to bromoindole within 48 h while chlorination under identical

conditions proceeds to 8.4% (S8 and S9 Figs). We need to state that we could not observe the

mass of chloroindole in GC-MS measurements due to insufficient concentrations of produced

chloroindole. Therefore, we obtained 3-chloroindole commercially and spiked it into the sam-

ples of the product obtained upon incubation of indole and NaCl with BrvH (Fig 5) giving

the same retention times, while the halogenation product of indole with NaBr has a different

retention time. This provides evidence that the halogenated product incubated with NaCl is

chloroindole.

Most FHals catalyse chlorination as well as bromination, but chlorination activity usually is

higher compared to bromination activity [52]. Bmp2 and Bmp5 are the only known FHals,

which only catalyse bromination but not chlorination [54]. Interestingly, BrvH preferentially

brominates its substrate but is also able to chlorinate in low amounts. BrvH prefers the bro-

mination to chlorination even in excess of chloride as halide source. The HPLC chromatogram

of the sample with tenfold excess of NaCl to NaBr (Fig 6) shows that small amounts of

Fig 2. Gene cluster in the vicinity of gene 12 (K) in the Botany Bay metagenome. Upstream to the gene 12 (K),

another FHal, 13 (L) was identified.

https://doi.org/10.1371/journal.pone.0196797.g002
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chloroindole (tR: 3.75 min) as well as bromoindole (tR: 3.8 min) were formed. Hence, chlorina-

tion is much less efficient than bromination and even in ten times excess of NaCl, NaBr is

preferred.

In order to confirm that BrvH is a flavin-dependent halogenase we performed different

experiments for evaluation. Besides FHals, haloperoxidases and perhydrolases are able to

directly introduce halogen substituents into organic compounds in the presence of hydrogen

peroxide [2,3], albeit with diminished regioselectivity.

Hydrogen peroxide was enzymatically removed in situ from the reaction mixture by

adding catalase. Catalase enzymatically decomposes hydrogen peroxide into water and oxygen

[55]. BrvH halogenates indole even in the presence of active catalase (S10 Fig). Hence, the

Fig 3. HPLC traces of the enzymatic halogenation of L-tryptophan (1 mM) and indole (1 mM) by BrvH (in cell lysate for 19 h in presence of 100 mM NaCl or

NaBr). L-tryptophan (tR: 2.2 minutes) is not being halogenated, while Indole (tR: 3.2 minutes) is fully converted within 19 h to bromoindole (tR: 3.8 minutes) (HPLC

method A).

https://doi.org/10.1371/journal.pone.0196797.g003
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halogenation is not dependent on free hydrogen peroxide. Furthermore, a bromoperoxidase

assay [56] gave evidence that BrvH is not a bromoperoxidase. Replacement of the lysine residue

in position 83 that is conserved in FHals by alanine led to complete loss of enzyme activity (S11

Fig). Furthermore, we were able to show that FAD binds to the enzyme using UV/vis spectros-

copy (S12 Fig). Upon binding of FAD to BrvH the band at 450 nm shows a slight shift to 448

nm while the band around 373 nm is shifted to around 360 nm. This latter shift is caused by the

changed environment of FAD inside the protein compared to the polar and strongly hydrogen-

bonded environment in solution [57,58]. All these experiments support BrvH being a FHal.

Structure determination of BrvH

The observation that BrvH preferentially brominates in combination with the sequence simi-

larity to tryptophan halogenases but the lack of halogenated tryptophan raised the question

whether these characteristics could be explained by examining the 3D structure of the enzyme.

The structure of apo BrvH without any bound ligands was determined to a resolution of 2.5

Å (Fig 7A). There are two chains in the asymmetric unit with no major differences between

the chains. BrvH eluted as a dimer from gel filtration. In the crystal, it forms a dimer very

similar to that of tryptophan halogenases like PrnA or RebH. BrvH was modelled nearly

completely, except for a few terminal residues and residues 46–51, a loop involved in FAD

binding that can adopt various conformations in other FHals and is disordered in apo BrvH.

The substrate binding site is only partly conserved between BrvH and RebH. The region

that is close to the active site lysine K83 (K79 in RebH) is highly similar in both proteins.

Fig 4. Time course of the conversion of 0.05 mM indole by BrvH with NaBr over 25 minutes at 25 ˚C. The

conversion rate was identified via RP-HPLC by determining the ratio of the peak areas of indole and bromoindole. The

specific activity was defined between 0 and 15 minutes reaction time.

https://doi.org/10.1371/journal.pone.0196797.g004
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Among the residues contacting the six-membered ring of the indole, there is only a single sub-

stitution (BrvH: S447 vs. RebH: N470). More variation is present among residues contacting

the five-membered indole ring and the Cβ atom (BrvH: M442, F443 vs. RebH: F465, W466).

The biggest difference maps to the loop that covers the tryptophan binding site in RebH and

contains the amino acids (Y454, Y455, E461, F465) that form hydrogen bonds with the amino

and carboxy group of the substrate (Fig 7B). There are no equivalent residues in BrvH, as a

short loop (residues 432–444) replaces its much longer counterpart in RebH (residues 440–

467). As a consequence, the substrate binding site of BrvH is noticeably more open than that

of tryptophan halogenases and the ε-amino group of the active site lysine K83 is directly acces-

sible to the solvent (S13 Fig).

The lack of side chains to keep the amino and carboxy group of tryptophan in place could

potentially explain why BrvH does not accept tryptophan as substrate. Instead, BrvH may be

able to convert larger substrates. The openness of the substrate binding site and the absence of

large non-polar patches–which would point to a variant B halogenase [14]–resemble the struc-

ture of MibH [59], a tryptophan halogenase that chlorinates tryptophan only when the latter is

part of the enzyme’s cognate substrate peptide (deschloro NAI-107).

As for the halide specificity, no definite conclusions can be drawn. The structure does not

contain FAD and there is no halide bound at the assumed halide binding site, the amide nitro-

gens of T351 and S352 (T359 and G360 in RebH). The loop containing the halide binding

motif of BrvH structurally resembles that of other FHals and its sequence is conserved between

Fig 5. HPLC traces of enzyme products of BrvH incubated with indole and NaBr/NaCl and the same products spiked with commercially available

3-chloroindole. BrvH incubated with indole and NaBr leads to bromoindole (tR: 5.2 min) and incubated with NaCl leads to chloroindole (tR: 4.6 min). Both enzyme

products spiked with 3-chloroindole (tR: 4.6 min) show that the halogenated product of BrvH incubated with indole and NaCl has the same retention time with

commercially 3-chloroindole (HPLC method D).

https://doi.org/10.1371/journal.pone.0196797.g005
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Fig 6. HPLC traces of the halogenation of indole with BalH in excess of NaCl (100 mM) and three different concentrations of NaBr (0 mM, 10 mM, 100 mM).

Even in 10 times higher concentrations of chloride over bromide, bromide is the preferred halide source (HPLC method A).

https://doi.org/10.1371/journal.pone.0196797.g006

Fig 7. Structure of apo BrvH compared to RebH bound to FAD, Trp and Cl-. A: The structural alignment was made

in PyMOL based on the conserved “box” domain of the two halogenases (BrvH: 6–99, 162–416, 494–502 vs. RebH:

2–98, 167–426, 519–528; PDB ID 2oa1). FAD, Trp (both dark grey) and Cl- (green) are present only in the structure of

RebH. BrvH (blue) and RebH (grey) are structurally very similar. A major difference is found in the substrate binding

site, which is accessible to the solvent in BrvH, while it is covered by a longer loop in RebH. B: Empty substrate

binding site of BrvH overlaid with the tryptophan binding site of RebH containing Trp (dark grey). Several of the

RebH residues directly contacting the bound Trp are shown as grey sticks along with the corresponding residues of

BrvH shown in blue. The loops that are shown correspond to those in A. While the residues contacting the indole ring

are conserved, those residues that form hydrogen bonds to the carboxylate and the α-amino group of Trp in RebH are

not present in BrvH. K83 and E349 of BrvH correspond to the amino acids shown to be important for the catalytic

mechanism in other halogenases (K79 and E357 in RebH).

https://doi.org/10.1371/journal.pone.0196797.g007
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BrvH and RebH except for a single substitution (BrvH: S352 vs. RebH: G360; Fig 8). Thus, the

halide specificity cannot readily be explained by the structure of the empty halide binding site.

Conclusion

It is possible to identify FHals on genome level using bioinformatic analyses by employing a

Hidden-Markov-model (HMM) based on the PFAM model for tryptophan halogenases. Sev-

eral novel putative FHal genes were successfully identified from eleven metagenomes. From

the 77 identified complete genes 42 originated from a metagenome from Botany Bay/Australia.

Phylogenetic analysis based on FHals belonging to variant A and B halogenases in comparison

to the identified genes from the Botany Bay metagenome revealed that the phylogenetic tree

clusters in two distinct clades. One consists of the variant A halogenases including tryptophan

halogenases and one of the variant B FHals. Interestingly, all predicted genes cluster within

the tryptophan halogenases and seem to be phylogenetically closer to them than to variant B

FHals. It is assumed that the predicted halogenase genes belong to variant A FHals and catalyse

the halogenation of free substrates. Only the putative halogenase gene 38 clusters within the

clade of tryptophan halogenases and might be a tryptophan halogenase. The other predicted

Fig 8. Comparison of the halide binding site in RebH and BrvH. FAD (dark grey) and Cl- (green) are present only

in the structure of RebH. Coordination of the halide takes place via the amide nitrogens of the backbone. Whilst the

halide binding motif in RebH (grey) is T359, G360 in BrvH (blue) we see a T351, S352 at the same site. However, the

amino acid exchange does not seem to alter the overall structure of the halide binding site, thus not giving a definite

hint as to why BrvH would preferentially brominate.

https://doi.org/10.1371/journal.pone.0196797.g008
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genes are similar to tryptophan halogenase genes, but the corresponding enzymes may accept

different substrates like BrvH (gene 12). The putative halogenase gene brvH from Brevundimo-
nas BAL3 was further investigated in vitro. We were able to show that the gene product forms

an active enzyme and catalyses the halogenation of free indole in C3 position. Tryptophan,

however, was not halogenated. This behaviour might be explained by the lack of residues that

could form hydrogen bonds to the amino and carboxy group of tryptophan in the substrate

binding site of BrvH. The low specific activity towards indole suggests that indole may not be

the natural substrate of BrvH. In addition, the structure of the active site could allow larger

substrates to enter and possibly be halogenated. Interestingly, BrvH possesses an intriguing

selectivity for bromide over chloride in halogenation that, however, cannot be directly

explained from the crystal structure. Bromide is the preferred halogen source even in the pres-

ence of tenfold excess of chloride to bromide. This distinguishes BrvH from other known

FHals, as these enzymes show higher activities in chlorination compared to bromination with

Bmp2 and Bmp5 being the only FHals that are known to brominate exclusively. Finally, we

were able to show that metagenomic data analyses constitutes a powerful tool to find new bio-

catalysts, for example for enzymatic halogenation. Metagenomic data has the great advantage

that it not only provides genomic data of cultivable, but also of non-cultivable organisms. This

expands the search field for novel enzymes. At the same time, the difficulty in determining the

natural substrate of an enzyme from an organism that is not well-characterised remains a

challenge.

Supporting information

S1 Fig. SDS-PAGE (12%) analysis performed after cell disruption of E. coli BL21_pGro7

with the overexpressed BrvH protein. M: prestained proteinladder, NEB (11–245 kDa); P:

pellet with insoluble proteins; S: supernatant with soluble protein fraction; before induction:

sample taken from E. coli BL21_pGro7 without induction with IPTG and L-arabinose. BrvH

possess a mass of 56 kDa and chaperone GroEL of 60 kDa.

(TIF)

S2 Fig. SDS-PAGE (12%) analysis performed after cell disruption and Co-IMAC purifica-

tion by His-Tag of E. coli BL21_pGro7 with the overexpressed BrvH protein. 1–8: collected

fractions after Co-TALON purification and elution with 300 mM imidazole. BrvH possess a

mass of 56 kDa and chaperone GroEL of 60 kDa.

(TIF)

S3 Fig. GC-MS analysis of the brominated indole product after 48 h of enzyme incubation.

A: gas chromatogram; B: mass spectrum of the product from tR = 20.79 min ([M+H]+ obs.

195.138 (79Br); 197.119 (81Br), calc. 194.968 (79Br); 196.968 (81Br).

(EPS)

S4 Fig. 13C-NMR (500 MHz, DMSO-d6) spectrum of the brominated indole by BrvH.

(EPS)

S5 Fig. 1H-NMR (500 MHz, DMSO-d6) spectrum of the brominated indole by BrvH.

(EPS)

S6 Fig. 1H-NMR COSY (500 MHz, DMSO-d6) spectrum of the brominated indole by

BrvH.

(EPS)

A flavin-dependent halogenase from metagenomic analysis prefers bromination over chlorination

PLOS ONE | https://doi.org/10.1371/journal.pone.0196797 May 10, 2018 16 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196797.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196797.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196797.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196797.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196797.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196797.s006
https://doi.org/10.1371/journal.pone.0196797


S7 Fig. HMQC (500 MHz, DMSO-d6) spectrum of the brominated indole by BrvH.

(EPS)

S8 Fig. RP-HPLC analysis of BrvH catalysed bromination of indole after 0 h, 24 h and 48 h

at 280 nm. After 24 h of incubation the substrate, indole (tR = 5.5 min), was fully converted to

the halogenated indole (tR = 6.1 min). Under these conditions a by-product is formed (tR = 6.5

min, HPLC method B).

(EPS)

S9 Fig. RP-HPLC analysis of BrvH catalysed chlorination of indole after 0 h, 24 h and 48 h

at 280 nm. After 24 h of incubation the substrate, indole (tR = 5.5 min), was converted in

traces to the chlorinated indole (tR = 6 min; HPLC method B).

(EPS)

S10 Fig. RP-HPLC analysis of BrvH catalysed bromination of indole in presence of catalase

after 0 h, 24 h and 48 h at 280 nm. Catalase was added to this enzyme assay for decomposi-

tion of hydrogen peroxide. After 24 h of incubation the substrate, indole (5.5 min), was fully

converted to the halogenated indole (tR = 6.1 min). A second by-product is catalysed (tR = 6.5

min). These results show that free hydrogen peroxide is not responsible for the halogenation

(HPLC method B).

(EPS)

S11 Fig. RP-HPLC traces of indole incubated with BrvH_K83A and NaBr after 0 h, 24 h

and 48 h at 280 nm. A point mutation at position 83 on amino acid level in mutant

BrvH_k83A leads to an exchange of the conserved lysine residue to alanine. This experiment

revealed that the conserved lysine residue is essential for the activity of the FHal BrvH. The

mutated enzyme did not halogenate indole (1.2 min; HPLC method C).

(EPS)

S12 Fig. UV/vis spectra of the halogenase BrvH after successful reconstitution with FAD in

comparison to FAD in solution. Upon binding of FAD to BrvH, the band at 450 nm shows a

slight shift to 448 nm and some fine structure while the band around 373 nm is shifted to

around 360 nm. This latter shift is caused by the changed environment of FAD inside the pro-

tein compared to the polar and strongly hydrogen-bonded environment in solution, proofing

that BrvH binds FAD.

(EPS)

S13 Fig. Difference in the openness of the active site between BrvH und RebH. A: Surface

representation of BrvH. The structurally conserved part between different halogenases

(„box“) is shown in dark blue; the structurally variable „pyramid”is shown in turquoise. B:

Zoomed into the active site. The ε-amino group of lysin is shown in orange (centre of the

image), showing its accessibility to the solvent in the apo form with no substrate bound. C: Trp

(from RebH; shown as dark grey space-filling spheres) and RebH (dark grey, cartoon represen-

tation) are superimposed on the structure of BrvH to highlight the loop covering the active site

in RebH. The RebH loop shown is the same as that shown in Fig 7A. D: Surface representation

of RebH. The substrate binding site is not accessible to the solvent.

(EPS)

S14 Fig. RP-HPLC analysis of the enzyme assay with all cofactors, compounds and indole,

but without the halogenase BrvH for zero sample after 0 h, 24 h and 48 h at 280 nm. The

substrate, indole (tR = 5.5 min), is not converted after 48 h. This assay proves that the conver-

sion of indole to bromoindole is BrvH (HPLC method B).

(EPS)
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S1 Table. Data collection and refinement statistics of the crystallisation of BrvH.

(PDF)

S2 Table. Metagenomic data, which were screened with the created HMM algorithm for

FHals.

(PDF)

S3 Table. The 42 identified putative FHal genes from Botany Bay metagenome. The genes

were identified by using our created HMM in a two-step approach based on the conserved

regions of tryptophan halogenases.

(PDF)
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mut H. Niemann.

Project administration: Norbert Sewald.

Software: Daniel Wibberg.

Supervision: Marcel Frese, Tilman Kottke, Jörn Kalinowski, Hartmut H. Niemann, Norbert

Sewald.

Validation: Pia R. Neubauer, Christiane Widmann.

Visualization: Pia R. Neubauer.

Writing – original draft: Pia R. Neubauer, Christiane Widmann, Tilman Kottke, Hartmut H.

Niemann.

Writing – review & editing: Daniel Wibberg, Norbert Sewald.

References
1. Rodrigues Pereira E, Belin L, Sancelme M, Prudhomme M, Ollier M, Rapp M et al. Structure−Activity

Relationships in a Series of Substituted Indolocarbazoles: Topoisomerase I and Protein Kinase C Inhi-

bition and Antitumoral and Antimicrobial Properties. J. Med. Chem. 1996; 39(22):4471–4477. https://

doi.org/10.1021/jm9603779 PMID: 8893841

2. van Pée K H, Keller S, Wage T, Wynands I, Schnerr H, Zehner S. Enzymatic halogenation catalyzed

via a catalytic triad and by oxidoreductases. Biol. Chem. 2000; 381(1):1–5. https://doi.org/10.1515/BC.

2000.001 PMID: 10722044

A flavin-dependent halogenase from metagenomic analysis prefers bromination over chlorination

PLOS ONE | https://doi.org/10.1371/journal.pone.0196797 May 10, 2018 18 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196797.s015
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196797.s016
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196797.s017
https://doi.org/10.1021/jm9603779
https://doi.org/10.1021/jm9603779
http://www.ncbi.nlm.nih.gov/pubmed/8893841
https://doi.org/10.1515/BC.2000.001
https://doi.org/10.1515/BC.2000.001
http://www.ncbi.nlm.nih.gov/pubmed/10722044
https://doi.org/10.1371/journal.pone.0196797


3. Puk O, Huber P, Bischoff D, Recktenwald J, Jung G, Süßmuth RD et al. Glycopeptide Biosynthesis in
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58. Raffelberg S, Gutt A, Gärtner W, Mandalari C, Abbruzzetti S, Viappiani C et al. The amino acids sur-

rounding the flavin 7a-methyl group determine the UVA spectral features of a LOV protein. Biol. Chem.

2013; 394(11):1517–28. https://doi.org/10.1515/hsz-2013-0163 PMID: 23828427

59. Ortega MA, Cogan DP, Mukherjee S, Garg N, Li B, Thibodeaux GN et al. Two Flavoenzymes Catalyze

the Post-Translational Generation of 5-Chlorotryptophan and 2-Aminovinyl-Cysteine during NAI-107

Biosynthesis. ACS Chem. Biol. 2017; 12(2):548–57. https://doi.org/10.1021/acschembio.6b01031

PMID: 28032983

A flavin-dependent halogenase from metagenomic analysis prefers bromination over chlorination

PLOS ONE | https://doi.org/10.1371/journal.pone.0196797 May 10, 2018 21 / 21

https://doi.org/10.1093/nar/gkv437
http://www.ncbi.nlm.nih.gov/pubmed/25948579
https://doi.org/10.1038/nchembio.1564
http://www.ncbi.nlm.nih.gov/pubmed/24974229
http://www.ncbi.nlm.nih.gov/pubmed/3417677
http://www.ncbi.nlm.nih.gov/pubmed/14938361
http://www.ncbi.nlm.nih.gov/pubmed/5472345
https://doi.org/10.1515/hsz-2013-0163
http://www.ncbi.nlm.nih.gov/pubmed/23828427
https://doi.org/10.1021/acschembio.6b01031
http://www.ncbi.nlm.nih.gov/pubmed/28032983
https://doi.org/10.1371/journal.pone.0196797

