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To align multimodal images is important for information fusion, clinical diagnosis, treatment planning, and delivery, while few
methods have been dedicated to matching computerized tomography (CT) and magnetic resonance (MR) images of lumbar
spine. This study proposes a coarse-to-fine registration framework to address this issue. Firstly, a pair of CT-MR images are
rigidly aligned for global positioning. Then, a bending energy term is penalized into the normalized mutual information for the
local deformation of soft tissues. In the end, the framework is validated on 40 pairs of CT-MR images from our in-house
collection and 15 image pairs from the SpineWeb database. Experimental results show high overlapping ratio (in-house
collection, vertebrae 0:97 ± 0:02, blood vessel 0:88 ± 0:07; SpineWeb, vertebrae 0:95 ± 0:03, blood vessel 0:93 ± 0:10) and low
target registration error (in-house collection, ≤2:00 ± 0:62mm; SpineWeb, ≤2:37 ± 0:76mm) are achieved. The proposed
framework concerns both the incompressibility of bone structures and the nonrigid deformation of soft tissues. It enables
accurate CT-MR registration of lumbar spine images and facilitates image fusion, spine disease diagnosis, and interventional
treatment delivery.

1. Introduction

Spine is the backbone of body trunk. It protects the most
significant nerve pathway in the spinal cord and the
body. On the other hand, spine injury and disorders
affect up to 80% world population and may cause defor-
mity and disability, which become a major health and
social problem [1–3]. For instance, the lumbar degenera-
tive disease accompanied by pathological changes might
result in lumbocrural pain, neural dysfunction, instability
of facet joints, and spino-pelvic sagittal imbalance, and
thus, the quality of life decreases dramatically. In addi-
tion, due to the aging population, the global burden relat-
ing to spinal disease remedy is expected to raise
significantly in the next decades.

To align intrapatient multimodal images, such as com-
puterized tomography (CT) and magnetic resonance (MR),
benefits clinical diagnosis, treatment planning, and delivery
for lumbar spinal diseases [4, 5]. However, few methods were
dedicated to matching lumbar spine images. Panigrahy et al.
developed a method for CT-MR cervical spine images which
needed anatomical landmarks to guide image registration
[6]. Palkar and Mishra combined different orthogonal wave-
let transforms with various transform sizes for CT-MR spine
image fusion, while interactive localization of control points
was required [7]. Tomazevic et al. implemented an approach
for rigid alignment of volumetric CT or MR to X-ray images
[8]. To simplify the registration problem in real-world sce-
narios, images were acquired from a cadaveric lumbar spine
phantom and three-dimensional (3D) images contained only
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one of the five vertebrae. Otake et al. proposed a registration
method for 3D and planar images which was used for spine
intervention and vertebral labeling in the presence of ana-
tomical deformation [9]. Harmouche et al. designed an artic-
ulated model for MR and X-ray spine images [10]. Hille et al.
presented an interactive framework, and rough annotation of
the center regions in different modalities was used to guide
the registration [11].

Accurate alignment of intrapatient CT-MR images is
challenging. From the anatomy, human spine consists of
inflexible vertebrae surrounded by soft tissues, such as
nerves, vessels, and muscles. Moreover, the vertebrae of lum-
bar spine are connected by facet joints in the back, which
allows for forward and backward extension and twisting
movements. Moreover, spinal deformity imposes difficulties
on multimodal image registration. Specifically, during image
acquisition, patients can lay flatly for a short time due to pain,
and subsequently, motion becomes unavoidable. Last but not
the least, there are intrinsic differences between CT and MR
imaging.

Figure 1 shows a pair of intrapatient CT-MR images. It is
found that in CT images, the lumbar spine region easily high-
lights itself from the rest of soft tissues (the top row), while in
MR images, soft tissues show various intensities and in par-
ticular, it might be hard to distinguish rigid bones from soft
tissues (the bottom row). In the figure, soft tissues in MR
images are with various contrast than those in CT images
(red arrows), undesirable artifacts caused by the bias field
are observed in MR images (green arrows), and these pairs
of images show different imaging field of views. It is obvious
that these facets pose difficulties in image registration.

2. Related Works

Image registration is important in medical image analysis
[12, 13, 14]. Based on similarity metrics, registration methods
could be generally classified into intensity- and feature-based
methods. Among the intensity-based methods, mutual infor-
mation (MI) is well known, and it was primarily presented
for MR breast image alignment [15]. Afterwards, the metric
is used in multimodal medical image registration [16]. For
specific applications, MI has been modified to enhance the
performance of image registration. For instance, normalized
MI (NMI) was proposed for invariant entropy measure
[17], regional MI was implemented to capture volume
changes when local tissue contrast varied in serial MR images
[18], localized MI was designed for atlas matching and pros-
tate segmentation [19], conditional MI was developed to
incorporate joint histogram and intensity distribution for
image description [20], self-similarity weighted αMI was pre-
sented for handheld ultrasound and MR image alignment
[21], and MI was also advanced with spatially encoded infor-
mation [22].

Feature-based methods aim to quantify detected land-
marks with features for image registration. Ou et al. collected
multiscale multiorientation Gabor features to weight mutual-
saliency points for matching [23]. Zhang et al. used scale-
invariant features and corner descriptors for lung image
registration [24]. Heinrich et al. designed modality indepen-

dent neighborhood descriptor (MIND) which extracted the
distinctive structure in small image patches for multimodal
deformation registration [25]. Via principal component
analysis of deformation, a low-dimension statistical model
was learned [26]. Toews et al. combined invariant features
of volumetric geometry and appearance for image alignment
[27]. Determined by the moments of image patches, a self-
similarity inspired local descriptor was presented [28]. Jiang
et al. designed a discriminative local derivative pattern which
encoded images of different modalities into similar represen-
tation [29]. Woo et al. combined spatial and geometric
context of detected landmarks [30], and Carvalho et al.
considered intensity and geometrical features [31] into a
similarity metric. Weistrand and Svensson constrained
image registration with anatomical landmarks for local tissue
deformation [32].

Embedding a proper penalty term into a similarity metric
is helpful in specific applications. Rueckert et al. used a term
to regularize the local deformation to be smooth in breast MR
image registration [33]. Rohlfing et al. designed a local
volume preservation constraint, assuming the soft tissues
incompressible in small deformation [34]. Staring et al. pro-
posed a rigidity penalty and modeled the local transform
when thorax images with tumors were aligned [35]. To
model fetal brain motion, Chen et al. utilized the total-
variation regularization and a penalty was adopted toward
piece-wise convergence [12]. Due to local tissue rigidity
characteristics, Ruan et al. added a regularization term for
aligning inhale-exhale CT lung images [36]. Fiorino et al.
designed the Jacobian-volumehistogram of deforming organs
to evaluate the parotid shrinkage [37].

This study proposes a coarse-to-fine framework to
address the registration of intrapatient CT-MR images of
lumbar spine. It develops a similarity metric that penalizes
a bending energy term into NMI for local deformation of soft
tissues. The most similar work is from the comparison of
bending energy penalized global and local MI metrics in
aligning positron emission tomography and MR images
[38], while this study differs itself from the proposed
coarse-to-fine registration framework, the bending energy
penalized NMI (BEP-NMI) and the application to CT-MR
lumbar spine images.

3. Materials and Methods

3.1. Data Collection. Two data sets were analyzed. One is our
in-house collection which contains 40 pairs of lumbar spine
images from the Department of Radiology, Shenzhen Second
People’s Hospital, the First Affiliated Hospital of Shenzhen
University. CT images were acquired through SIEMENS
SOMATO. The voxel resolution is 0:35 × 0:35 × 1:00mm3,
and the matrix size is 512 × 512 with 180 ± 25 slices. T2-
weighted MR images were acquired using a 1.5 Tesla scanner
(SIEMENS Avanto). The physical resolution is 0:7 × 0:7 × 3
mm3, the matrix size is 256 × 256, and the slice number
ranges between 60 and 75.

The other data set is accessible online, namely SpineWeb
(http://spineweb.digitalimaginggroup.ca). It includes 15 image
pairs of lumbar spine. The physical resolution of CT images is
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Figure 1: Perceived visual difference between CT and MR images of lumbar spine from three perspective views. The difference of imaging
characteristics, fields of view, and unavoidable motion make the registration challenging. Red arrows show different imaging contrast,
green arrows direct to the undesirable artifact of bias field in MR images, and blue arrows indicate different field of views. Note that
images are cropped and scaled for display purpose.
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0:27 × 0:27 × 2:50mm3, the image size is 512 × 512, and the
slice number is 77 per volume. The resolution of T1-weighted
MR images is 0:39 × 0:39 × 5:00mm3, the image size is
512 × 512, and each volume contains 42 slices.

3.2. The Proposed Framework. The proposed framework con-
sists of two steps both of which use intensity-based image reg-
istration methods. An intensity-based registration method can
be treated as an optimization problem, and the similarity met-
ric S performs as the cost function. Given a fixed image IF
: Ω1 ∈ R3 and a moving image IM : Ω2 ∈ R3 in 3D space,
image registration aims for mapping the moving image IM
to the space of the fixed image IF guided by themetric S. When
an additional regularization term of P is penalized into S, the
registration problem can be formulated as,

T̂ = arg min
T

C T ; IF ; IMð Þw:r:t:C Tμ ; IF ; IMð Þ

C Tµ ; IF, IM
� �

= S Tµ ; IF, IM
� �

+ λP Tµ

� � ð1Þ

where T is a transformmodel, λ compromises the metric S
and the regularity term P, μ is the transform coefficients, and
Tμ is the initialized model by μ.

Figure 2 illustrates the proposed framework. It indicates a
rigid registration stage and a hierarchical deformation stage,
and NMI and BEP-NMI, respectively, perform as the similar-
ity metric. Moreover, adaptive stochastic gradient descent
(ASGD) [39] is applied for hyperparameter optimization.
Specifically, an affine transformation with 12 degrees of free-
dom is employed in the first stage, and a B-spline elastic
model is used for free-form deformation in the second stage.

3.2.1. Rigid Registration. An affine transform model is used
here. The transform T : Ω2→Ω1 can be formulated by

Tµ xð Þ = R x − cð Þ + t + c ð2Þ

where R is a matrix that contains the rotation, scale, and
shear coefficients, c is the center of rotation, t is a translation
vector, and μ is a vector of 12 degrees of freedom in volumet-
ric image registration.

Rigid registration attempts for global positioning of the
whole body, and thus, an initial alignment of lumbar spine.
A 3-level recursive pyramid denotes smoothing that down-
samples the source volumes by a factor of 2. Besides, the met-
ric NMI and the affine transform are employed in each scale.

3.2.2. Hierarchical Deformation. Hierarchical deformation is
a coarse-to-fine adjustment procedure [40]. This setup uti-
lizes Gaussian pyramid without downsampling to match
images from the global structures toward the fine details.

B-spline transform. The B-splines are used to depict the
local shape difference between the lumbar vertebrae. To con-
struct the B-spline based free-form deformation model, let
Ω = fðx, y, zÞ ∣ 0 6 x < X, 0 6 y < Y , 0 6 z < Zg be a spatial
domain of a 3D image. A lattice (px × py × pz) of control
points is denoted as Ψ, spanning the integer grid in Ω, and
Φijk denotes the control point at (i, j, k) on the mesh Ψ.
Then, the elastic model can be expressed as a 3D tensor prod-

uct of the uniform B-spline of order 3 as below,

TI x, y, zð Þ = 〠
3

I=0
〠
3

m−0
〠
3

n=0
BI u1ð ÞBm u2ð ÞBn u3ð ÞΦi+l,j+m,k+n ð3Þ

where i = bx/Pxc − 1, j = by/PYc − 1, k = bz/Pzc − 1, u1 = x/
Px − bx/Pxc, u2 = ðy/PyÞby/Pyc, u3 = z/PZ − bz/Pzc, and Bl
repents the lth basis function of the B-spline,

B0 uð Þ = 1 − uð Þ3/6,
B1 uð Þ = 3u3 − 6u2 + 4

� �
/6

B2 uð Þ = −3u3 + 3u2 + 3u + 1
� �

/6

B3 uð Þ = u3/6

8>>>>><
>>>>>:

ð4Þ

where 0 6 u < 1. The basic functions weigh the contri-
bution of each control point to Tlðx, y, zÞ based on its dis-
tance to the point ðx, y, zÞ.

Since the B-splines can be locally controlled, it makes the
computation efficient for a large number of control points. In
particular, changing a control point affects only the trans-
forms of its local neighborhood.

BEP-NMI. The metric MI is preferred in multimodal
image registration. Given IF and IM with intensity bins of f
and m, MI is quantified from a joint probability function pð
IF, IMÞ and marginal probability distribution functions.

of pð f Þ = Pf fpð f ,mÞg and pðmÞ = Pm fpð f ,mÞg. The
metric MI between a pair of images, IF and IM, can be
described as

MI IF ; IMð Þ = H IFð Þ +H IMð Þ::H IF ; IMð Þ
= 〠

f ∈F
〠
m∈M

p f ,mð Þ log p f ,mð Þ
p fð Þp mð Þ
� � ð5Þ

where HðIFÞ and HðIMÞ are the marginal entropy and the
HðIF, IMÞ is the joint entropy of IF and IM.

The metric NMI is more robust to the change of over-
lapped tissue regions. It uses a Parzen-window approach to
estimate the probability density function. The entropy of a
fixed image IF is defined as HðIFÞ = −Pf ∈ F pð f Þlogpð f Þ,
where pð f Þ is a probability distribution estimated by using
Parzen-windows. The entropy of a moving image IM can
be computed in a similar way. And subsequently, the NMI
between IF and IM can be presented as

NMI IF ; IMð Þ = H IFð Þ +H IMð Þ
H IF ; IMð Þ ð6Þ

In order to regularize the B-spline deformation and to
prevent the rigid structures from being smoothed, a BEP
term PðuÞ is added to the NMI. The new cost function,
BEP-NMI, is formulated as

C μð Þ = y1S μð Þ + y2P μð Þ ð7Þ
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where γ1 and γ2 are predefined constants to weigh between
global similarity and local regularity. In this study, off-line
experiments indicated that γ1 = γ2 = 1 was a good choice.

The penalty terms are commonly based on the first or
second-order spatial derivatives of the transform [35, 36].
In this study, the BEP term is composed of the second-
order derivatives [35, 40] in the volumetric space,

PBEP μð Þ =
ð
V

∂2T
∂x2

 !2

+
∂2T
∂y2

 !2

+
∂2T
∂z2

 !2(

+ 2
∂2T
∂x∂y

 !2

+ 2
∂2T
∂y∂z

 !2

+ 2
∂2T
∂z∂x

 !2)
dxdydz

ð8Þ

where V is a 3D image. The Equation (8) can be approxi-
mated as a discretely sampled sum over the volume V as
below,

PBEP =
1
NV

〠
x∈V

ΦT x, y, zð Þ ð9Þ

where N is the number of voxels in V , and Φ denotes a sum
of the squared second-order derivatives of T inside the inte-
gral part in Equation (8) at a voxel location ðx, y, zÞ. Specially,
the derivative approximation with finite differences can be
restricted to the local neighborhood of the control point.

Optimization. Given an initial parameter μ, an optimiza-
tion algorithm updates an incremental Δμ to reduce the cost
function C iteratively. ASGD is used in the study, since it
runs faster and less likely to get trapped in the local minima
when compared to other gradient-based optimization
algorithms [39]. Notably, ASGD implemented in the elastix
package (http://elastix.isi.uu.nl) is used for adaptive step
size prediction and the initial parameters are set as those
in [39, 40].

3.3. A Comparison Method. The MIND is a feature-based
method and it has been widely used in multimodal deform-
able registration [25, 41]. It aims to represent the distinctive
image structure in a local neighborhood and explore the sim-
ilarity of small image patches by using Gaussian-weighted
patch distances [25].

MIND can be formulated by a distance Dp, a spatial
search region R and a variance estimate V as below,

MIND I, x, rð Þ = 1
n
exp

Dp I, x, x + rð Þ
V I, xð Þ

� �
r ∈ R ð10Þ

Dp I, x:x + rð Þ = C ∗ I − I rð Þð Þ2 ð11Þ

where n is a normalization constant, r the search region,
C a convolution filter of size ð2p + 1Þd, ∗ a convolution filter,
and I0ðrÞ a dense sampling on r. As such, an image can be
represented by a vector of size ∣R ∣ at each location x. More-
over, V ðI, xÞ can be computed based on a mean of the patch
distances within a small neighborhood n ðn ∈NÞ

V I, xð Þ = 1
N

〠
n∈N

Dp I, x, x + nð Þ, ð12Þ

In Equation (10) to Equation (12), n = 6 denotes a six-
connected neighborhood and p = 1 indicates a 3 × 3 × 3
volume block.

The similarity metric used in MIND comes from the sum
of absolute difference. To the fixed image (IF) and the
moving image (IM), the local difference at a voxel x is

LD xð Þ = 1
Rj j〠r∈R

MIND IF,x,rð Þ −MIND IM,x,rð Þ�� �� ð13Þ

The default value of ∣R ∣ is 6 and it means 6-connected
neighbors are taken into computation.

3.4. Performance Evaluation

3.4.1. Tissue Overlapping. Tissue overlapping quantifies the
overlapping ratio of outlined tissue regions in the fixed and
its aligned image, which can distinguish the reasonable from
the poor registration [42, 43]. This study focuses on the region
of lumbar vertebrae and blood vessels. Assuming the outlined
tissues in the fixed and aligned image are, respectively,
denoted as OF and OA, the voxel-wise Jaccard (J) index and

Similarity metric
NMI

Rigid
Non-rigid (2)

(1)

BEP-NMI (2)
(1)

Resample
Optimizer

Transformation

Global
positioning

Local
free-form

deformation

Iterator

(adaptive stochastic gradient descent)

Resample Interpolator

Fixed image
(I

F
)

Moving image
(I

M
)

Figure 2: The proposed coarse-to-fine framework for aligning CT-MR lumbar spine images. It consists of two stages. The first stage is for
global positioning via NMI based rigid registration (highlighted in red), and the second stage is for the local deformation of soft tissues via
the bending energy penalized NMI (highlighted in yellow). Both stages utilize the same workflow for iterative optimization.
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Dice (D) coefficient can be, respectively, described as

J =
OF ∩OA

OF ∪OA

����
����,

D = 2
OF ∩OAj j
OFj j + OAj j

ð14Þ

where ∣· ∣ indicates the number of voxels per volume.

3.4.2. Target Registration Errors.As for landmark annotation,
ImageJ (http://imagej.nih.gov/ij/) was used. A pair of CT-MR
images are displayed side-by-side. Then, landmarks are
identified and manually annotated by an imaging radiologist
(3+ year experience) and further confirmed by a senior
radiologist (10+ year experience). Once landmarks are anno-
tated, their locations in 3D space are recorded. In this study,
anatomical landmark points are localized on the vertebral
body center (VBC), neural edge (NE), disc center (DC), and
blood vessel edge (BVE).

Target registration error (TRE) evaluates the distance
between anatomical point pairs in the fixed and moving
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Figure 3: Jaccard index of the vertebrae and blood vessel overlapping on the in-house dataset (a) and the online dataset (b). Box-and-whisker
plots represent the median Jaccard index (horizontal line) and total range (whiskers). The red + indicates an outlier that causes failure in image
registration.
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Box-and-whisker plots show the median coefficient (horizontal line) and total range (whiskers). The red + indicates a failure case.
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image. Here, assuming li and , respectively, denotes the cor-
responding landmark point pairs in the fixed and moving
image, the mean TRE for a given T is defined as

TRE =
1
n
〠
n

i

li − T li′
	 
��� ��� ð15Þ

where n is the number of pairs of landmark, and k · k
indicates Euclidian distance in 3D space.

3.5. Software and Platform. The whole framework is
implemented with Insight Segmentation and Registration
Toolkit (http://www.itk.org) and the elastix package [40].
Experiments are performed on a desktop computer equipped
with dual-core Intel i7 CPU (3.70GHz) and 16GB RAM
memory.

4. Results

4.1. Tissue Overlapping. Figure 3 illustrates the tissue overlap-
ping measure J of CT-MR image registration on the in-house

collection (left) and the SpineWeb (right). The left shows that
the proposed framework outperforms the MIND method on
the vertebrae (0:93 ± 0:02 versus 0:69 ± 0:06) and blood ves-
sel (0:81 ± 0:10 versus 0:48 ± 0:07) overlapping. In the right
figure, the framework achieves higher values (vertebrae,
0:89 ± 0:05; blood vessel, 0:81 ± 0:12) than the MIND
method (vertebrae, 0:75 ± 0:12; blood vessel, 0:52 ± 0:33),
and thus, it leads to better performance.

Figure 4 shows the overlapping ratio D of multimodal
image registration on the in-house collection (left) and the
SpineWeb (right). The left figure indicates that the coarse-
to-fine registration framework obtains better results than
the MIND method on the vertebrae (0:97 ± 0:02 versus
0.77±0.05) and blood vessel (0:88 ± 0:07 versus 0:74 ± 0:07)
overlapping. In the right figure, the MIND method (verte-
brae, 0:86 ± 0:12; blood vessel, 0:61 ± 0:33) obtains inferior
performance than the proposed framework (vertebrae,
0:95 ± 0:03; blood vessel, 0:93 ± 0:10).

4.2. Target Registration Errors. Figure 5 demonstrates the
mean TRE value of anatomical landmark points between
the proposed framework and the MIND algorithm on the
in-house collection. The error-bar plot indicates that the
TRE of the proposed framework is less than 3.00mm (DC),
while that of the MIND algorithm is larger than 4.00 mm
(VBC) on average. In addition, statistical analysis indicates
that the proposed framework significantly outperforms the
MIND algorithm in each of the four sets of landmarks
(p < 0:005, two-sample t-test).

Table 1 shows the TRE values (mean ± standard deviation,
mean ± SD) with respect to different landmark sets. The
coarse-to-fine framework achieves TRE between 0:78 ± 0:64
mm (BVE) and 2:01 ± 0:62mm (DC), while the TRE of
the MIND method ranges from 3:77 ± 4:21mm (BVE) to
5:11 ± 3:69mm (DC), correspondingly larger than that from
the proposed framework.

The mean TRE on the SpineWeb dataset is shown in
Figure 6. It is observed that the TRE value of the proposed
framework is less than 3.00mm (VBC and NE), while the
MIND algorithm leads to the TRE values larger than 5.00mm.

Statistical analysis indicates significant difference of the
TRE values between the proposed framework and the MIND
algorithm on aligning the pairs of VBC and BVE landmarks
(0:01 < p < 0:05, two-sample t-test).

Table 2 summarizes the mean TRE values on different sets
of landmark pairs. The proposed framework achieves the TRE
values between 0:66 ± 0:46mm (BVE) to 2:37 ± 0:76mm
(VBC), and the TRE values of the MIND algorithm ranges
from 5:71 ± 3:65mm (BVE) to 6:75 ± 3:80mm (VBC).

4.3. Perceived Quality of Image Alignment. Visual assessment
of registration quality is perceived from the fusion of CT and
MR images and observed from three perspective views in
Figure 7, where ðA, E, IÞ are the CT image, ðB, F, JÞ are the
MR image, ðC,G, KÞ are the aligned image from the proposed
framework, and ðD,H, LÞ are the aligned image from the
MIND algorithm. Red arrows directing to the soft tissue
regions and green arrows directing to the bone regions are used
for comparison. Before registration, both bones and tissues are

Table 1: TRE values (mean ± SD) on the in-house collection
images.

The framework (mm) MIND (mm)

VBC 1:52 ± 0:33 5:02 ± 3:76

NE 1:38 ± 0:29 5:07 ± 4:06

DC 2:01 ± 0:62 5:11 ± 3:69

BVE 0:78 ± 0:64 3:77 ± 4:21
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Figure 6: TRE values of anatomical landmarks on the SpineWeb
dataset.

Table 2: TRE values (mean ± SD) on the SpineWeb images.

The framework (mm) MIND (mm)

VBC 2:37 ± 0:76 6:75 ± 3:80

NE 1:91 ± 0:55 5:41 ± 3:38

DC 2:26 ± 0:98 6:49 ± 3:95

BVE 0:66 ± 0:46 5:71 ± 3:65
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misaligned, such as acantha ðA + BÞ, bones and nerves ðE + FÞ
and muscles ðI + JÞ. After image registration, the proposed
framework aligns these parts in theMR images with fine defor-
mation to the CT images. Specifically, both rigid bones and soft
tissues are well matched, and the anatomical textures shows
consistent distributions in the aligned image. On contrary,

the MIND algorithm fails to overlap the acantha (A +D),
bones and nerves (E +H) and muscles (I + L) accurately.

4.4. Computation Time. Based on the software and platform, it
took about 62 seconds to complete the affine registration and
427 seconds to complete the deformable registration. And

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(i+j) (i+k) (i+l)

(e+f) (e+g) (e+h)

(a+b) (a+c) (a+d)

Figure 7: Perceived visual difference of CT-MR images before and after image registration. The regions directed by the arrows are for
comparison before and after registration. In addition, images are cropped for display purpose.

8 BioMed Research International



thus, it required a total of 8.15 minutes to fulfill the coarse-to-
fine registration for a pair of CT-MR lumbar spine image.

5. Discussion

Intrapatient multimodal image registration can fuse multi-
source information that benefits disease diagnosis and
treatment delivery. This study develops a coarse-to-fine
framework and aligns intrapatient CT-MR lumbar spine
images. It first utilizes the similarity metric NMI for global
positioning, and then, bending energy penalized NMI for
local deformation of soft tissues. The proposed framework
achieves high tissue overlapping ratio and low target registra-
tion error. It not only preserves the incompressibility of
vertebrae but also well matches local soft tissues that provide
accurate elastic registration of lumbar spine images for
clinical applications.

The proposed framework is a coarse-to-fine approach for
multimodal image registration. It aligns anatomical struc-
tures and addresses the potential difference on the fields of
view and the intrinsic differences between medical imaging.
The metric NMI is used, since it is a robust and accurate mea-
sure in multimodal image registration [17, 44]. After global
positioning, a new similarity metric that integrates a bending
energy term into NMI is used for local deformation and reg-
istration of soft tissues in medical images. It is worth of note
that the term encourages smooth displacements in registra-
tion [33]. Ceranka et al. embedded the term to improve
multiatlas segmentation of the skeleton from whole-body
MR images [45], and de Vos et al. integrated the term into
unsupervised affine and deformable image registration by
using a convolutional neural network [46]. Both works
[45, 46] figured out that the term caused significantly less
folding in image registration.

The framework takes the incompressibility of vertebrae
into account. Vertebrae are bony structures which are con-
nected to each other by the ligamentum flavum at the neural
arch [47]. The proposed framework enables global and local
image structures well matched, and inflexible bones and soft
tissues properly deformed. Its superior performance has been
verified on the in-house collection and the SpineWeb data-
base. Experiential results demonstrate that the overlapping
ratio of annotated vertebrae and blood vessels are larger than
0.85, and the target registration error is less than 2.40mm on
average. It outperforms the MIND algorithm partly due to its
proper deformation of local soft tissues and incompressible
lumbar vertebrae. The registration quality is further per-
ceived in a CT-MR image pair. It is found that the marked
tissues keep relative location after image registration by using
the proposed framework, since it not only well tackles the
local soft tissue deformation but also conserves the rigid
lumbar vertebrae.

Even if the proposed framework achieves superior per-
formance on aligning CT-MR lumbar spine images, there is
still room for further improvement. One way to enhance reg-
istration accuracy is by transferring multimodal image regis-
tration into mono-modal image registration. Wachinger and
Navab developed structural representations, such as Entropy
and Laplacian images, which could represent the images in a

third space where the images showed close intensity or gradi-
ent distribution [48]. Moreover, deep networks have been
explored to estimate CT images from MR images directly
and in particular, the mapping between CT and MR images
was learned without any patch-level pre- or postprocessing
[49]. Another straightforward way is to utilize deep networks
to learn the deformation field between different imaging
modalities [50]. In addition, interactive image registration is
admirable in interventional surgery and a doctor user could
localize landmarks to guide and to update the registration
procedure [51].

There are several limitations in this study. One limitation
comes from no comparison of NMI and BEP-NMI on
deformable image deformation, since our off-line experimen-
tal results show that the NMI based deformable registration
is prone to distortion of lumbar spine and unnatural defor-
mation of soft tissues. Moreover, demons and its variants
[52, 53, 54] failed in the registration of lumbar spine images.
Thus, this study reports the performance of the proposed
framework and theMINDmethod. In addition, how to prop-
erly balance the BEP term and the NMI is always a problem
and no existing methods could well tackle this issue, while
prior knowledge [35, 37] could be employed for further
improvement of the registration accuracy.

6. Conclusions

This paper presents a coarse-to-fine framework for the regis-
tration of intrapatient CT-MR lumbar spine images. It inte-
grates the bending energy term into normalized mutual
information for fine deformation of soft tissues around the
incompressible vertebrae. Its high performance benefits
multisource information fusion for accurate spine disease
diagnosis, treatment planning, interventional surgery, and
radiotherapy delivery.

Data Availability

The in-house collection of MR-CT image pairs used to sup-
port the findings of this study are restricted by the Medical
Ethics Committee of Shenzhen Second People’s Hospital in
order to protect patient privacy. The SpineWebdata set
of MR-CT images used to support the findings is freely
available online (https://spineweb.digitalimaginggroup.ca/
spineweb/index.php?n=Main.Datasets). If interested, requests
for access to these data can be made to the author Shibin Wu
(https://sb.wu@siat.ac.cn). Since the database is freely avail-
able, requests for access to these data can also be made to
the author Shibin Wu (https://sb.wu@siat.ac.cn).
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