
EDITORIALS

ABC Transporters: An Overlooked Mechanism of Drug Failure in Our
Preclinical Models?

Pulmonary fibrosis (PF) is a progressive, fatal, interstitial lung
disease that is initiated by damage to the alveolar epithelium and is
often diagnosed as idiopathic PF (IPF) (1, 2). Patients with IPF have
a median survival of 2–3 years after diagnosis, a reduced quality of
life, and limited effective therapeutic options (3). This calls for the
continued use and further characterization of animal models to
study and design new therapeutics. Animal models are commonly
used to study PF; however, none of these models completely
recapitulate the complex and heterogeneous nature of the PF
observed in humans. Despite these limitations, they still provide
valuable insights into the mechanisms of disease development and
fibrosis resolution, as well as methods to test the efficacy of
preclinical therapeutics (4). In that context, the data presented by
Park and colleagues (pp. 178–190) in this issue of the Journal indicate
the need to refine our systems for preclinical drug screening to
maximize both efficiency and accuracy (5). The authors introduce the
concept that the well-characterized bleomycin model of PF in mice
has an additional important confounder we need to consider when
using it to test potential therapeutic compounds (5).

ABC (ATP-binding cassette) transporters play an important
physiologic role in protecting cells against xenobiotics and endogenous
metabolites, and also play a significant role in determining the efficacy
and toxicity profile of many drugs. In this article, the authors pose a
fundamental question concerning the mechanism by which drug levels
are regulated in the lungs through the upregulation of two well-known
ABC transporters: P-gp/MDR1/Abcb1 (permeability glycoprotein) and
BCRP/Abcg2 (breast cancer resistance protein) (5). Although the
investigators found that neither P-gp nor BCRP was present in the
lungs of patients with IPF, extensive staining for both transporters was
observed in murine lungs after bleomycin-induced fibrosis. Given its
mechanism of action and use as a chemotherapeutic agent, it is not
surprising that exposing the lungs to bleomycin may induce cellular
defense mechanisms, including the upregulation of drug transporters,
that are unrelated to the outcome of fibrosis (6). The authors provide
evidence that delivery of bleomycin, by either the oropharyngeal or
subcutaneous route, induces the upregulation of both P-gp and BCRP
in alveolar type II cells, fibroblasts, endothelial cells, and macrophages
(5). Therefore, efforts to gain a better understanding of how cellular
transporters are altered in the lungs during fibrotic disease, and more
specifically in our animal models of disease, are warranted.

The main function of P-gp is to protect against exposure to
exogenous toxic substances and endogenous metabolites, which
explains its high expression in hepatocytes, the apical surface of
epithelial cells in the proximal tubules of the kidneys, the columnar
epithelium in the intestine, epithelial cells of the placenta, and the
luminal surface of capillary endothelial cells in the brain (7, 8). P-gp

and BCRP have been well studied in association with lung cancer,
where their upregulation confers multidrug resistance to tumor cells,
resulting in a poor outcome for patients (9). However, reports about
P-pg and BCRP expression in the normal human lung are conflicting.
Several studies demonstrated low transcriptional and protein
expression of these transporters in normal lung (5, 7, 8, 10). Other
reports suggested moderate to high levels of P-gp and BCRP RNA and
protein in the ciliated epithelium and trachea in both mouse and
human lungs at baseline (11–13). A comprehensive assessment of the
transcript expression of all 48 ABC transporters in tracheal and large-
and small-airway epithelial cells from healthy subjects showed only
low basal levels of P-pg and BRCP (10). In the same study, an analysis
of smokers or patients with chronic obstructive pulmonary disease or
asthma did not show upregulation of these two transporters. However,
smoking did alter the expression of Abca13, Abcb4, Abcc1, and Abcc3,
indicating that future studies to examine the effect of these
transporters on current and future therapeutics for other lung
disorders are also necessary. A detailed examination of these
transporters has not yet been conducted in patients with IPF, but
expression data (datasets GES2052 and GSE44723) obtained from
whole-lung tissue from patients with IPF and control subjects or
isolated normal and IPF fibroblasts did not indicate significant
differences (14, 15). Consensus regarding the baseline expression of
P-gp and BCRP and how they are altered during fibrosis in humans
will be important, as several of the new therapeutics in clinical trials
are known substrates of P-gp (5), and a better understanding of these
transporters will also shape how future animal studies are conducted.
Furthermore, the use of P-gp– and BCRP-deficient animals, which
are viable and show alterations in pharmacological functions (16–18)
in the bleomycin model, will advance our knowledge about how
these transporters affect the development of bleomycin-induced
fibrosis and the efficacy of preclinical compounds.

Another important finding in the work presented by Park and
colleagues is that both the sex and age of the mice may also play a
role in the expression of P-pg and BCRP (5). P-pg immunostaining
was higher in young male mice than in female mice, and both P-pg
and BCRP levels were higher in male mice that were 6 months of
age than in younger mice (5). The authors hypothesize that this
increase of P-pg in the lungs of male mice resulted in a reduced
efficacy of nintedanib, which is a known P-gp substrate, compared
with previous findings in female mice (5, 19). In studies assessing
ABC transporter function in the lungs of mice, it will be important
to examine mice of both sexes and, when possible, of advanced age,
for a better correlation with human disease (4, 20, 21).

As is always the case with the development of animal models,
it is important to return to human samples to best gauge their

This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0
(http://creativecommons.org/licenses/by-nc-nd/4.0/). For commercial usage and reprints, please contact Diane Gern (dgern@thoracic.org).

Originally Published in Press as DOI: 10.1165/rcmb.2019-0284ED on August 30, 2019

130 American Journal of Respiratory Cell and Molecular Biology Volume 62 Number 2 | February 2020

http://crossmark.crossref.org/dialog/?doi=10.1165/rcmb.2019-0284ED&domain=pdf
https://doi.org/10.1165/rcmb.2018-0147OC
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:dgern@thoracic.org
http://dx.doi.org/10.1165/rcmb.2019-0284ED


accuracy. Given the importance of other ABC transporters that play a
significant role in lung disease, such as CFTR/Abcc7 in cystic fibrosis
(22), mutations in Abca3 that lead to a fatal surfactant deficiency in
newborns (23), deficiency in Abca1 that leads to Tangier disease (24),
and the association of pulmonary alveolar proteinosis with Abcg1
deficiency in alveolar macrophages (25), further studies of the location
and role of P-gp and BCRP in the lungs during homeostasis and
fibrosis are necessary. Regardless, if our animal models lead to under-
or overpredictions of drug efficacy, the results will be less than ideal.
The presence of protein efflux transporters, such as P-gp, BCRP, and
the other members of the ABC transporter family, as well as their
respective roles in limiting drug absorption through the pulmonary
epithelium, endothelium, macrophages, and fibroblasts, should be an
important consideration during the development of novel therapeutic
interventions. In addition, harnessing published single-cell RNA-
sequencing datasets along with careful immunohistochemical analyses
of normal and diseased lungs may help shed light on the similarities
and differences between the cellular localization and modulation of
ABC transporters in mice versus humans. This in turn may help
direct the development and/or interpretation of preclinical therapeutic
studies and aid in their translation into clinical trials. n
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