www.nature.com/scientificreports

SCIENTIFIC
REPORTS

natureresearch

Electro-Haptic Enhancement of
Spatial Hearing in Cochlear Implant
Users

Mark D. Fletcher®, Robyn O. Cunningham & Sean R. Mills

Cochlear implants (CIs) have enabled hundreds of thousands of profoundly hearing-impaired people to
perceive sounds by electrically stimulating the auditory nerve. However, Cl users are often very poor at
locating sounds, which leads to impaired sound segregation and threat detection. We provided missing
spatial hearing cues through haptic stimulation to augment the electrical Cl signal. We found that this
“electro-haptic” stimulation dramatically improved sound localisation. Furthermore, participants were
able to effectively integrate spatial information transmitted through these two senses, performing
better with combined audio and haptic stimulation than with either alone. Our haptic signal was
presented to the wrists and could readily be delivered by a low-cost wearable device. This approach
could provide a non-invasive means of improving outcomes for the vast majority of Cl users who have
only one implant, without the expense and risk of a second implantation.

Cochlear implants (CIs) are neural prostheses that enable profoundly hearing-impaired people to perceive sounds
through electrical stimulation of the auditory nerve. The CI is one of the greatest achievements of modern medi-
cine. However, recent decades have not been marked by the huge improvements in CI technology that were seen
in the 1980s and 1990s', and ClIs still have significant limitations®™*. One of the primary limitations of CIs is that
users often struggle to locate and segregate sounds’. This leads to impaired threat detection and an inability to sep-
arate sound sources in complex acoustic scenes, such as schools, cafes, and busy workplaces. In normal-hearing
individuals, the origin of a sound is determined by exploiting differences in the intensity and arrival time of
sounds between the ears (interaural level and time differences), as well as by the direction-dependent spectral
filtering of sounds by the pinnae. CI users have limited access to interaural level difference (ILD) and interaural
time difference (ITD) cues, particularly the around 95% of users that are implanted only in one ear®. Furthermore,
because of the poor spectral resolution of CIs' and the fact that CI microphones are typically mounted behind
the ear, CI users often have severely limited access to important spatial information usually given by the pinnae.
We propose a new approach for enhancing spatial hearing in CI users by providing missing spatial hearing cues
through haptic stimulation of the wrists.

There are several existing approaches for improving spatial hearing in CI users, although each has substan-
tial limitations. For example, preservation of residual low-frequency acoustic hearing after implantation can
give benefits to sound localisation in some cases*’. However, this is only possible for a small proportion of CI
users (around 9%®) and residual hearing deteriorates at a faster rate after implantation®. Localisation can also be
improved through the implantation of a second Cl in the other ear®®. However, this approach is expensive, poses a
surgical risk, risks vestibular dysfunction and the loss of residual hearing, and limits access to future technologies
and therapies. Our approach of using haptics could bring enhanced localisation to the majority of CI candidates
who have severely limited localisation ability without the need for an expensive, invasive surgery to fit a second CI.

Haptic cues for spatial hearing have not previously been used to augment CI listening. However, historically,
a small number of studies have looked at whether spatial cues can be provided through haptic stimulation on
the upper arms!? or fingertips''~'* of young normal-hearing listeners. In 1955, Von Bekesy described subjective
reports of people being able to learn to locate sounds with the upper arms!?, and later studies using the fin-
gertips provided further support for the idea that spatial hearing cues can be transferred through the skin'>'%.
Furthermore, recent work has shown that haptic stimulation can be used to enhance speech intelligibility in back-
ground noise for CI users'>~”. Together, this research suggests that haptic stimulation may be able to augment the
limited electrical signal from the implant to enhance CI spatial hearing.
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Figure 1. Haptic stimulation significantly reduces localisation error in cochlear implant users. (A,B) Mean
response location vs actual sound source location before and after training (grey line = perfect localisation
performance). (C,D) RMS error before and after training (grey bar = chance performance, +/— 95%
confidence). Error bars show the standard error of the mean.

In the current study, we investigated whether CI users’ ability to locate speech can be improved by augmenting
the electrical signal provided by the implant with a haptic signal (electro-haptic stimulation'”). We derived this
haptic signal from the audio that would be received by CI or hearing aid microphones behind each ear. The haptic
stimulus consisted of the amplitude envelope of the speech taken from bands in the frequency range where the
ILD cues are largest (see Methods). The signal from each ear was then remapped to a frequency range where the
skin is most sensitive to vibration and delivered to each wrist. This meant that the intensity difference between
the wrists corresponded to the intensity difference between the ears. Our signal processing and haptic signal were
designed to be readily deliverable by a low-latency wearable device with low power consumption.

We measured localisation ability under three conditions: audio only, combined audio and haptic
(Audio-haptic), and haptic only. All conditions were measured before and after a short training regime (last-
ing around 15 minutes per condition). It was hypothesized that the haptic signal would allow participants to
localise stimuli more accurately in the Audio-haptic condition than in the Audio-only condition. After training,
it was anticipated that multisensory integration of the audio and haptic cues would occur, resulting in more accu-
rate sound localisation in the Audio-haptic condition than in the Haptic-only condition.

Results
We tested twelve CI users’ ability to localise a speech stimulus in the horizontal plane, before and after a short
training regime. Both unilateral CI users (who have a CI in one ear and no device in the other ear) and bimodal
users (who have a CI in one ear and a hearing aid in the other ear) were tested in this study, which reflects the
variety of implant and hearing aid configurations present in the population. Participants were tested using their
everyday CI and hearing aid configuration to maximize ecological validity. Eleven loudspeakers were arranged
in an arc around the participants from 75° to the left and right of centre. Participants were instructed to identify
which loudspeaker the speech stimulus originated from. Figure 1 illustrates where participants perceived the
speech to originate from compared to true location of the speech stimulus (upper panels), and shows localisation
error in each of the three conditions, before and after training (lower panels).

We found that haptic stimulation enhanced localisation performance for CI users (F(1.2,12.3) =25.3,
P <0.001, 7,>=0.697). We also found that localisation performance improved between pre- and post-training
testing sessions (F(1,11) =36.5, p < 0.001, 771,2 =0.768). The interaction between these factors was non-significant
(F(1.9,14.6) = 1.0, p=10.37). We then investigated whether participants were able to utilize the additional spa-
tial hearing cues available through the haptic signal to localise speech more accurately. We found that the
root-mean-square (RMS) error was significantly lower in the Audio-haptic condition compared to the Audio-only
condition both before training (#(11) =5.9, p < 0.001, d = 1.69) and after training (¢(11) =4.3, p=0.005, d =1.24;
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Figure 2. Training improves localisation performance and facilitates multi-modal integration. (A,B) Change

in RMS error for each individual for the Audio-haptic and Haptic-only conditions relative to the Audio-only
condition in the pre-training session. (C) Change in RMS error for the audio-only condition after training. (D)
Performance in the Audio-haptic condition relative to the Haptic-only condition before and after training. Users
with unilateral and bimodal device configurations with and without linked devices are indicated by different
lines and markers (see legend).

all t-test p-values are corrected for multiple comparisons [see Methods]). Before training, RMS error reduced
by 17.9°, from 47.2° to 29.3° on average (SE =3.05). After training, RMS error reduced by 17.2°, from 39.9° to
22.7° on average (SE=4.0). All participants performed better in the Audio-haptic condition than the Audio-only
condition in both sessions (see Fig. 2), with the benefit ranging from a 0.5° (P7; bimodal linked; pre-training) to
a 37.7° reduction in RMS error (P8; unilateral; post-training).

Next, we investigated whether completing a short training regime (lasting around 15 minutes per condition)
would allow participants to improve their ability to localise sounds using combined audio and haptic stimula-
tion. Performance in the Audio-haptic condition was found to be significantly better in the post-training session
than in the pre-training session (#(11) =5.8, p < 0.001, d =1.68). With training, RMS error reduced by 6.6° in
the Audio-haptic condition (from 29.3° to 22.7°; SE=1.13). We also assessed whether completing the training
regime allowed participants to integrate information from the audio and haptic stimulation to enhance localisa-
tion performance. There was no difference in performance between the Haptic-only and Audio-haptic conditions
in the pre-training session (p = 0.566). However, in the post-training session, participants were able to locate
sounds more accurately (a 3.1° enhancement) with Audio-haptic stimulation than with only haptic stimulation
(H(11) =2.6, p=0.048, d=0.66).

We found that even without audio cues, haptic stimulation could be used to determine spatial location.
Localisation performance was better in the Haptic-only condition than in the Audio-only condition, with par-
ticipants performing with a significantly smaller RMS error both before (30.2° vs 47.2°% #(11) = 6.00, p < 0.001,
d=0.740) and after training (25.9° vs 39.9% #(11) = 3.89, p=0.012, d=1.123). We also observed that most par-
ticipants were able to improve in the Audio-only condition between sessions, with RMS error reducing from an
average of 47.2° t0 39.9° (SE=1.95; (11) =3.70, p=0.012, d=1.07).

One factor that may have affected performance in the task is the hearing device configurations that partici-
pants used. We measured performance in seven unilateral and five bimodal CI users. Two bimodal users were
using a ‘linked’ configuration, in which a CI in one ear and a hearing aid in the other ear share audio processing
to reduce distortion of spatial hearing cues. We observed that the participants with unilateral configurations
had poorer performance with audio cues alone than bimodal users (54.3° and 37.2° respectively before training;
#(10) =4.18, p=0.008, d =2.44). Both groups reached a similar level of performance with audio and haptic stim-
ulation combined (22.6° and 23.0° respectively). As such, unilateral users had a greater enhancement in perfor-
mance when haptic stimulation was combined with audio than bimodal users (see Fig. 2) in both the pre-training
(24.6° vs 8.5% 1(10) = 3.99, p=0.009, d=2.35) and post-training (24.1° vs 7.5% #(10) =2.48, p=0.034, d=1.52)
sessions. They also had a significantly greater performance enhancement in the Haptic-only condition than
bimodal users in both the pre-training (#(10) =4.54, p=0.005, d =2.83) and post-training sessions (#(10) =2.85,
p=0.034, d=1.68).

Discussion
The vast majority of CI users are implanted in only one ear and are very poor at locating sounds. In this study, we
found that sound localisation accuracy improved substantially when audio and haptic stimulation were provided
together (electro-haptic stimulation). Even with no training, adding haptic stimulation reduced the RMS error
from 47.2° to 29.3° on average. This performance is similar to the average performance achieved by CI users with
implants in both ears (~27°)*!%, or users with a CI in one ear and healthy hearing in the other (~28°)* After a
short training regime, participants’ average RMS error with electro-haptic stimulation was reduced to just 22.7°,
which is comparable to the performance of bilateral hearing aid users (~19°)*". These results suggest that haptic
stimulation can be used to substantially improve localisation for CI users with one implant, without the need for
expensive and invasive surgery to fit a second implant.

The size of the improvement given by adding haptic stimulation depended on participants’ hearing device
configuration. Participant’s with a unilateral configuration had poorer localisation with audio only than bimodal
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users (54.3° and 37.2° respectively, before training), which is consistent with previous studies* and the fact that
bimodal users are likely to have better access to spatial hearing cues. Despite this difference with audio only,
both groups reached a similar level of performance with electro-haptic stimulation (22.6° and 23° after training,
respectively). Therefore, electro-haptic stimulation appears to give the largest gains in performance for CI users
who struggle most with audio alone. Remarkably, four out of seven unilateral participants performed more than
30° better with electro-haptic stimulation than with audio only, after training. These large effects are particularly
encouraging given that there is no established alternative approach for improving localisation in CI users with a
single device.

Importantly, a short training regime allowed participants to effectively combine audio and haptic input. We
found that, after training, our participants performed better with electro-haptic stimulation than with either
audio only (17.2° better) or haptic stimulation only (3.1° better). In this study, both the audio and haptic signals
were speech stimuli consisting of temporally complex amplitude modulations, rather than more simple stimuli,
such as tones or noises. Recent work has provided strong evidence of the importance of the correlation of tem-
poral properties for maximizing multisensory integration, and the advantage of these temporal properties being
complex?*-?%. Therefore, our use of temporally complex stimuli may have facilitated effective integration of audio
and haptic signals.

The audio-haptic enhancement in performance observed in the current study may be expected based on
previous psychophysical, physiological, and anatomical findings. Psychophysicists have shown both that audi-
tory stimuli can affect the perception of haptic stimuli®*-* and that haptic stimuli can affect the perception of
auditory stimuli®. Multisensory interactions have also been shown in the core auditory cortices of ferrets, where
substantial populations of neurons that respond to auditory stimulation are modulated by tactile stimulation®.
Furthermore, anatomical studies have shown the convergence of somatosensory input at many stages along the
ascending auditory pathway, from the cochlear nucleus (the first node in the ascending auditory pathway) to core
auditory cortices®*-*°. Collectively, these studies provide compelling evidence of strong links between audition
and touch and offer a neural basis for our finding that information from auditory and haptic stimulation can be
effectively combined to improve behavioural performance.

In this study, like in many of the most effective haptic aids*, haptic stimulation was applied to the wrists. The
wrist was selected as a practical candidate site for real-world use because wrist-worn devices do not typically
impede everyday tasks and are easy to self-fit. Preserving the perceived intensity differences across the wrists is
critical for this application, and additional testing is required to establish whether this would be affected by fre-
quent changes in the relative positions of the wrists in everyday life. Encouragingly, researchers who found that
haptic stimulation on one hand modulates haptic intensity perception on the other hand, found that this intensity
modulation was not dependent on the relative hand positions*!. However, there is a well-established effect of
hand-crossing on temporal order judgement thresholds, with thresholds increasing substantially when the hands
are crossed*>®. If required, candidate alternative sites might include the upper arms or upper forearms, which
retain much of the convenience of the wrist but reduce the relative motion of the stimulation sites.

In the current study, less than one hour of training was provided. Despite this relatively small amount of train-
ing, we observed improvements in performance in all conditions (Audio-haptic, Haptic-only, and Audio-only).
Future work should assess how generalizable training is to real-world listening and establish the optimum train-
ing regime to maximise audio-haptic performance. In this study, some of the observed performance improvement
may have been due to participants learning to use spatial cues relating only to the specific loudspeaker positions
used. However, previous work suggests that subjects can become more sensitive to spatial hearing cues with train-
ing*, indicating that our improvement in performance may be generalizable beyond the experimental procedure.
Previous research has also shown that participants continue to improve their ability to identify speech presented
through haptic stimulation after many hours of training*-*". This suggests that long-term training may give fur-
ther improvement in haptic performance. Finally, haptic stimulation has been shown to support lip-reading after
extensive training®, suggesting that long-term training may increase multisensory integration of audio and haptic
inputs.

It is important to note that in the current study, performance was assessed under simplified acoustic condi-
tions where participants identified the location of a single speech stimulus. Future work should investigate the
benefits of electro-haptic stimulation in more complex acoustic environments, with multiple simultaneous sound
sources. In such environments, it may be possible to improve performance through the use of algorithms that
magnify spatial hearing cues, aid the segregation of multiple sounds, and reduce background noise**-!.

In this study, we showed that providing spatial information to CI users through haptic stimulation of the
wrists substantially improves localisation. Our approach was designed to be easily transferable to a real-world
application. The haptic signal was processed using a computationally lightweight algorithm that could be applied
in real-time and was delivered at a vibration intensity that could readily be achieved by a low-cost wearable
device. This could have an important clinical impact, providing an inexpensive, non-invasive means to dramati-
cally improve spatial hearing in CI users.

Methods

Participants. Twelve CI users (4 male, 8 female; mean age = 52.6 years old, ranging from 41 to 63 years old)
were recruited through the University of Southampton Auditory Implant Service. All participants were native
British English speakers, had been implanted at least 6 months prior to the experiment, and had the capacity to
give informed consent. Participants completed a screening questionnaire, confirming that they had no medical
conditions and were taking no medication that may affect their sense of touch. Table 1 details the characteristics
of the participants who took part in the study. Participants were instructed to use their normal hearing set up
and not to adjust their settings during the experiment, and included seven unilateral users (a single implant), and
five bimodal users (an implant and a contralateral hearing aid). One participant (P2) was categorized as having
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Years since

Participant Gender | Age | Device Left Device Right implantation
1 M 59 CI: Cochlear CP920 HA: ReSound 3.2

2 F 42 CL: Cochlear CP920 None 4.4

3 F 54 None CI: MED-EL Rondo 4.3

4 F 50 HA: Danalogic CIL: Cochlear CP1000 5.6

5 M 44 CI: Advanced Bionics Nadia Q70 | HA: Phonak [linked] 1.0

6 F 49 CL: Cochlear CP 1000 HA: Oticon 1.5

7 M 58 HA: Phonak [linked] CI: Advanced Bionics Naida Q90 | 0.6

8 F 41 None CI: Cochlear CP 1000 10.6

9 F 61 CI: Med-El Sonnet None 2.4

10 M 63 None CI: Advanced Bionics Q90 0.7

11 F 58 CI: Advanced Bionics Naida Q70 | None 9.1

12 F 52 CI: Advanced Bionics Naida Q70 | None 11.3

Table 1. Summary of participant characteristics. CI= Cochlear implant, HA = Hearing aid.

some residual hearing, defined here as having unaided thresholds at 250 and 500 Hz that are 65dB HL or better
in both ears.

Vibrotactile detection thresholds were measured at the fingertip and wrist at 31.5Hz and 125 Hz following con-
ditions and criteria specified in ISO 13091-1:2001°% One participant (P7) had elevated thresholds at the fingertips
of the left and right index fingers at 125Hz (1.8 and 1.0 ms ™, respectively). All others had vibrotactile detection
thresholds within the normal range (<0.4 ms~2 RMS at 31.5Hz, and <0.7 ms™2 RMS at 125 Hz*?). The mean vibro-
tactile detection threshold at the skin of the wrist at 31.5 Hz was 0.65 ms—2 RMS, and at 125 Hz was 0.75ms~2 RMS
(averaged across left and right wrists; there are no published standards for normal wrist sensitivity).

Stimuli. The speech stimulus consisted of recording of a female voice saying “Where am I speaking from?”,
recorded using a Rode M5 microphone in the small anechoic chamber at the Institute of Sound and Vibration
Research (ISVR), UK. This audio file is available at: 10.5258/SOTON/D1206. The speech signal was presented at a
level of 65 dB SPL LAeq. The intensity of each presentation was roved randomly +/— 2.5dB around 65 dB SPL to
prevent participants learning to locate the speech based on absolute level cues. Each loudspeaker was calibrated
at the listening position using a Briiel & Kjeer (B&K) G4 type 2250 sound level meter (which was calibrated using
a B&K type 4231 sound calibrator).

For the haptic signal, head-related transfer functions (HRTFs) were taken from The Oldenburg Hearing
Device HRTF Database® and applied to the speech signal separately for each loudspeaker position used in the
experiment. The three-microphone behind the ear (“BTE_MultiCh”) HRTFs were used, in order to match a typi-
cal CI signal. The signal was then downsampled to a sampling frequency of 22050 Hz. Each channel of this stereo
signal was then passed through an FIR filter bank with four frequency channels with center frequencies equally
spaced on the ERB scale®*. The edges of the bands were between 1,000 and 10,000 Hz, a frequency range that
contains the most speech energy®® and large ILDs. The Hilbert envelope for each frequency channel was calcu-
lated and a first-order low-pass filter was applied with a cut-off frequency of 10 Hz to extract the speech envelope.
This low-pass filter emphasised the modulation frequency range between around 1 and 30 Hz, which is the most
important range for speech intelligibility*”. These signals were then used to modulate the amplitude envelopes
of four fixed-phase tonal carriers with center frequencies of 50, 110, 170, and 230 Hz. This frequency range was
selected because it is one to which the tactile system is highly sensitive®®. The carriers had a 60 Hz frequency spac-
ing and fixed phases. These carriers were chosen because they would be expected to be individually discriminable
based on estimates of vibrotactile frequency difference limens*. These were then summed and presented via
the HVLab tactile vibrometer. This signal processing strategy was similar to that used in Fletcher et al.'”. Haptic
stimuli were presented at a maximum acceleration magnitude of 1.84 ms=2 RMS (e.g. the left vibrometer when the
signal is presented 75° to the left). The intensity difference between the two shakers directly corresponded to the
intensity difference between the ears extracted from the HRTF, with no additional scaling applied.

The vibrometers were calibrated using a B&K type 4294 calibration exciter. During piloting of the experiment,
waveforms from the shakers were recorded using the PCB Piezotronics ICP 353B43 accelerometers built into the
HVLab tactile vibrometers, and visually inspected to ensure that the signals were faithfully reproduced.

Apparatus. Participants were seated in the centre of the ISVR small anechoic chamber. Eleven Genelec
8020 C PM Bi-Amplified Monitor System loudspeakers were positioned in an arc in front of the participant, from
—75° to 75°, with 15° spacing between the loudspeakers (see Fig. 3). The speakers were placed 2 m from the centre
of the participant’s head, at approximately the same height as their ears in a sitting position (1.16 m). The speakers
were labelled L5 through R5 as illustrated in Figure 3. An acoustically treated 20" wide-screen monitor for dis-
playing feedback and giving instructions was positioned on the floor 1 m in front of the participant. Two HVLab
tactile vibrometers were placed beside the participant’s chair and were used to deliver the vibrotactile signal to the
participants’ wrists (the palmer surface of the distal forearm) via a rigid 10-mm nylon probe with no surround
to maximise the area of skin excitation. All stimuli were controlled using a custom MATLAB script (MATLAB
2018b) viaa RME M-32 DA 32-Channel digital to analog converter.
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Figure 3. Schematic illustration of the experimental set up. This schematic shows the audio-only condition,
where the participant has their hands in their lap rather than their wrists on the shaker contacts. On each trial
the audio stimulus was presented through one of the 11 loudspeakers, positioned at points between 75° to the
left and 75° to the right of the centre.

During testing, the experimenter sat in a separate control room. The participants’ verbal responses were
monitored using a Shure BG 2.1 dynamic microphone placed low behind the participant’s seat, amplified by a
Creek OBH-21 headphone amplifier, and played back through a pair of Sennheiser HD 380 Pro headphones.
Participants were monitored visually using a Microsoft HD-3000 webcam.

Procedure. The experiment was conducted over two sessions not more than 5 days apart (average number of
days=1.58, SE=0.38). In session 1, the participant first filled out a health questionnaire'® and had their vibro-
tactile thresholds measured following conditions and criteria specified in ISO 13091-1:2001%2. The task was then
demonstrated to the participant by presenting the speech stimulus from speakers C (centre), L5 (75° left), and
R5 (75° right). This demonstration was repeated for each of three conditions: Audio only, combined audio and
haptic stimulation, and haptic stimulation only. At this stage, it was confirmed that the speech stimuli were clearly
audible, and participants were given the opportunity to ask any questions.

A testing block of was then conducted, lasting around 20-25 minutes. In each trial, the participant was
instructed to fixate on the central speaker (marked with a red cross), and to keep their head still. The speech stim-
ulus was presented from one of the 11 loudspeakers, and the participant’s task was to identify which loudspeaker
was the source. For each condition, the stimulus was presented from each speaker in a randomised order. This
procedure was then repeated four times. Localisation accuracy was calculated as RMS error using the D statistic
described by Rakerd and Hartman®. Chance performance level was estimated using a Monte Carlo simulation
with 100,000 samples, assuming unbiased responses.

Responses were made verbally and recorded in the control room by the experimenter, who was blinded to the
true source of the stimulus. The participant was monitored via webcam, to ensure that they did not move their
head, were using the vibrometers in the haptic stimulation conditions, and were not making contact with the
vibrometers in the audio only condition. The vibrometers were near silent, but were left on in all conditions to
control for any subtle audio cues.

After a break of at least 15 minutes, the participant completed a training block, which was the same as the
testing block except that stimuli were presented in a new randomised order and performance feedback was pro-
vided on the screen. The screen displayed an illustration of the speaker array (similar to Fig. 3). If the participant
was correct, an illustration of the target speaker lit up green. If the participant was incorrect, an illustration of the
chosen speaker lit up red, and the target speaker lit up green. In the second session, the participant completed a
further training block, followed by a final testing block.

The experimental protocol was approved by the University of Southampton Ethics Committee (ERGO ID:
46201) and the UK National Health Service Research Ethics Service (Integrated Research Application System ID:
256879). All research was performed in accordance with the relevant guidelines and regulations.

Statistics. Performance was calculated as RMS error from the target location in degrees arc for all trials in
each condition within a session®. Primary analysis of performance on the spatial hearing task consisted of a
3 X 2 repeated measures analysis of variance (ANOVA) with factors ‘Condition’ (Audio-only, Audio-haptic, or
Haptic-only) and ‘Session’ (before or after training). Mauchly’s test indicated that the assumption of spheric-
ity had been violated (x*(2) = 15.5, p < 0.001), so degrees of freedom were corrected using Greenhouse-Geisser
estimates of sphericity (¢ =0.56). The ANOVA used an alpha level of 0.05. Post-hoc two-tailed ¢-tests were con-
ducted to investigate these effects. Nine two-tailed paired-samples t-tests (with a Bonferroni-Holm correction
for multiple comparisons) were used to investigate performance across the three conditions and two sessions.
Five two-tailed independent samples t-tests (also with a Bonferroni-Holm correction) were conducted to analyse
differences in performance between the seven unilateral and five bimodal CI users who took part in the study.

SCIENTIFIC REPORTS |

(2020) 10:1621 | https://doi.org/10.1038/s41598-020-58503-8


https://doi.org/10.1038/s41598-020-58503-8

www.nature.com/scientificreports/

Data availability
The dataset and stimuli from the current study is publicly available through the University of Southampton’s
Research Data Management Repository at: https://doi.org/10.5258/SOTON/D1206.
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