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An accurate and reliable brain partition atlas is vital to quantitatively investigate the
structural and functional abnormalities in mild cognitive impairment (MCI), generally
considered to be a prodromal phase of Alzheimer’s disease. In this paper, we
proposed an automated structural classification method to identify MCI from healthy
controls (HC) and investigated whether the classification performance was dependent
on the brain parcellation schemes, including Automated Anatomical Labeling (AAL-
90) atlas, Brainnetome (BN-246) atlas, and AAL-1024 atlas. In detail, structural
magnetic resonance imaging (sMRI) data of 69 MCI patients and 63 HC matched
well on gender, age, and education level were collected and analyzed with voxel-
based morphometry method first, then the volume features of every region of interest
(ROI) belonging to the above-mentioned three atlases were calculated and compared
between MCI and HC groups, respectively. At last, the abnormal volume features
were selected as the classification features for a proposed support vector machine
based identification method. After the leave-one-out cross-validation to estimate the
classification performance, our results reported accuracies of 83, 92, and 89% with
AAL-90, BN-246, and AAL-1024 atlas, respectively, suggesting that future studies
should pay more attention to the selection of brain partition schemes in the atlas-based
studies. Furthermore, the consistent atrophic brain regions among three atlases were
predominately located at bilateral hippocampus, bilateral parahippocampal, bilateral
amygdala, bilateral cingulate gyrus, left angular gyrus, right superior frontal gyrus, right
middle frontal gyrus, left inferior frontal gyrus, and left precentral gyrus.

Keywords: mild cognitive impairment, brain parcellation, automated anatomical labeling atlas, brainnetome atlas,
voxel-based morphometry

INTRODUCTION

Mild cognitive impairment (MCI), which represents the transition state between normal aging and
the early changes related to Alzheimer’s disease (AD) (Han et al., 2011; Wang et al., 2015; Khazaee
et al., 2016, 2017), is characterized by intellectual and cognitive deficits, memory complaints, and
behavioral disturbances (Zhang et al., 2012; Beheshti et al., 2017), and generally regarded as a
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prodromal phase of AD (Long et al., 2018). Overall, the
prevalence of MCI in the elderly is 19%, and nearly half of
them will evolve to AD within 3 to 5 years (Long et al.,
2016). Increasing attention from neurologists, neuroscientists,
and neuroradiologists has been paid to MCI due that early
intervention before irreversible brain tissue damage is crucial
for efficient AD treatments (Davatzikos et al., 2008a). Therefore,
accurate MCI identification methodologies that could serve as
non-invasive surrogates for these pathologic examinations are
desperately needed, which may provide additional insights into
the clinical diagnosis of MCI.

Structural magnetic resonance imaging (sMRI) has been
prevalently utilized to characterize differences in shape and
neuroanatomical configuration in MCI and AD because it could
provide visualization of the macroscopic tissue atrophy caused
by the cellular changes underlying MCI and AD (Desikan
et al., 2009). By analyzing the sMRI data with voxel-based
morphometry (VBM) method, which is utilized to assess the
structure of the whole brain with voxel-by-voxel comparisons
between groups in an anatomically unbiased way (Ashburner
and Friston, 2000), many prior studies found that the atrophic
brain regions mainly lay in the medial temporal lobe containing
hippocampus, parahippocampal, and amygdala in MCI and AD
(Baron et al., 2001; Hirata et al., 2005). In addition, some studies
employed sMRI data to identify MCI or AD from healthy controls
(HC) by extracting structural characteristics such as voxel-wise
volume (Fan et al., 2007; Davatzikos et al., 2008a,b; Klöppel
et al., 2008; Magnin et al., 2009; Beheshti and Demirel, 2016)
and vertex-based cortical thickness (Lerch et al., 2008; Eskildsen
et al., 2013; Dimitriadis et al., 2018), and the classifying accuracies
varied largely from 58% to 100%, which indicated that the
discriminative diagnoses of MCI and AD with sMRI data need
to be continued.

From the previous voxel-based MCI or AD discrimination
studies, these studies could be roughly classified into two
categories, data-driven adaptive characteristic extraction
methods (Misra et al., 2009; Davatzikos et al., 2011) and
atlas-based partition characteristic extraction methods with a
predefined brain atlas (Cuingnet et al., 2011; Cho et al., 2012;
Liu et al., 2015). The former method was not easy to interpret
anatomically because each region of interest (ROI) obtained
from the input data may involve in many anatomical regions
simultaneously. In contrast, the latter could better extract the
classification features with a good anatomical interpretability.
At present, the automated anatomical labeling (AAL-90) atlas
is the most popular atlas, which has been widely employed
to identify kinds of psychological disorders in recent years
(Dai et al., 2012; Wee et al., 2012; Zeng et al., 2012). Besides,
some other atlases were also proposed, such as AAL-1024 atlas
(Zhang et al., 2011; Wu et al., 2013) and the novel connectional
architecture based brainnetome (BN-246) atlas (Fan et al., 2016).
Different brain atlases lead to different partitions in terms of the
number of regions and the size and location of these regions in
the brain (Asim et al., 2018). Till now, few studies compared
the classification performance with different atlases (Mesrob
et al., 2009; Ota et al., 2014, 2015; Asim et al., 2018), and no
study has utilized the BN-246 atlas to identify MCI from HC

subjects with structural data. Moreover, it remains unknown
whether BN-246 atlas would perform better compared with the
two above-mentioned atlases in identifying MCI patients from
HC subjects. Also, it is intriguing whether better accuracy could
be acquired by using the shared features extracted from three
atlases.

In this paper, we proposed an automated classification method
to identify MCI from HC and aimed to investigate whether
the classification performance was dependent upon the brain
parcellation schemes. To accomplish this goal, we first analyzed
the sMRI data with VBM analysis, and then the volume
features of every ROI in the above-mentioned three atlases
were calculated and compared between MCI and HC groups,
respectively. At last, these volumes of abnormal ROIs and the
overlapping brain regions in three atlases were adopted as the
classification features for the proposed support vector machine
(SVM) based classification algorithm, respectively, and the leave-
one-out cross-validation (LOOCV) was used to estimate the
classification performance.

MATERIALS AND METHODS

Participants
Sixty-nine MCI patients and 63 HC participated in this study,
and all participants have not taken any medication that may
influence cognition function. All MCI patients were diagnosed
by two experienced neurologists, and the detailed inclusion
criteria for MCI patients included: (1) memory complaint,
confirmed by patient-self or family members; (2) objective
memory impairment, adjusted for education and age; (3) normal
or near normal activities of daily living; (4) normal or near-
normal performance on cognitive function; (5) clinical dementia
rating (CDR) score equals 0.5; (6) without dementia according to
DSM-IV (Diagnostic and Statistical Manual of Mental Disorders,
4th edition, revised). The 63 HC matched well with MCI patients
on gender, age, and education level, and the detailed inclusion
criteria for HC included: (1) no nervous system diseases that
could cause cognitive function impairment, such as Parkinson’s
disease, depression, encephalitis, and brain tumors; (2) no
history of psychosis or congenital mental growth retardation;
(3) no medication conditions that may interfere with cognitive
performance; (4) no visible vascular lesions on sMRI; (5) no
history of stroke or dependence on alcohol; (6) no other systemic
diseases that cause cognitive impairment, such as syphilis, severe
anemia, and HIV. All participants underwent a standardized
clinical assessment protocol including mini-mental state exam
(MMSE), CDR, and Auditory Verbal Learning Test. Written
informed consent forms were obtained from all participants, and
this study was approved by the medical research ethics committee
of Nanfang Hospital affiliated to Southern Medical University.
The detailed demographics and clinical characteristics of all
participants were presented in Table 1.

Data Acquisition
All participants were scanned on a 3.0-Tesla Siemens scanner
with 8-channel radio frequency coil at Nangfang hospital.
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TABLE 1 | Participants’ demographic and clinical characteristics.

Characteristics MCI HC P-values

Gender (M/F) 69(30/39) 63(27/36) 0.94#

Age (years) 66.64 ± 7.70 64.22 ± 7.38 0.07∗

Education (years) 9.75 ± 4.37 9.35 ± 4.20 0.59∗

CDR 0.5 0 0∗

MMSE 23.03 ± 3.10 27.92 ± 1.58 < 0.001∗

AVLT-immediate recall 8.22 ± 2.54 13.48 ± 3.02 < 0.001∗

AVLT-delay recall 3.68 ± 3.16 10.27 ± 2.57 < 0.001∗

AVLT-recognition 6.49 ± 3.50 11.71 ± 2.32 < 0.001∗

Values are mean ± SD unless the SD was not calculated. M, male; F, female.
CDR, Clinical Dementia Rating scale; MMSE, Mini-Mental State Examination; AVLT,
Auditory Verbal Learning Test. #The P-value was obtained by Chi-square test. ∗The
P-values were obtained by two-sample two-tailed t-test.

Sagittal structural images for all participants were collected
using a magnetization prepared rapid gradient echo (MPRAGE)
three-dimensional T1-weighted sequence with the following
parameters: repetition time (TR) = 1900 ms, echo time
(TE) = 2.2 ms, flip angle (FA) = 9◦, inversion time (TI) = 900 ms,
matrix = 256 × 256, number of slices = 176, thickness = 1.0 mm,
and voxel size = 1× 1× 1 mm3.

Image Analysis
All sMRI data were performed with the VBM toolbox (VBM81)
implemented in SPM8 according to the following steps: First,
the T1-weighted images were checked by two experienced
neuroradiologists, and no obvious abnormalities or artifacts were
observed in all subjects. Then all images were segmented into gray
matter, white matter, and cerebrospinal fluid (CSF) by utilizing
the “New-segment” routine in SPM8. Next, all the segmented
images were normalized into the Montreal Neurological Institute
(MNI) space using the high-dimensional DARTEL normalization
algorithm, and the normalized images were modulated with
Jacobian matrices to preserve the actual amounts of a tissue class
within each voxel. At last, the modulated images were smoothed
with an 8-mm full width at half-maximum Gaussian kernel.

Feature Calculations and Selections
Under Three Atlases
The processed sMRI images were utilized to extract the volume
features for identifying MCI from HC with three different
brain parcellation atlases: AAL-90, BN-246, and AAL-1024 atlas
(Figure 1). The AAL-90 atlas, which was generated from 27 high
resolution T1-weighted images of a young male (Tzouriomazoyer
et al., 2002), partitions the whole cerebral cortex into 90 ROIs
(without cerebellum) (Dai et al., 2012; Khazaee et al., 2016).
The newly built BN-246 atlas, which was generated based on
anatomical connections, divides the whole cerebral cortex into
210 cortical and 36 subcortical subregions (Fan et al., 2016). The
AAL-1024 atlas, which is generated by subdividing each region
of the low resolution AAL-90 atlas into a set of subregions,
partitions the whole cerebral cortex into 1024 ROIs, and every

1http://dbm.neuro.uni-jena.de/vbm.html

FIGURE 1 | The three atlases including AAL-90 atlas, BN-246 atlas, and
AAL-1024 atlas.

ROI of AAL-1024 atlas has approximately identical size (Wu
et al., 2013).

According to the above-mentioned three different parcellation
schemes, the volume of each ROI was calculated for all subjects by
using the MATLAB program2, and the extracted volume features
of all subjects in three atlases were served as the candidate
features, respectively. Given some features were redundant and
irrelevant for classification; it is desirable to select out the
discriminative features to improve the classification performance.
Several previous studies have demonstrated that properly
reducing the number of features can not only improve the
performance of the classifier but also speed up the computation
(Dosenbach et al., 2010; Dai et al., 2012). Therefore, two-sample
two-tailed t-test was performed on the candidate features of
three atlases, respectively, to determine the significantly different
features (P < 0.01, uncorrected) as the classification features.
Besides, a Fisher score method was also used for feature selection
(Khazaee et al., 2016), and the selected features with this method
were consistent with two-sample two-tailed t-test. The Fisher
score criteria for each feature is defined as:

FS =
n1(m1 −m)2

+ n2(m2 −m)2

n1σ
2
1 + n2σ

2
1

(1)

Here n1 and n2 represent the number of samples on each group,
m1 and m2 represent the respective mean value of the feature,
m represents the mean value of the total features, and σ2

1 and σ2
1

represent the respective variances. At last, it is worth noting that
the feature selection process was only carried out on the training
set of each LOOCV fold, which can reduce the overfitting of the
classifier.

SVM-Based Classification Method
The SVM algorithm conceptually implements the idea that
the classification features are nonlinearly mapped into a high
dimensional feature space where a hyperplane with maximum
margin is created to separate the two-group data (Magnin
et al., 2009). The SVM algorithm has been widely utilized in
neuroimaging studies for its powerful classification performance
as well as the simplicity of its theory and implementation (Moradi
et al., 2015). In this paper, the LibSVM toolbox3 was used to
implement the classification.

The radial basis function (RBF) defined as (X, Xi)→
K(X, Xi) = eγ|X−Xi|

2
was adopted as the kernel function. Besides,

in order to improve the classification performance, a grid-search

2http://www.cs.ucl.ac.uk/staff/G.Ridgway/vbm/get_totals.m
3http://www.csie.ntu.edu.tw/~cjlin/libsvm
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FIGURE 2 | The flowchart of the proposed method for MCI discrimination.

method was utilized to optimize two parameters: γ, the width of
the RBF, and C, the penalty parameter of the error term, which
adjusts the importance of the separation error in the creation
of hyperplane. In this paper, the ranges of these two parameters
were γ = 2−8, 2−7.5, ..., 28 and C = 2−8, 2−7.5, ..., 28. In detail,
the optimal two parameters of γ and C were determined with an
internal LOOCV that was only performed on selected features
of the training data. The set of parameters obtained the best
performance in the internal LOOCV were utilized to train the
classification algorithm. In addition, by applying an external
LOOCV, the performance of classification method was estimated
with the accuracy, sensitivity and specificity, which represent
the correctly classified rate of all samples, MCI patients and
HC, respectively. It is worth noting that the feature selections
and parameter optimization process were only performed on the
training set, which could avoid the overfitting of the classifier.
In addition, the flowchart of the proposed method for MCI
discrimination was shown in Figure 2.

RESULTS

Between-Group Differences in Gray
Matter Volumes
Figure 3 showed the ROIs with reliable and discriminative
powers during classification process, namely, the features
retained more than 125 (132 × 95%, 132 is the total number
of cross validation) times in the whole LOOCV process were
displayed in the brain mappings. The overlapping abnormal brain
regions in three atlases were predominantly located at bilateral
hippocampus, bilateral parahippocampal, bilateral amygdala,
bilateral cingulate gyrus, left angular gyrus, right superior frontal
gyrus, right middle frontal gyrus, left inferior frontal gyrus, and
left precentral gyrus. Besides, the Fisher score values of the
abnormal ROIs in these atlases were shown in Figure 4.

Classification Performances Under
Three Atlases
When adopting the AAL-90 atlas, a correct classification rate of
83%, a sensitivity of 85%, and a specificity of 81% were obtained.
When adopting the BN-246 atlas, a correct classification rate of
92%, a sensitivity of 90%, and a specificity of 94% were obtained.
When adopting the AAL-1024 atlas, a correct classification rate
of 89%, a sensitivity of 91%, and a specificity of 87% were

FIGURE 3 | The atrophic brain regions in three atlases, respectively. (A) The
abnormal brain regions in AAL-90; (B) the abnormal brain regions in BN-246;
(C) the abnormal brain regions in AAL-1024; (D) the overlapping abnormal
regions among atlases.

obtained. When using the volume features of the overlapping
abnormal brain regions in three atlases, an accuracy rate was 86%,
and sensitivity of 81%, and a specificity of 90% were obtained.
The detailed results were summarized in Table 2. Besides, four
receiver operating characteristics (ROC) curves were obtained
(Figure 5), and the areas under ROC curves (AUCs) with AAL-
90, BN-246, AAL-1024 atlas and the overlapping brain regions
were 0.89, 0.95 and 0.92, and 0.90, respectively.

DISCUSSION

This study focused on comparing the classification performance
of identifying MCI patients from HC subjects with VBM
under three widely used brain atlases, and found that
the performance varied in different brain atlases. The best
recognition performance was obtained by BN-246 atlas with an
accuracy of 92%, indicating a powerful discriminative ability for
MCI patients.

In this paper, a RBF kernel function that could deal with
the nonlinear relationship between features and labels was
adopted to improve the classification performance (Hsu et al.,
2003). The grid search method, which has a high learning
accuracy and could be implemented with parallel processing,
was utilized to optimize the two parameters of SVM, and
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FIGURE 4 | The Fisher score values of the discriminative features in AAL-90, BN-246, and AAL-1024, respectively (The number of the discriminative features in
AAL-1024 atlas was 93, and only the prior 50 features were displayed).

it could also improve the classification performance. Besides,
considering the feature selections and parameters optimization
process were only constrained on the training set of each
LOOCV fold, which could reduce the overfitting of the classifier.
Thus, the improved accuracies we obtained may be unlikely
the inflated accuracies due to overfitting. In addition, the total
90, 246, and 1024 features with parameters optimization were
also tested for classification, respectively, and the accuracies
without feature selection were all less than 70%, which were
significantly lower than that with feature selection. Besides,
when using the proposed method to identify MCI patients by
extracting the volume features of the overlapping abnormal
brain regions in three atlases, the accuracy was 86%. To our
best knowledge, it is the first time to classify MCI patients
from HC subjects by using the overlapping brain regions in

TABLE 2 | The classification performance of the proposed method on three
atlases.

Three atlases Accuracy Sensitivity Specificity

AAL-90 83% 85% 81%

BN-246 92% 90% 94%

AAL-1024 89% 91% 87%

The overlapping regions 86% 81% 90%

three different atlases. Furthermore, the linear kernel based
SVM method and the logistic regression classifier were also
applied to the same data to identify MCI patients, and the
former classifier achieved accuracies of 80%, 91%, and 87%
with AAL-90, BN-246, and AAL-1024 atlas, respectively, and
the latter one acquired accuracies of 70, 84, and 76% with
AAL-90, BN-246, and AAL-1024 atlas, respectively, suggesting
that the RBF kernel based SVM method performed better than
these two classifiers and the BN-246 atlas could persistently
provide more effective information in identifying MCI patients.
Moreover, to validate whether the between-group differences and
the performance were stable, the re-sampling based permutation
test was performed, which was similar with some previous
studies to testify the stability of the between-group differences
and classification performance (Magnin et al., 2009; Awate
et al., 2016; Awate et al., 2017). In detail, 75% random
selected subjects of each group were used to determine the
abnormal features and then to train the proposed classification
method, then the remaining 25% participants were utilized
to estimate the classification accuracy. The above-mentioned
processes were repeated 1000 times, and the final accuracies
were estimated with the mean of the 1000 re-samplings. The
probability of each feature selected in permutation test was
defined as the selected times of the feature in the whole
process divided by the re-sampling times, and the probability
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FIGURE 5 | Three ROC curves of the proposed MCI identification method with AAL-90, BN-246, AAL-1024 atlas, and the overlapping abnormal regions,
respectively.

mappings of these selected features were shown in Figure 6.
We found that the frequently selected regions in the whole
permutation test were consistent with our proposed method.
Besides, the accuracies distributions of the permutation test
in three atlases were shown in Figure 7, and the final
mean accuracies were 82.58, 92.52, and 87.60% with AAL-
90, BN-246, and AAL-1024 atlas, respectively, which again
demonstrated that our results were stable. At last, the atrophic
brain regions in MCI detected by VBM procedure in our
study were consistent with many previous VBM studies (Hirata
et al., 2005; Hämäläinen et al., 2007; Matsuda, 2013), including
hippocampus and parahippocampal, etc. The correspondence
indicated the validity of the MRI data and the method of VBM
analysis.

In our previous study (Jing et al., 2017), the AAL-90
and AAL-1024 atlas were utilized to make a comparison
in identifying major depressive disorder from HC using the
functional characteristic, and the AAL-1024 obtained better
performance than the AAL-90 atlas. In addition, considering
the newly built BN-246 atlas contains both functional and

FIGURE 6 | The probability mappings of the selected abnormal features in
permutation test with three different atlases.

structural connectivity information, thus these three atlases were
simultaneously selected in this paper. Through comparing the
classification results among them, we found that the BN-246
atlas obtained the best recognition rate than AAL-90 and AAL-
1024 atlas. The main reasons for resulting in a considerable
disparity in the classification performance may be attributed to
the differences between atlases. The AAL-1024 atlas is generated
from AAL-90 atlas, and therefore a comparison between BN-246
atlas and AAL-90 atlas is essential for the interpretation of the
differences in classification performance.

Brain atlases could be classified into two categories: single-
subject topological atlases and population-based probabilistic
atlases (Cabezas et al., 2011; Arslan et al., 2017). The AAL-
90 atlas is a single-subject atlas generated from a young
male (Tzouriomazoyer et al., 2002), whereas the BN-246 is a
probabilistic atlas based on 40 MRI data of healthy adults (Fan
et al., 2016). This difference might be the major factor resulting
in the discrepant classification performance. Namely, no single
brain could represent the population due to the neuroanatomical
variability across individuals (Devlin and Poldrack, 2007).
In addition, the AAL-90 atlas has been found with some other
problems such as anatomical variation and methodological
limitation. Regarding to the anatomical variation, the AAL-
90 atlas displays an atypical rightward asymmetry of planum
temporale (PT) that is a triangular structure located on the
superior temporal gyrus, and the PT that is involved in mediating
sensorimotor control processing has extensive connections to
other brain regions (Zheng, 2009). A previous study found
microanatomical changes in cortical minicolumn organization
of the association cortex in the PT in MCI and AD (Chance
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FIGURE 7 | The classification accuracies distributions of the permutation test with three different atlases.

et al., 2011), and another previous VBM study also found
the early atrophic changes in superior temporal gyrus in AD
(Karas et al., 2004). In terms of methodological limitation, the
AAL-90 atlas was originally intended to provide a standard
reference of anatomical location for functional neuroimaging
studies with low spatial resolution (Tzouriomazoyer et al.,
2002). However, the partition pattern of AAL-90 does not
match the cytoarchitectonic borders well in most cases due
that the sulcal and gyral patterns are extremely variable
(Amunts et al., 2007). Therefore, the single-subject AAL-90
atlas could not well represent the partition pattern of human
brain. Regarding to BN-246 atlas, this atlas partitioned the
human brain into distinct subregions based on local structural
connectivity architecture, namely, the BN-246 atlas is created
by identifying subregions that are maximally homogeneous
internally and maximally different from each other in terms
of their structural connections (Fan et al., 2016). To some
extent, the BN-246 atlas not only confirmed some differentiation
from early cytoarchitectonic mappings but also revealed many
anatomical subdivisions which were not described previously
(Fan et al., 2016). In addition, it is worth noting that although
BN-246 atlas showed better classification performance than AAL-
90 and AAL-1024 atlas, the BN-246 atlas might not be the
best choice, and future neuroimaging studies should pay more
attention to the choice of brain parcellation atlases in atlas-based
studies.

Another factor that may affect the recognition performance
is the number of ROIs in three atlases. Different numbers of
ROIs resulted in distinct feature vectors, and the variation in
topological patterns of feature vectors corresponded to diverse
hyperplanes in feature space, which naturally brought about the
discrepancies in the classification performance. In this paper, the
performance of AAL-1024 was better than AAL-90 atlas, which
may be attributed to the reason that the AAL-1024 atlas could
detect more fine abnormalities due to a more subtle parcellation
scheme compared to AAL-90 atlas. At last, we found that the
Fisher Score value of the volume features with BN-246 was
significantly bigger than that of AAL-90 and AAL-1024, which
complementarily supported the fact that the BN-246 atlas would
obtain the best classification performance in the identification
of MCI.

Two issues need to be addressed in this paper. First,
some other brain atlases exist in the area of neuroimaging
study nowadays, and these atlases could also be utilized to

investigate the brain abnormalities affected by atrophy in MCI
patients. Second, all the selected atlases in this study did not
include cerebellum which may provide some contribution for
discriminating MCI patients from HC, and future identification
studies could adopt some cerebellum-included atlases to identify
MCI patients.
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