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Simple Summary: Colorectal cancer represents one of the major health problems due to high
incidence and mortality rates. A diversity of treatment options as well as a rising population require
novel diagnostic tools. The main goal of the research was to develop a novel complex colorectal
cancer decision support system based on artificial intelligence. The developed system can classify
eight classes of tissue and can identify the malignant areas. In order to allow the easiest and most
intuitive interaction with clinicians, the corresponding application was also built.

Abstract: Colorectal cancer is the second leading cause of cancer death and ranks third worldwide in
diagnosed malignant pathologies (1.36 million new cases annually). An increase in the diversity of
treatment options as well as a rising population require novel diagnostic tools. Current diagnostics
involve critical human thinking, but the decisional process loses accuracy due to the increased
number of modulatory factors involved. The proposed computer-aided diagnosis system analyses
each colonoscopy and provides predictions that will help the clinician to make the right decisions.
Artificial intelligence is included in the system both offline and online image processing tools. Aiming
to improve the diagnostic process of colon cancer patients, an application was built that allows the
easiest and most intuitive interaction between medical staff and the proposed diagnosis system.
The developed tool uses two networks. The first, a convolutional neural network, is capable of
classifying eight classes of tissue with a sensitivity of 98.13% and an F1 score of 98.14%, while the
second network, based on semantic segmentation, can identify the malignant areas with a Jaccard
index of 75.18%. The results could have a direct impact on personalised medicine combining clinical
knowledge with the computing power of intelligent algorithms.

Keywords: colorectal cancer; computer aided decision support system; artificial intelligence

1. Introduction

Colorectal cancer (CCR) is the second leading cause of cancer death and ranks third
worldwide in diagnosed malignant pathologies (1.36 million new cases annually) [1], which
provides an important and extensive source of information to help medicine advance. It
represents 10% of the cancer mortality rate each year [2]. Unfortunately, based on the
data collected so far, it is estimated that the number of patients affected by this disease
will increase considerably in the years to come. One of the main causes for the increasing
incidence of the condition is the ever-increasing rate of ageing of the population. In
addition, cancer-related death has increased by 45% in recent years and there is a high
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chance that the rate will rise to 60% over the next 15 years [2]. It is estimated that the
market value for colon cancer therapies will reach as high as $11 billion by year 2025 due
to the increase of branded therapies.

CCR is a condition that alters malignant cells inside the colon or rectum [2]. In the
diagnostic process can be observed also benign cells, but these do not pose a real danger,
not being favorable to the tumor [2]. Polyps—the abnormal growth of unhealthy cells—can
be either benign or malignant [3]. The benign ones are not harmful, but they can easily turn
malignant in the future, requiring immediate further investigation. Polyps are divided into
two categories: adenomatous polyps, leading to the disease itself, and hyperplastic polyps,
occurring with a higher frequency, and generally not considered to be a sign of disease [3].
The colorectal cancer can also spread to other organs in close proximity, for instance: the
bladder, prostate or uterus.

Regarding the success of a treatment, even it is of a surgical nature or neoadjuvant
method (chemotherapy, radiotherapy, hormone therapy), the faster the disease is diagnosed,
the higher the chances of healing. Given that a diagnosis is difficult to establish by humans
due to the multiple factors involved, it is the right time when exact sciences can improve
and streamline this process.

The proposed solution aims to support doctors who are currently establishing the diag-
nosis manually. The proposed computer aided diagnosis system analyses each colonoscopy
and provides predictions that will help clinicians to make the right decision. This whole
process is ensured in an exhaustive manner, requiring a complex analysis of data, leading
to a result that will be communicated to the patient. In the current form such analysis is
made by clinicians. It is certainly difficult to take all that information into account and
to establish a result with great accuracy. In addition, human error occurs due to various
factors having an impact on doctors. To reach a more precise diagnosis, many specialists
should meet, analyze and agree on common grounds. Obviously this method is not feasible
in everyday life. What if every doctor had all the knowledge of specialists at hand without
requiring their physical presence? It would certainly help and increase the success rate of
the resulting diagnoses by decreasing human error. The proposed solution aims to rely
also on previous colon cancer cases, which have been carefully examined and to which we
have the certainty of diagnosis. In other words, past cases are situations where a diagnosis
has been made, and with time, it has also been confirmed whether the decision made
was correct or not. This data can serve as a solid research foundation, in the direction of
identifying the essential factors that trigger this pathology.

2. Related Works

The tool used to achieve the aforementioned goal is artificial intelligence. There are a
number of approaches based on machine learning techniques in the medical field, with a
focus on colon cancer, but also other types of cancer, each of them containing materials and
information relevant to the design of intelligent algorithms.

In paper [3] the authors describes the machine learning method applied to classify
histological images and identify the cancerous areas. They used two deep convolutional
networks. The first is necessary for the separation of the background from the glands,
and the second identifies the different structures of the glands, dividing them into two
categories: malignant or benign. The architecture of the two convolutional neural networks
was inspired by the classic LeNet-5 network, first developed in 1998 by LeCun et al. in [4]
and originally designed to recognise handwritten figures. The used network contains seven
layers: four convolutional filtered and three fully connected layers. ReLU functions are
used as activation functions throughout the network. Concerning the training process, the
random mini-lot method with gradient drop, with 200 images per epoch, was used until the
stopping criteria were met. The used data set consisted of 165 images containing properly
labelled malignant and benign tissues. The results obtained were over 95% accurate.

In [5] it was demonstrated that the aggressiveness of colorectal cancer is directly
influenced by gland formations. Therefore, in order to have the most relevant classification
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of different types of tumor, it is important to distinguish the glands from the other structures
that appear in a histological image.

Xinghazi Yue et al. [6] came to the conclusion that there was a significant increase in
the algorithm’s performance when the concept of transfer learning was applied. By using
this concept, the training becomes much faster and the predictions become more accurate,
in comparison to training the network from scratch. The parameter values are chosen
in such a way that the early layers manage to learn the more general characteristics and
the deeper layers focus on the characteristics specific to the problem in question [6]. The
more general traits are: edges, contour, shadows, and in terms of specific characteristics:
types of tissue, cells, polyps. Reference [6] also discussed the possibility of predicting the
chances of survival of at least 5 years after surgery, analyzing histological images. They
applied the principles of Reinhard normalisation [7] and the principal component analysis
(PCA) method in order to reduce the dimensionality of the data set by preserving the most
relevant characteristics. The authors of work [8] applied the idea to use normalized images
instead of high resolution original images, which is hard to be processed. They proposed
removing from the dataset the regions containing less than 30% tissue or having excessive
blood. To reduce the probability of the system being over-trained, the data augmentation
concept can be applied to the data pool. This involves applying geometric operations,
such as turning 90 degrees, horizontal or vertical reflections, or applying blurred Gaussian
filters [6]. The purpose of these operations is to help the algorithm become invariant to
different rotations or shades of the same regions, to be able to focus on what is important,
without waiting for the data set to be perfectly served [8]. A non-supervised learning
method was used for the zone classification part because there was no set of labels that
could have corresponded to well-defined classes, and the human work required to do so
would have been too costly. The k-means-cluster algorithm was used, which operates by
the following principle: k cluster centroids were chosen and points were assigned to them,
choosing the centroid closest to that point. To increase the robustness of the algorithm,
different randomly initialised parameters were applied and continued with the set that
generates the smallest loss [8]. The structure of the chosen network by Yue et al. in [6]
was inspired by the well-known VGG16 and adapted to fit the current requirements of the
problem. VGG16 is a convoluted network developed by K. Simonyan and A. Zisserman
in [8] that managed to reach an accuracy of 92.7% on a data set of 14 million images,
belonging to 1000 distinct classes. The conclusion reached in [6] is that five clusters are the
most suitable and easily to interpret model: Cluster 0: out of tissue; Cluster 1: contains
red blood cells; Cluster 2: contains cancer cells and antibodies; Cluster 3: empty; Cluster 4:
contains fat. The authors aim is to predict the lifespan of patients without requiring prior
work by doctors to prepare a database of appropriate images and labels [6].

The idea that a pre-trained network produces superior results when analyzing medical
images, even if the network initially did not come into contact with such data, is also rein-
forced in paper [9]. G. Urban et al. aimed to identify polyps in the patient colonoscopies.
Unlike previous works, [3,6], in which histological images were analyzed, in [9] the object
studied was a set of images captured in real time during the colonoscopy process. Thus, the
authors applied the concepts of supervised learning, using deep convolutional networks,
with randomly initialised parameters, but also with parameters already calculated after
training on other data sets. They also tried different architectures whose foundations were
similar in many aspects: convolutional layers, densely connected, dimensional reduction,
non-linear activation functions (RELU) and normalisation operations. The main difference
was made at the last layer, when it was adapted according to the desired result: binary clas-
sification or framing in a rectangular form of polyps. In the second case, being a regression
problem, the performance criterion was quantified using the L2 function (root mean square).
While for the first binary classification situation, the authors used the Kullback–Leibler
criterion [10] (assess the percentage of lost information using an approximation). To reduce
the chances of the model becoming over-fitted, the authors introduced dropout layers in
addition to the original structure. The purpose of these layers was to deactivate neurons
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in a non-predictable way, with the probability of 0.5 which translates as the probability of
each neuron being disabled at each iteration is 50% [11]. Studies have also shown that the
introduction of these layers improves the system robustness and eliminates dependencies
between neurons [11].

A data augmentation procedure was also successfully applied in [12] in which, using
deep convolution networks, the analysis and localisation of the brain ventricles of a new-
born was intended. The volume of data was not very extensive, hence the augmentation
process was the best method to increase system performance. Paper [12] describes the
different types of augmentation and their impact on the results. The fields that provided
the significant improvement to the algorithm are highlighted: the horizontal flip offers
a score quantified by the dice loss criterion [13] ≥0.8 and a p value [14] ≤0.05. It is most
likely that the reason is that these transformations create images similar to the real ones,
unlike other methods that produce improbable data.

An aspect worth mentioning is that images containing medical utensils such as scissors,
string, scalpel and also pigmented tissues, were intentionally inserted into the data set,
both in the images in which the polyps were present and in those in which they were not.
The reason was to eliminate the possibility of the model associating the presence of utensils
with that of polyps or vice versa [9]. In terms of the data set, a multitude of materials usable
for training were made available [15].

For the detection of polyps and their framing in rectangular forms, three cost functions
are usually used: root mean square error, dice loss criterion [13] and a variation of the
algorithm “YOLO” (You only look once) [9,16]. The latter algorithm is revolutionary in
terms of the field of object detection in images.

In [9] different architectures of neural networks were presented. They were distributed
into two categories: those previously initialised (PI) and those that were not (NPI). The first
category, PI, was previously trained on the ImageNet data set [15], which comprises ap-
proximately one million images grouped in more than 1000 classes. For previously trained
networks, the well-known architectures were VGG16 [17], VGG19 [18] and ResNet50 [19].
In the case of previously uninitiated parameters, the networks were trained directly on
the image set of interest. The authors of [9] concluded that the presence of polyps can
be detected with an accuracy of 96.41% using convolutional neural networks that were
previously trained on a general set of images and then on the desired set for the specific
problem. This inference was also confirmed in [3,6].

In [20] the authors proposed a method based on the architecture of the Inception
Resnet network with the objective of the detection of polyps in medical images. Using
this structure, they managed to achieve high performance compared to the applications
in [21,22], where the transfer learning concept was also used. They also focused on data
augmentation and its impact on model performance. Training a convolutional neural
network requires a large amount of data to deliver satisfactory results. As an example, the
AlexNet model [23] was developed and trained using a database of 1.2 million images to
be able to successfully identify different objects. Extrapolating for the situation where the
purpose is to classify tissues and polyps, the need for a huge database is mandatory to
produce satisfactory results. Therefore, to overcome this impediment, data augmentation
has been applied to increase the amount of information.

A different approach is presented in [24], where the authors identified that the de-
tection of small polyps is very difficult. They thought of applying different percentages
of enlarging and shrinkage (three zooms-out and a zoom-in). This allowed the model
to detect areas with reduced surface polyps. The network architecture was based on the
“region-proposed” model. Usually, the last layer of convolution in a deep convolutional
network is used as an input of the “region-proposed” model [24].

As it is also concluded in [3,6,24], the use of previously trained networks on large data
sets and subsequently on the smaller set available for the specific problem, provides results
that outperform an identical architecture that has randomly initialised parameters.
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Image processing in the medical field is also used with great results for other types
of image. For example in [25,26] a diffusion-weighted magnetic resonance imaging is
discussed for breast and lung cancer detection. Reference [27] presented a survey of deep
learning algorithms used in medical applications.

The novelty of the present work is the development of a computer-aided diagnosis
system, including both offline and online image-processing tools. The methods used
exclude all the aforementioned disadvantages. The network for the diagnosis system was
trained on the Microsoft COCO dataset [28] (Common Objects in Context) which consists
of 122,000 images and 90 different common objects: people, bicycles, animals, cars. On
the other hand, for the training phase of the model, the CVC-CLINIC dataset [29] was
used with only 612 images containing polyps and the same number of images indicating
their position. In order to address a bigger number of images, a unique augmentation
was performed, consisting in a greater range of operations applied to data: tilts along the
axes and zoom-in or zoom-out, various luminosities added that help the model become
invariant to certain areas that can be covered by the patient’s utensils or other organs, thus
creating shade.

This paper is structured in four sections. After this introductory section, Section 2
presents the materials and methods used, while Section 3 presents the results obtained.
The work ends with a concluding section.

3. Materials and Methods

The goal of this research is to build an application to help medical professionals fight
colon cancer, both in the detection and post-operative phase. Pursuing this goal, as a
starting point, a database to start with network training is needed. The chosen data set
is called ‘Kvasir’ [30] which is a database made available to the public free of charge for
research purposes. The images were taken using endoscopic medical equipment in four
hospitals in Norway on 470,000 patients. Then all this data were carefully labelled by the
endoscopic specialists. The total number of classes in which the data are divided is eight.
There are three classes of pathological findings type, three classes of anatomical landmarks
type, and two classes that show areas of extirpated polyps [30].

In the following are presented the medical meaning of the aforementioned classes in
order to understand their importance for colorectal cancer.
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Anatomical landmarks: are areas of the gastrointestinal tract easily visible through the
endoscope. They are used to indicate how far the video camera has reached through
the colonoscopy process.

• Z-line: marks the transition between the oesophagus and the stomach. It is of
interest because it indicates whether or not the disease exists because this is the
area where signs of gastroesophageal reflux may appear [30].

• Pylorus: is the area under the opening of the stomach to the duodenum. It has
the muscles involved in transporting food from the stomach. Identification of
the pilor is necessary for the detection of ulcers, erosions and stenosis [30].

• Cecum: is the most proximal part of the large intestine. The successful comple-
tion of the colonoscopy up to this point can be interpreted as an indicator of
quality [30].
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Pathological findings: in this context of endoscopies, pathological findings refers to
abnormal entities that occur in the gastrointestinal tract. These may be signs of an
ongoing disease or one that is about to begin. Their detection is extremely important
and especially relevant for initiating the suitable treatment [30].

• Esophagitis: is an inflammation of the oesophagus visible as a rift of the oe-
sophageal mucosa in relation to the Z-line. This is most often caused by gastric
acid that returns back to the oesophagus. Clinically, early treatment is necessary
for the improvement and prevention of possible complications [30].
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• Polyps: are lesions of the intestine detectable as prominent areas of mucosa.
They may be elevated, flat or pedunculated. Most polyps are harmless, however
a small ratio of them can cause colorectal cancer. It is obvious then that their
detection and elimination reduces substantially the risk of developing the disease.
They are often missed by the human eye within colonoscopies, a gap that is
intended to be covered by artificial intelligence [30].

• Ulcerative colitis: is a chronic inflammatory disease affecting the large intestine.
It mainly affects the quality of life. Therefore, it is not a disease directly related to
colorectal cancer, but investigations to detect cancer can also lead to this adjacent
disease [30].
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Polyps located in the large bowel: are the precursors of cancer so they must be
removed as soon as possible. One such technique is mucous endoscopic resection.
This involves injecting a liquid under the polyp, causing it to detach from the tissue
under it, and then removal using surgical scissors.

• Coloured polyps: are those polyps on which the solution has been applied
that causes them to detach from the tissue and at the same time colours them
with a bluish hue. The edges are visible and the surrounding healthy tissue
is distinguished. They are of interest because they reveal the success of the
extirpation or any remaining malignant areas [30].

• Dyed resection margins: are those areas left over from the elimination of cancer-
ous areas, which indicate whether the polyp has been completely removed or not.
The remaining tissues may continue to develop and thus the disease returns [30].

Following the papers [3,4,9,20], it has also been decided to apply the transfer learning
strategy in this paper. We chose some of the most important models that operate with
image data. The focus of this paper is to develop an application capable of helping the
doctors by automating the process of polyp detection and identification. Relying on the
Kvasir [30] dataset and the advice and guidance provided by the clinicians involved in
present research, we aim to enhance the detection rate of colorectal cancer.

For the consistency of the results and the possibility of comparing algorithms, we
used the same parameters in terms of the training process for all the networks [31]. The
method chosen for optimisation was stochastic gradient descent with momentum, where
the value of the contribution of the previous step, momentum, was 0.9. The total number
of epochs was 10, the learning rate was 3 · 10−4, and the data were randomly mixed at the
beginning of each era. Thus this avoided the model becoming over-trained by learning a
specific data sequence and in addition due to the optimisation method, which was based on
the principle of finding the minimum by choosing random values, increasing the training
speed. The parameters performed in Matlab® are listed in Table 1.

Table 1. Training options.

Parameter Name Value

Batch size 10
Number of epoch 10

Learning rate 3 × 10−4

Optimisation method Stochastic Gradient Descent with Momentum
Momentum 0.9

Batch size (miniBatchSize) was chosen as 10. It was a sub-set of the training set
and used to evaluate the gradient and modify parameters accordingly [31], after all 10
images were propagated forward through layers. Generally, a suitable value was desired,
which was as far away from 1 as possible because too small batches require too many
calculations and in addition the model tends towards over-training. On the other hand, the
high values overload the available computational resources and then become impractical.
In this particular case, a balance was found by using the value 10. Validation data were
used for the periodic determination of progress and also use as a criterion for stopping
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training [32]. The last two arguments refer to the display of real-time data on the screen as
the algorithm progresses.

3.1. Image Classification

The first steps for developing the comparative study between network performances
was to prepare the algorithm to automate the process, without having to require significant
changes for each new architecture. The function called “FindLayersToReplace” is used,
which identifies for each particular case which layers need to be replaced. In most situ-
ations the last 3 layers are replaced, with small exceptions where only the last 2 require
modifications.

The work is started by using the network “GoogleNet” [33], the winner of the compe-
tition “ImageNet 2014” [15]. This network was trained on the set of images provided by the
organisers of the contest [15] which contains over 1.2 million images, 1000 categories, 50,000
images for validation and 100,000 for testing. The idea behind the network architecture is
the concept called “Inception Layer” and involves gathering information from a wider area
without omitting the details. This becomes possible using the Gabor filter theory [33] with
different dimensions. Gabor filters are used in order to detect complex contour detections
in images. The model contains a number of 22 layers, each made up of activation and
dimensional reduction functions resulting in a number of 144 components. Figure 1 shows
the network architecture. Inception layers are identifiable by the 9 identical branches that
occur along it. Such a fork is composed of 4 branches with three different convolution
layers, in terms of filter size, and one sampling layer.

Figure 1. Google Net network architecture [30].

Initially the network was designed to recognise 1000 categories [33]. In the present
work the network was modified to identify only eight possible classes, according to the
current problem. It should be pointed out that two versions of the network exist. The
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first is the one in which the network was trained on the data set “ImageNet” [15] and the
version in which it was trained on the set “Places365” [34] which consists of 365 categories
and 1.8 million images.

Another popular and common architecture in image classification problems and used
here is AlexNet [24]. It is also able to distinguish 1000 different classes. The images that
can be served as an input must be 227 × 227 × 3 in size, the last argument meaning
that all data must be colour. This consists of five convolutional layers and three densely
connected [24]. The activation function used after each convolution layer is RELU [35]. A
number of 62.3 million parameters make up the layers of the network and require a training
of 90 epochs, which takes approximately 5–6 days [24]. Convolutional layers decrease as
depth increases, from 11 × 11 to 5 × 5 and eventually to 3 × 3. Before the last layer, a
deactivation function (Dropout) [24,31] is introduced to prevent over-training. Each neuron
has a 50% probability that it will be excluded from the back and forth propagation process
at a given iteration.

The third architecture to be tested was VGG16 and VGG19 (Visual Geometry Group) [24].
The difference between the two is the additional number of layers that the latter has. The
numeric suffix signifies the number of layers. As input it supports RGB (colour) images
with a size of 224 × 224. These are passed on to 3 × 3-sized convolutional layers (the
smallest possible size able to detect top/bottom left/right zones [24]). The number of filters
increases as the depth increases, from 64, 128, 256 and finally 512. The activation functions
used are RELU [35] just as in the GoogleNet and AlexNet architecture [24]. The main
disadvantage of this type of network is the extremely long training time required. The
number of parameters is very high, so it requires significant computational effort, and the
lack of random deactivation layers (Dropout) makes each neuron to be taken into account
in the process of spreading the error backwards [36]. VGG19 consists of 16 convolutional
layers and 3 densely connected, while VGG16 has 13 convolutional layers and as many
densely connected as VGG19 [24].

A zero-centred normalisation of the pixels of each image and variation of 1 is applied
to the data by subtracting the mean value and dividing by the standard deviation. This
operation allows the data to be compared with each other and increases the speed of the
training process due to the fact that they no longer have to perform operations with large
numbers [11].

Another tested architecture is InceptionV3 [37]. It is based on the GoogleNet model [33],
which is also known as InceptionV1. As the suffix suggests, this is an improved version.
The premise from which Chr. Szegedy started in [37] was to reduce the degree of “strangu-
lation” of the network imposed by the convolutional layers. Reducing the initial size of
images results in loss of information. Therefore, the proposed method to overcome this
drawback is the factorisation of the convolutive layers. This technique reduces complexity
and implicitly the training time, while managing to maintain the efficiency of the model.
The 5 × 5-size convolution filters have been replaced by two filters of 3 × 3 dimensions.
If it initially had 5 × 5 = 25 parameters, after applying factorisation it will be reduced to
3 × 3 + 3 × 3 = 18 parameters for the two filters, thus reducing by 28% the total number
of variables. In addition, asymmetrical convolutional factoring is applied, a method with
the same benefits. The 3 × 3-sized filters, consisting of 9 parameters, will be optimised by
using two filters with dimensions 3 × 1 and 1 × 3, so the resulting number of parameters
will be 3 × 1 + 1 × 3 = 6. This method offers a mitigation in the number of parameters by
another 33%. The InceptionV3 contains 42 layers, requires computational effort of more
than 2.5 times, but is more efficient than the VGGNet model.

3.2. Polyps Identification

To identify malignant regions, also known as polyps, from images containing such
regions, semantic segmentation process is used. This is also a data classification technique,
but unlike the previous case when the classification was carried out on the entire image,
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i.e., on all the component pixels, this algorithm assumes that each pixel has a label that
corresponds to it, so the classification will be made pixel by pixel.

The first step in developing the algorithm is the data acquisition. The “CVC-ClinicDB”
dataset [38] is used, which is made available free of charge for research/educational
purposes. Thus, the resources consisted of 612 photographs extracted from endoscopies
taken by doctors from the Clinical Hospital, Barcelona, Spain, and another 612 masks that
were developed by members of the Department of Computer Vision, Barcelona, Spain [38].
The latter are black-and-white images where the area containing the polyp is highlighted
with white, and with black the healthy tissue. The dimensions are 288 × 384 × 3 pixels for
the first dataset mentioned, and for the other one with mask images they are 288 × 384 × 1.
Figure 2 shows an example of a pair of images, in which (a) is a screen capture made from
an endoscopy, and (b) is the related mask that makes it possible to differentiate the polyp
from the rest of the tissues.

Figure 2. Example extracted from “CVC-ClinicDB” [38].

Since semantic segmentation assumes that each pixel in the image has a class associ-
ated with it [39], the data in the “CVC-ClinicDB” dataset [38] is also required to comply.
Initially the pixel values that make up the array, essentially the image, had values in the
range [0, 255]. Taking this into account, the values were changed in order to have the set
of possible values with only two elements, since the goal is to classify two types of pixels:
tissue and polyps.

With this operation, the “tissue” label is assigned to the value 0, and label “polyps” to
the value 255, using the pixelLabelDataStore function. The function receives as parameters:
the location of mask images, the classified classes and the pixel values corresponding to
each class respecting the order in which they are entered in the class vector. The class vector
is defined in Equation (1) and the pixel values corresponding to each class are represented
in Equation (2).

classes =
[

tissue
polyp

]
(1)

pixel_value =
[

0
255

]
(2)

The starting point is the architecture of the network “ResNet18” [40]. It is originally
designed for image classification, so a few changes are needed in order to classify pixel
by pixel. It is proven that deep convolutional networks provide a conducive development
point in the creation of segmentation algorithms [40]. Most often, as in this case, the original
architecture is preserved until the last convolutive layer. It is considered that up to that
point the model has extracted the important characteristics of an image.

The element called “encoder” introduces a new concept of expanded convolution. For
improved feature capture, this type of convolution, described in Equation (3), is introduced,
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and helps the decoding part where the images are brought back to their original size and
superimposed over regions identified by the model:

y[i] = ∑
k

x[i + r · k] · w[k] (3)

where y—resulted value, x—original value of the pixel, w—filter value and r expansion
value. For r = 1 it is obtained the normal convolution. In Figure 3 can be observed the
impact of expansion rate r on filters.

Figure 3. Expansion rate impact on convolutional filters [41].

The present study used the filters with expansion factors of: 1, 6, 12 and 18, according
to studies conducted by Chen [40] which showed that these values provide optimal results.

The removed layers are the last five, those involved in the classification. Instead of
these eliminated layers, expanded convolution additional ones are added, followed by the
decoder. This consisted of six convolutional layers, five ReLU activation layers [31] and two
transposed convolution layers. The latter has the opposite effect of convolution, i.e., the
return to its original dimensions.

Figure 4 [39] describes the architecture of the model used for image segmentation
in the training process. It is noticed that the provided images are those that want to be
segmented and the corresponding masks As a result the overlap of these two will be
obtained. If testing is performed, respectively the segmentation of new data, there will
be no mask as input to the process. The model will propose a region of interest and will
overlay it with the original image.

Figure 4. ResNet18 model architecture [39].

An important aspect that influences the model’s ability to identify the regions of
interest as accurately as possible is to consider the proportion between pixels labelled as
polyps and those classified as tissue.

As seen in Figure 5, the dominant pixels are the tissue type and are 90%. Thus, in order
to balance their influence in the training process and to prevent the model from classifying
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only tissues, weights were assigned. Equation (4) presents the calculation for the frequency
of each class, while Equation (5) the method for calculating the weights of the classes.

νclass =
Number o f Class Pixels
Number o f Total Pixels

(4)

Weight =
average o f each νclass

νclass
(5)

Figure 5. Pixels frequency corresponding to each class.

In the case of polyps, a weight of 5.45 is used, and for tissue the weight is 0.55. Thus
the importance of the data has been balanced, and the model is able to classify each
pixel correctly.

Regarding the training part, the method of decreasing the gradient with momentum is
chosen as the optimisation method, the initial learning rate 10−3, reduced by 30% at every
10 epochs. By doing so, the model will learn at a faster pace at the beginning, and as the
parameters approach the values needed to converge to the local minimum, the learning
rate will decrease to approach the minimum as much as possible, without oscillations
around the minimum. Momentum is the contribution of the previous step to the change
in value at the current step. Thus, a value of 1 represents a maximum contribution, and a
value of 0 a zero contribution to the current step. Validation data were also provided to
assess the progress made with a cadence of 50 iterations and a condition for completing
the training process through validation (validation patience) was introduced. If after five
iterations the error on the validation set remains constant or increases, then the training
process is suspended. The maximum number of epochs chosen is 40 and in addition,
at each new epoch the data are shuffled randomly. The reason behind this choice is to
eliminate the possibility that the model learns the order in which the data are served and
thus over-training occurring.

Table 2 shows the parameters of the Matlab® “trainingOptions” function. This returns
an object delivered for the “trainNetwork” function in order to use the options during
training. The training function receives as parameters: the dataset as a “PixelLabelImage-
DataStore” object, which contains the original images and the corresponding masks, the
network architecture as a graph and the options shown in Table 2.
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Table 2. Training options for semantic segmentation.

Parameter Name Value

Learn rate drop period 10
Learn rate drop factor 0.3

Initial learn rate 10−3

Momentum 0.9
Validation frequency 50

Number of maximum epochs 40
Batch size 2

Following the call of the “trainNetwork” function, the training process will be launched
where information such as: accuracy, error, elapsed time from the beginning of the process,
learning rate and number of iterations will be available for viewing.

The data set was segmented into three parts respecting the proportions 60/20/20.
We selected 60% of the total number of images for training, 20% for validation during the
training process, and the last part was reserved for evaluating the model’s performance after
training. Given that the dataset [38] consisted of screenshots taken from endoscopes, there
were numerous sequences of images that showed the same area with small differences in
position and hue. Thus, in order to have a more robust model, image indices were random.
Images were extracted from different areas of the set, beginning, middle or from the end to
avoid contiguous locations. In this way, the data were properly distributed for each subset
(training, test, validation) separately.

Due to the conditions under which colonoscopies are performed, the images usually
have a variety of features that diminish the quality of the data and hinder the model’s
ability to predict malignant areas. These features include: brightness, how close or far from
the polyp the camera is, their location, the colour of the areas, or the angle of filming. Given
all these impediments, augmentation methods were used for the data set, for example
rotation by 90 degrees, applying the cut along the x-axis, magnification or reduction of
the original image, applying the cut along the y-axis. In addition, the number of available
data were relatively small, so the increase brought another benefit, namely the generation
of new valid data for the training process. In this way, horizontal and vertical mirror
transformations, rotations with angles between [0, 90] degrees, cuts along the X or Y axes,
displacements along the axes and increases or decreases are applied. All these values were
randomly generated and were in a normal distribution of zero mean with the specified
lower and upper limits, respectively. Each filter had a 0.5 probability of being applied
to an image. Following these operations, the model should become invariant to images
that contain the regions of interest in a distorted form. In general, datasets are carefully
chosen and processed, so there are no more general images such as some screenshots
taken from a video. These operations were implemented using the function in the Matlab®

“imageDataAugmenter”, with the parameters presented in Table 3.

Table 3. Dataset augmentation configuration.

Parameter Name Value

Pixel range [−30, 30]
Scale range [0.7, 1.5]

RandXTranslation Pixel range
RandYTranslation Pixel range

RandXshear [−10, 10]
RandYshear [−10, 10]
RandXScale Scale range
RandYScale Scale range

Figure 6 shows two examples of images on which the operations of rotation, scaling,
reflection and cutting were applied.
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Figure 6. (a) Before and (b) after augmentation.

3.3. The Developed Application

The user interface was developed using Matlab® “App Designer” provided by Math-
Works. The goal was to keep it as intuitive as possible, because the end user of the applica-
tion was not a specialist in computer science. The main components of the application are:

• A “Button” object to select and load image data from a storage device;
• An “Image” object to view uploaded images;
• A “Table” object to display information such as: image source, network prediction,

and confidence percentage on the prediction made;
• A “Camera” object with which the user can connect to the available camera and

perform an online endoscopy process;
• Two variables in which the networks are loaded at the time of application launch.

Figure 7 shows the use case diagram of the developed application. The application
has two main features. The user can analyse image data, stored in the computer’s memory,
or can choose to perform an online colonoscopy.
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Figure 7. The use-case diagram.

The most important functions that manage the data flow are presented below.

• The “ImportDataButtonPushed” function is used to load data. It waits until the
user has selected one or more images, after which, depending on the number of
data entered, prepares the data to be served to the algorithm that deals with tissue
classification. Given that the classification operation requires many mathematical
operations, the waiting time until the results are ready for display in the table is in
the order of seconds. Therefore, an additional window is created that notifies the user
that the program has not crashed, but has to wait for a few moments. As soon as the
classification is completed, the data are transmitted to the function that handles the
information, organising it in a table.

• The “displayResultsIntoTable” function receives as parameters the path to the file,
the prediction and the score for each image, and then displays all this infor-mation
in a table. In addition, it checks if there are already data in the table, with two
options: initialising the table with the new data or concatenating the current ones to
the existing ones.

• The “startColonoscopy” function is triggered when the user wants to initiate the
colonoscopy process. This establishes the connection to the available camera, in
case the connection does not exist or cannot be made for various reasons, a warning
message will be displayed. If the connection is successful, a new window will open in
which you can view the data received from the webcam and the prediction for that
frame will be displayed at the top. At the same time, there will be a button that will
allow the user to pause or continue the colonoscopy process. If there is a pause and
the frame contains a polyp, then a button will appear that will allow the detection of
the malignant area.

• Another important function is “startUpFcn”, which is called upon when launching
the application. With this function the variables that will be used are initialised: the
network for classification and segmentation, the size of the images. In this way the
waiting time is reduced.

3.4. Application Facilities

After launching the application, the main window will appear as in Figure 8. Here the
main components and functionalities can be seen: a button to load data, another to empty
the table, a section where images can be previewed, a switch used to start the colonoscopy
process, and an indicator element that serves to signal the presence of a polyp.
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Figure 8. The main menu of the application.

Selecting the top left button will enable data upload. A new window will appear,
Figure 9, which allows the navigation through local files and the selection of one or more
images. Once the user has decided on the number and desired files, the “Open” button can
be pressed.

Figure 9. Image loading.

Uploading the data will automatically start the image classification process. It will
enter in the table the predictions, the confidence score and the location of the images. When
selecting a row in the table, the corresponding image will be loaded in the section intended
for preview. Also below this will appear the network prediction and the safety factor on
the decision, expressed as a percentage, Figure 10.
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Figure 10. Data preview.

If the image selected for analysis contains polyps, then the interface will provide
an additional button just below the “Polyp Alert” indicator, called “Polyp Detection”,
Figure 11. Pressing this button will lead to image change. In the new image the polyp
is highlighted by the yellow tint of the region. By pressing the “Clear table” button and
confirming the action, the data will be deleted from the interface and the application will
return to the beginning stage.

Figure 11. Polyp detection.

Another possibility of use is to operate the switch on the top right, called “Start
colonoscopy”. It will automatically connect to the available camera. If the connection
cannot be made, an error message will appear accompanied by the possible cause. If there
are no problems in the connection, the online colonoscopy window appear, Figure 12. At
the top of the window is highlighted the network prediction on the frames, and at the
bottom is available a “Pause” button.
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Figure 12. Online colonoscopy.

When pressing the “Pause” button, two more buttons will appear that allow the user
to resume the colonoscopy or save the current image in the local storage space. In addition,
if the frame contains polyps, Figure 13, an additional button appears which locates the
malignant area. If the frame on which the process was stopped contains any other class, of
the seven remaining available, that button “Locate polyp” is not visible. When pressing
the “Continue” button, the process will be resumed, and when select “Save” the image will
be saved in the location where the application is installed. If the user closes this window,
the application returns to the main window, from where it can resume each step.

Figure 13. Polyp detected during colonoscopy.

4. Results

In order to evaluate the results obtained, a confusion matrix is used. This allows easy
visualisation of the decisions made by the model and evaluation of the results. From this
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are extracted the values TP (True Positive), TN (True Negative), FN (False Negative) and FP
(False Positive) which will serve as input data for determining the coefficients Sensitivity,
Specificity, Accuracy, Precision, F1 Score and Jaccard index, all expressed in percentage [32].

Since this is a medical application, the meaning of each metric must be explained. The
interpretation of the results differs according to the intended purpose [42–44].

(a) Sensitivity: represents the cases correctly classified as positive relative to the actual
number of positive cases:

Sensitivity =
TP

TP + FN
(6)

(b) Specificity: represents the ratio of classified negative cases relative to truly negative cases:

Speci f icity =
TN

TN + FP
(7)

(c) Precision: means the ratio of those correctly classified as positive to the total number
of positive cases:

Precision =
TP

TP + FP
(8)

(d) Accuracy: means the ratio of those correctly classified as positive to the total number
of positive cases:

Accuracy =
TP + TN

TP + TN + FN + FP
(9)

(e) F1 score: is considered a better benchmark than accuracy when the aim is to compare
different models [12]. It is calculated as the harmonic mean of accuracy and sensitivity:

F1 = 2
Precision · Sensitivity

Precision + Sensitivity
(10)

(j) Jaccard: penalises false detections and it rewards true detection:

J =
TP

TP + FP + FN
(11)

4.1. Results Obtained for the “Kvasir” Dataset

The results obtained for the “Kvasir” dataset [30] are presented in Table 4. The
training is realised on the second version, which consists of 1000 images for each of the
eight classes. The number of data is perfectly balanced for each class. The set is randomly
segmented into 70% training data and 30% for validation during the training process, for
every 560 iterations. The validation frequency is determined using Equation (12).

νval =

[
Number o f Training Data

Number o f Lots

]
(12)

Table 4. GoogleNet training results.

Architecture Accuracy [%] Sensibility [%] Specificity [%] Precision [%] F1 [%]

GoogleNet-ImageNet 99.38 97.53 99.65 97.55 97.54
GoogleNet-Places365 98.83 95.3 99.33 95.35 95.32

Uninitialised GoogleNet 96.71 86.85 98.12 87.01 86.93

For a better understanding of the impact that the pre-initialised parameters have on
performance, the network architecture is taken over and the parameters are reset. Their
values are determined using the “Glorot” functions [36], which generate values in a uniform
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distribution of zero mean and with the variance 2
nin+nout

, where nin and nout are calculated
according to Equations (13) and (14):

nin = FilterSize(1) · FilterSize(2) · NumChannels (13)

nout = FilterSize(1) · FilterSize(2) · NumFilters (14)

It is observed that the results obtained in the case of randomly initiated parame-
ters are lower than in other situations. This is expected, moreover it is also concluded
in [6,20,23], while the first layers of networks manage to learn general features for images,
such as contours, areas of interest in pictures, shadows, while in depth layers focus on
the particularities of each given problem. The “Kvasir” dataset [30] is small compared to
“ImageNet” [15] or “Places365” [34], so the trainings made with the parameters obtained
on these sets offer superior performance.

Table 5 shows the performances obtained after the data augmentation process. The
values of the coefficients are slightly the same as those in Table 4, a surprising fact at a first
glance. In papers [9,15,29], the augmentation increased the performance of the model, but
in this case the effect is not obtained. The reason is that in the case of the above papers the
test data were noisier, the areas of interest were not easily readable, while in the “Kvasir”
data set [30] all the data are carefully chosen and thus the areas that are waiting to be
identified are clearly visible.

Table 5. GoogleNet training results after augmentation.

Architecture Accuracy [%] Sensibility [%] Specificity [%] Precision [%] F1 [%]

GoogleNet-ImageNet 98.44 93.77 99.11 94.04 93.91
GoogleNet-Places365 98.25 93.00 99.00 93.30 93.21

Uninitialised GoogleNet 95.26 81.03 97.29 82.05 81.53

4.2. Results for AlexNet

Table 6 highlights the model performances using both the pre-trained model and the
one with randomly initialised parameters. The augmentation process of the two situations
listed above is also applied. It is also noted that the increase did not improve performance,
but there are notable differences between the model with the parameters resulting from the
training on the “ImageNet” set [24] and the one in which the parameters were obtained
from the training realised only on the “Kvasir” set [30]. The accuracy has a good percentage,
but the sensitivity is slightly lower and thus the F1 score is also reduced.

Table 6. AlexNet training results.

Architecture Augmentation Accuracy [%] Sensibility
[%]

Specificity
[%] Precision [%] F1 [%]

Pre-initialised AlexNet - 98.98 94.70 99.24 94.78 94.74
Pre-initialised AlexNet Yes 97.77 91.08 98.73 91.41 91.24
Uninitialised AlexNet - 95.59 83.67 97.69 83.85 83.76
Uninitialised AlexNet Yes 93.58 74.32 96.33 75.39 74.86

4.3. Results for VGG16 and VGG19

In Table 7 are presented the results obtained for VGG architecture.

4.4. Results for Inceptionv3

Table 8 shows the training results on the dataset “Kvasir” [30]. It can be observed that
the metric we are mainly interested in, sensitivity, is about 3–4% higher than in previous
cases, even when it was not pre-trained on the “ImageNet” set [24]. The F1 score is also high,
indicating a balance between precision and accuracy, in other words high performance.
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Table 7. VGG training results.

Architecture Augmentation Accuracy [%] Sensibility
[%]

Specificity
[%] Precision [%] F1 [%]

Pre-initialised VGG16 - 95.03 95.01 99.09 94.09 94.56
Pre-initialised VGG16 Yes 98.41 93.65 99.09 93.95 93.80
Uninitialised VGG16 - 93.53 74.12 96.30 76.24 75.17
Uninitialised VGG16 Yes 91.33 65.30 96.30 76.24 66.37
Pre-initialised VGG19 - 99.10 96.40 99.49 96.54 96.47
Pre-initialised VGG19 Yes 98.02 92.08 98.87 93.34 92.70
Uninitialised VGG19 - 93.34 73.35 96.19 73.24 73.33
Uninitialised VGG19 Yes 91.36 67.66 95.06 67.66 66.53

Table 8. InceptionV3 training results.

Architecture Augmentation Accuracy [%] Sensibility
[%]

Specificity
[%] Precision [%] F1 [%]

Pre-initialised Inceptionv3 - 99.53 98.13 99.73 98.15 98.14
Pre-initialised Inceptionv3 Yes 99.41 96.67 99.66 97.67 97.66
Uninitialised Inceptionv3 - 93.98 75.92 96.56 76.07 76.00
Uninitialised Inceptionv3 Yes 92.80 71.45 95.92 73.10 72.27

4.5. Results Obtained for Polyp Localisation

In the beginning a different dataset is employed to that used to classify tissue types.
The aim was to improve the robustness of the algorithm. The results of training the
ResNet18 model on the “CVC-ClinicDB” data set [38] are presented in Table 9.

Table 9. Results on “CVC-ClinicDB” dataset.

Augmentation
Accuracy [%] Jaccard [%] F1 [%]

Per Polyp
Tissue Class Average Per Polyp

Tissue Class Average Per Polyp
Tissue Class Average

No 97.1486.59 91.86 95.9367.2 81.56 85.3733.27 59.32
Yes 96.2584.11 90.18 94.7960.66 77.72 84.7828.94 56.86

The dataset augmentation consisted of rotations around the x and y axes, decreases
and enlargements by 30%, and horizontal and vertical cuts with sizes between 0 and
10 pixels. It can be noticed that the values of the Jaccard and F1 coefficients are above the
recommended thresholds, so that the model manages to identify the areas of interest quite
well. The increase failed to improve performance, which is expected because the data
provided do not contain distorted images, but certainly during the endoscopy process, they
will be able to bring their input. As endoscopy is a process that takes place in real time,
using a video camera, the frames analysed every fraction of a second will be distorted and
will capture the areas of interest from different angles. Then the effect of augmentation will
be observed by the model’s ability to identify malignant regions. However, evaluating the
model on the dataset on which it was made and the network for the part of the classification
of tissue types, i.e., on the database called “Kvasir-Seg” [45], Table 10, it can be concluded
that performance decreases by about 10%. The reason is the difference between the image
types which is specific to each data collection.
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Table 10. Results for “Kvasir” dataset test using the model pre-trained on “CVC-ClinicDB”.

Augmentation
Accuracy [%] Jaccard [%] F1 [%]

Per Polyp
Tissue Class Average Per Polyp

Tissue Class Average Per Polyp
Tissue Class Average

No 89.24
72.70 80.97 84.70

47.08 65.89 71.76
20.33 46.04

Yes 75.81
90.94 83.37 74.44

40.82 57.63 67.94
19.34 43.64

The images in the “Kvasir-Seg” set [45] are different in terms of shapes and sizes
and most importantly are not part of a contiguous sequence of data. On the other hand,
the “CVC-ClinicDB” set [38] contains the masks of the images extracted from the video
sequences, Figure 14. Therefore the same area appears several times in a row, giving the
model the opportunity to use this aspect in its favour to achieve the goal, minimising
the error.

Figure 14. Comparison between different masks of the used dataset.

To overcome these impediments, the network is also trained on the “Kvasir-Seg” data
set [45] using the pre-trained model on “CVC-ClinicDB” [38]. As additional changes to
the new set, it is necessary to resize the images to reach the size used for the previous
set, and then the image pixels are changed, where they were transformed into values
of 0 or 255 corresponding to the tags: tissue or polyp, respectively. The proportions of
60/20/20 regarding the grouping of data for training/validation/testing were kept. The
results obtained for the training on the second set, “Kvasir-Seg” [45], and the testing on the
20% of the group reserved for testing in the same set, are presented in Table 11.

Table 11. Results for “Kvasir-seg” dataset.

Augmentation Accuracy [%] Jaccard [%] F1 [%]
Per Polyp

Tissue Class Average Per Polyp
Tissue Class Average Per Polyp

Tissue Class Average

No 89.76
92.81 91.28 88.5

61.07 74.78 78.530.7 54.6

Yes 89.65
92.95 91.3 88.42

61.94 75.18 78.35
29.68 54.01

In this case the augmentation improved the performance of the model and provided
greater robustness due to the fact that the images resulting from the augmentation are more
difficult to process and approach the case when frames are extracted during the endoscopy.
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The Jaccard index, which quantifies the rate of overlap of the predicted and the real area,
has a high value, thus suggesting that the model is able to fully identify malignant regions
by a proportion of about 75%.

5. Conclusions

Artificial intelligence as a concept is increasingly mentioned in everyday discussions
in various fields, both those related to technology and in contexts that at first glance do not
suggest any connection with this notion (e.g., public administration, management). The
sub-field of artificial intelligence is supervised machine learning. In the last decade, many
applications have been successfully developed (handwriting recognition, robot control,
speech recognition) based on machine learning the performance of which increases in direct
proportion to the rate of progress of computing physical resources. Shy, but sure, machine
learning has made its presence felt in more sensitive areas, such as the medical field.

The main goal of the present research is to support medical staff, but also patients,
with a solution that would help the progress of science and especially improve the chances
of healing and recovery of people suffering from colon cancer. With this goal, a colon
cancer diagnosis tool was developed. An adjacent goal of this paper is to describe how
intelligent algorithms work and to prove their usefulness in the area of prevention and
medical diagnosis.

The technological tool which made possible the realisation of this diagnostic system
is artificial intelligence. Using specific deep learning techniques, supervised learning and
image processing, but also the expertise gained so far by specialists in the field around
the globe, we managed to build a model that is able to automatically identify the main
types of tissue in the human colon and its specific diseases. Moreover, we have developed
an additional model that deals exclusively with the detection of a single type of disease,
polyps. The developed tool is able to identify polyps in an image, highlighting them from
the rest of the tissues.

To identify the network capable of classifying the eight classes of interest for the
topic of this research, we trained and compared five different types of architecture used
in typical classification problems. Thus, we identified the most suitable model for the
present application. Despite the fact that several metrics for evaluating performance were
listed, two of them were finally selected to choose the proper model for this application.
Sensitivity and F1 score were the criteria that weighed the most in choosing the network, so
InceptionV3 without augmentation, with a sensitivity of 98.13% and an F1 score of 98.14%,
was selected.

In the case of the model for the identification of malignant areas, the metrics used
differ from those found in the case of classification. The reason is the difference between the
two algorithms. In the first situation we evaluate whether an image is classified correctly
as a whole, in the second situation we check the classification at pixel level. Thus, we
have the F1 score and the Jaccard index as performance indices. The model trained on the
“Kvasir-Seg” set with augmentation was selected in order to be used in the application,
because it obtained a Jaccard index of 75.18% and an F1 score of 54.01%.

By assembling the components described above, a desktop application resulted. Its
role is to facilitate the interaction between the user, the clinicians, and predictive algo-
rithms. By using the application, the data, in the form of images, are uploaded from the
local/external storage space, then they are automatically classified. The user has the possi-
bility to analyze each image and the corresponding prediction. When regions containing
polyps appear among the data entered for examination, a button appears on the graphical
interface that allows the detection of those malignant areas.

The next step in the research is to include in the diagnosis system the results ob-
tained in [46] by the authors, the computer-aided diagnosis system using an innovative
dataset composing of both numeric (blood and urine analysis) and qualitative data (living
environment of the patient, tumour position, T, N, M, Dukes classification, associated
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pathology, technical approach, complications, incidents, ultrasonography-dimensions as
well as localisation).

Artificial intelligence still has a lot to offer, its potential being increasingly exploited.
Both the medical field and other fields with a direct impact on our lives have the opportu-
nity to progress and provide a superior quality of life as we harmoniously combine our
knowledge with the computing power of intelligent algorithms.
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