
Combining sequence and network 
information to enhance protein–protein 
interaction prediction
Leilei Liu1†, Xianglei Zhu1,2†, Yi Ma1, Haiyin Piao3, Yaodong Yang1, Xiaotian Hao1, Yue Fu1, Li Wang1* 
and Jiajie Peng4

From Biological Ontologies and Knowledge bases workshop 2019 San Diego, CA, USA. 18-21 Novem-
ber 2019

Background
PPIs play an important role in cellular systems of organisms, most proteins perform 
their functions by interacting with other proteins, so information about the PPIs can 
help us better understand the function of proteins [1]. Many basic cellular processes 
involve PPIs, for example metabolic cycles, DNA transcription and replication, and 
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signaling cascades [2]. Disfunction in the PPIs will affect people’s health and cause 
diseases, research shows that many diseases are the result of abnormal PPIs involving 
endogenous proteins, proteins from pathogens or both [3]. Accurately predicting protein 
interactions is very important for us to study the properties of cellular systems, improve 
the understanding of disease and provide a basis for the development of novel therapeu-
tic approaches [4].

In recent years, high-throughput biological techniques and large-scale experimental 
approaches for PPIs identification have achieved tremendous development, lots of PPIs 
data from different organisms has been discovered by researchers [2]. And Yeast pre-
dominantly provides PPIs data so far. But the coverage of PPIs data is still very low and 
there is lots of noisy data in the PPIs dataset, since experimental methods inevitably pro-
duce false-positive results [5]. According to previous researches, 50% of the Yeast PPIs 
map and only 10% of the Human PPIs networks have been characterised [4]. Moreover, 
biological techniques and large-scale experiments are often expensive, time-consuming 
and labor-intensive [6, 7]. Calculation-based methods can solve the problem to a certain 
extent, and provide reference and guidance for the biological experiment design, which 
are helpful for laboratory validation.

These computational methods are mainly composed of two phases, representation 
phase and prediction phase. In representation phase, the methods generate a vector-
ized representation for each protein using its attribute information. And in the predic-
tion phase, they use traditional machine learning techniques or deep learning to make 
predictions based on the representation generated in the previous phase. Many charac-
teristic properties of proteins can be used to generate representation, including protein 
structure information, protein domains, gene neighborhood, phylogenetic profiles, gene 
expression and literature mining knowledge [8]. In bioinformatics fields, STRINGDB 
is the most commonly used database, which collects a lot of PPIs data from different 
species and provides online querying and API for users to retrieve data. For PPIs anno-
tations, STRINGDB computes a combined score by combining the probabilities from 
the different evidence channels, including fusion evidence, neighborhood evidence, 
cooccurrence evidence, experimental evidence, textmining evidence, database evidence 
and coexpression evidence [9]. However, the design of above representation methods 
requires strong domain knowledge, and some information is difficult to obtain, which 
limits the practicality of the method to a certain extent [8]. Recently, protein amino acid 
sequence data has a rapid growth. Compared with the limited number of protein struc-
tures, it is undeniable that the number of protein sequences is much larger. Computa-
tional methods that make predictions only based on amino acid sequence are arousing 
great interest of researchers. The experimental results in previous works show that only 
using protein sequence information can also achieve high prediction accuracy [2, 5, 7, 8, 
10–13].

These sequence-based methods have achieved certain results, but the method of 
generating vectorized representation for proteins based on protein sequence informa-
tion is complicated. And some methods need extra statistical information, computa-
tion complexity and time complexity are high. Moreover, they did not use the structural 
information of the PPIs networks graph. PPIs data can be represented in the form of 
graph, where nodes represent proteins and edges represent protein interactions. So the 
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position information of protein in the graph, which can also be said to be the relation-
ship between proteins, can reflect the properties of proteins to some extent, which is 
an important supplement to protein sequence information. Combining amino acid 
sequence information and position information can help to make a more accurate pre-
diction. In this paper, we first time use GCNs to capture the protein’s position informa-
tion in the PPIs networks graph and combine the amino acid sequence information and 
position information to make representations for each protein. In prediction phase, we 
use deep neural network (DNN) modules composed of fully connected neural network 
layers to extract high-level feature information and make predictions. By designing this 
architecture, we can generate stronger vectorized representation for proteins and make 
more accurate predictions.

Our main contributions can be summarized as follows: (1) We use GCNs to capture 
the position information of the proteins in the PPIs networks graph, which can reflect 
the properties of proteins to some extent. (2) We propose a novel representation method 
that combines amino acid sequence information and position information. (3) We test 
our method on several benchmark datasets and the experimental results demonstrate 
the validity of our method. To the best of our knowledge, this is the first study that com-
bines amino acid sequence information and position information to make representa-
tions for proteins.

Experiments and results
In this section, we did two experiments to verify our model. In the first experiment, we 
compare our method with two state-of-the-art sequence-based PPIs prediction meth-
ods, including DPPI [5] and DeepFE-PPI [11]. DPPI takes a probabilistic sequence pro-
file generated by PASI-BLAST as inputs and in prediction phase it uses 5 convolutional 
modules, 1 random projection module and 1 prediction module to extract features and 
make predictions. DeepFE-PPI adopts Word2vec to learn feature representation from a 
large protein database and in prediction phase it uses 4 fully connected layers to extract 
high-level feature. Through this experiment, it is confirmed that our method can achieve 
higher prediction accuracy than state-of-the-art methods.

In the second experiment, we did an ablation experiment by only using amino acid 
sequence information or position information to make predictions. The results of this 
experiment illustrate the effectiveness of our representation method, that is, combining 
amino acid sequence information and position information can generate a stronger rep-
resentation for the protein.

Dataset description

We test our method on three different benchmark datasets, including Human dataset, 
Yeast dataset and S. cerevisiae core dataset. Human and Yeast datasets are described by 
Profppikernel [14], which only contains the top-scoring physical interactions. To get the 
fair comparition results, we follow the same strategy as DPPI and remove redundancy of 
the Human and Yeast datasets such that no two PPIs are similar at sequence level. Two 
PPIs are considered similar if at least two sequences, each of one PPIs, have a sequence 
identity greater than 40%. S. cerevisiae core dataset is described by You et al. [2], which 
has a total of 11188 interactions, including 5594 positive interactions and 5594 negative 
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interactions. The protein pairs which contain a protein with fewer than 50 residues 
or greater than 40% sequence identity are removed form the dataset. The amino acid 
sequences are retrieved from the Uniprot database (http://www.unipr​ot.org/).

Evaluation criteria

There are three common evaluation indicators in the classification problem, including 
accuracy, precision and recall. These indexes are defined as follows:

TP (true positive) is the number of samples that labels and predictions are both positive; 
TN (true negative) is the number of samples that labels and predictions are both nega-
tive; FP (false positive) is the number of samples that labels are negative but predictions 
are positive; FN (false negative) is the number of samples that labels are positive but pre-
dictions are negative.

And when label classes are not balanced, precision–recall curves are mainly used. The 
precision–recall curve shows the tradeoff between precision and recall. A large area 
under the curve represents both high recall and precision, the best case scenario for 
a classifier, showing a model that returns accurate results for the majority of classes it 
selects. Precision–recall curves give a more informative picture of an algorithm’s perfor-
mance [15].

So when evaluating the method’s performance on Human and Yeast dataset, in which 
the number of negative samples is greater than positive samples, we follow the same 
strategy as DPPI, plot the precision–recall curves and compare the area under the curves 
of different methods. For S. cerevisiae core dataset, the number of negative samples is 
identical to that of positive samples, we compare accuracy, precision and recall of differ-
ent methods.

Parameter settings

When implementing our method, the model hyperparameters are determined by grid 
search and we get the best results with the following hyperparameters. The maximum 
length of protein amino acid sequence is set to 850 and when capturing proteins’ posi-
tion information, we use one-layer GCNs to aggregate information from neighbor 
nodes. The number of neurons in the fully connected layers are 256, 128, 64, 32, 8 and 
2 respectively. The dropout layer randomly drops neurons with a probability of 0.5. All 
parameters are updated by conducting stochastic gradient descent (SGD) and the learn-
ing rate of SGD is set to 0.01.

(1)Accuracy =
TP + TN

TP + TN + FP + FN

(2)Precision =
TP

TP + FP

(3)Recall =
TP

TP + FN

http://www.uniprot.org/
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Results

First, we compare our method with two state-of-the-art sequence-based methods, DPPI 
and DeepFE-PPI. We perform 10-fold cross validation on Human and Yeast datasets and 
compute the mean auPR (area under precision–recall curve), the results are shown in 
Fig.  1. In addition, following the same strategy as DPPI and DeepFE-PPI, we perform 
5-fold cross validation on S. cerevisiae core dataset and report their average results in 
terms of precision, recall and accuracy, the results are shown in Table 1.

Next we conduct an ablation experiment to confirm the effectiveness of combin-
ing two types of information, we make predictions by only using protein amino acid 
sequence information or position information. Same as the first experiment, we perform 
10-fold cross validation on Human and Yeast datasets and compute the mean auPR, the 
results are shown in Fig. 2. On S. cerevisiae core dataset, we perform 5-fold cross valida-
tion and count the precision, recall and accuracy, results are shown in Table 2.

Discussion
The results of the first experiment show that our method has an improvement over the 
previous methods. From Fig.  1, we can see that our method gets the best results on 
Human and Yeast datasets. On Human dataset, it achieves the largest mean auPR with 
the value of 0.4542 while DPPI is 0.4127 and DeepFE-PPI is 0.4273. Our method has 
10.06% and 6.30% improvement over DPPI and DeepFE-PPI respectively. On Yeast data-
set, our method also gets the largest mean auPR with the value of 0.4993 compared with 
DPPI’s 0.4677 and DeepFE-PPI’s 0.4868. It has 6.76% and 2.57% improvement over DPPI 
and DeepFE-PPI respectively. In addition, from Table 1, we can see that our method also 

Fig. 1  The performance comparison of our method with DPPI and DeepFE-PPI on Human and Yeast dataset. 
The auPR is the mean of 10-fold cross validation

Table 1  The performance comparison of  our method with  DPPI and  DeepFE-PPI on  S. 
cerevisiae core dataset

The results are obtained by 5-fold cross validation

Precision Recall Accuracy

DPPI 0.9668 0.9224 0.9455

DeepFE-PPI 0.9645 0.9299 0.9478

Our method 0.9702 0.9355 0.9533
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achieves the best performance with 97.02% average precision, 93.55% average recall and 
95.33% average accuracy on S. cerevisiae core dataset.

The first experiment proves the effectiveness of our method. From the above results, 
we can draw the conclusion that our method can make more accurate predictions. And 
compared with previous works, our method is simpler in representation phase. We use 
one-hot encoding to encode sequence information of protein and GCNs to capture posi-
tion information, then we get the final representation matrix by combining them. While 
DPPI needs to generate a probabilistic sequence profile for each protein using PASI-
BLAST and DeepFE-PPI needs to train a Word2vec model firstly and then uses the pre-
trained model to generate representation vector for each protein, which is complicated 
and time-consuming.

In the second experiment, we conduct an ablation experiment to compare different 
representation methods. We only use amino acid sequence information or position 
information to make predictions, and compare the prediction results with the method 
of combining these two types of information. Figure 2 shows that combining sequence 
information and position information achieves the best prediction results on Human 
dataset and Yeast dataset. The same conclusion holds on the S. cerevisiae core dataset, as 
can be seen from Table 2.

In addition, we can also observe that the prediction results obtained using only amino 
acid sequence information are more accurate than the prediction results obtained using 
only position information, indicating that amino acid sequence information is more 
important when representing proteins. Combining these two types of information gets 
the best prediction results, it confirms the correctness of our method that position 

Fig. 2  The ablation experiment on Human and Yeast datasets. We compare the performance of only using 
protein amino acid sequence information or position information to make predictions. The auPR is the mean 
of 10-fold cross validation

Table 2  The ablation experiment on S. cerevisiae core dataset

The results are obtained by 5-fold cross validation

Precision Recall Accuracy

Only Position 0.9004 0.9325 0.8992

Only Sequence 0.9587 0.9231 0.9372

Sequence + Position 0.9702 0.9355 0.9533
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information of protein in the PPIs networks graph can reflect the properties of pro-
teins to some extent and is an important supplement to protein amino acid sequence 
information.

Conclusion and future work
In this paper, we propose a novel method that combining sequence information and 
position information to generate representations for proteins. When capturing position 
information of proteins in the PPIs networks graph, we use GCNs to aggregate feature 
information of neighbor nodes. In prediction phase, we design DNN modules to extract 
high-level features and make predictions. We conduct extensive experiments on three 
different benchmark datasets to verify the effectiveness of our method, and carry out 
in-depth analysis of the experiment results. Continuing work will improve the design of 
DNN architecture to get a better prediction performance.

Methods
PPIs prediction is essentially a classification problem and we need to identify that the 
given two proteins whether to interact. We train our model in a supervised way, it takes 
the representations of protein pairs as inputs and outputs a score representing the inter-
action probability. In order to illustrate our model clearly, we first introduce the princi-
ples and applications of GCNs. The following subsections will give further illustrations 
on the overall framework of our model, the method of encoding protein amino acid 
sequence information, the method of capturing proteins’ position informatin in the PPIs 
networks graph and the design of DNN modules in the prediction phase.

Graph convolutional networks

Deep learning is a major advancement in the field of machine learning in recent years, 
which has aroused great interest of researchers and is widely used in several machine 
learning tasks, including computer vision, image analysis, speech recognition, infor-
mation retrieval, natural language processing, reinforcement learning and multi-agent 
systems [16–23]. In addition, in the field of bioinformatics, deep learning is also widely 
used. For example, deep learning algorithms have been successfully applied to predict 
the association between Human diseases and microRNA, a type of non-coding RNA 
[24]. Compared with traditional machine learning methods, deep learning is suitable 
for processing and analyzing complex data, extracting and abstracting high-dimensional 
feature, which is helpful to process increasing amounts and dimensions of data gener-
ated by high throughput technique in bioinformatics.

However, in the real world, lots of data is generated from non-Euclidean domains and 
represented as graphs with complex relationships and interdependency between nodes. 
If we can make full use of the information of the graph structure, it will be of great help 
to solve the problem. Such as modeling the multiagent coordination problems in coop-
erative environments under the networked social learning framework under four repre-
sentative topologies [25].

The characteristics of data with graph structure can be summarized as follows. Each 
node in the graph can be regarded as an object with its own unique attributes. And 
nodes are connected by edges, indicating that there is a certain relationship between 
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them. We need to comprehensively consider the attribute information of the node itself 
and the attribute information of its neighboring nodes to accurately make representa-
tions for nodes in graph-structured data.

In graph-structured data, the previous deep learning algorithm can not be directly 
applied. To solve the problem, researchers generalize the operation of convolution from 
traditional data to graph-structured data and propose GCNs, which generate the node’s 
representation by aggregating feature information of its neighbors [26]. GCNs layer 
aggregates information from connected nodes to generate hidden representation for 
center nodes and then a non-linear transformation is applied to the hidden represen-
tation. By stacking multiple GCNs layers, the final hidden representation of each node 
receives message from further neighbors. The rule of aggregating neighbors’ feature 
information in vector form can be described by Eq. 4,

where h(l+1)
i  is the hidden representation of node i in the (l + 1)th layer, Ni is the set of 

node i′s neighbors, Cij is an appropriately chosen normalization constant for the edge (
vi, vj

)
 , W (l) is a layer-specific weight matrix and σ(·) denotes a non-linear activation 

function.
GCNs take the graph structure information and node feature information as inputs 

and the outputs of GCNs can be different mechanisms according to different graph ana-
lytics task, including node-level, edge-level and graph-level [26].

GCNs are widely used in the processing of graph structure data, and have achieved 
excellent performance compared with previous methods. For example, in a citation 
network, partial nodes are labeled and others are unlabeled, using GCNs can learn an 
appropriate representation for each node, which is very important for predicting labels 
of the unlabeled nodes [27]. Similarly, there is also work proposing an improved spec-
tral-based GCNs, which can work directly on directed graph data in semi-supervised 
nodes classification tasks [28]. In addition, GCNs are used to make multi-relational link 
prediction in a multimodal graph [29]. There is also work applying GCNs in the protein 
interface prediction problem, but different from ours, they represent a protein as a graph 
where each amino acid residue is a node whose features represent the properties of the 
residue [30]. In our paper, we represent the PPIs networks as a graph where each protein 
is a node. We use GCNs to capture position information of protein in the graph, which 
can be an important supplement to protein amino acid sequence information.

Design of the proposed model

In Fig. 3, we demonstrate the flow diagram of our method. The integrated flow diagram 
has two phases, representation phase and prediction phase. In representation phase, we 
process proteins’ amino acid sequence information and PPIs networks graph informa-
tion to generate representation for each protein. In prediction phase, we take the final 
representation matrix as inputs, which combines amino acid sequence information and 
position information, and use DNN modules to extract high-level features and make 

(4)h
(l+1)
i = σ



�

j∈Ni

1

cij
h
(l)
j W (l)



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predictions. Next, we will give details of the methods used in the representation and pre-
diction phases.

One‑hot encoding

One-hot encoding, also known as one-bit effective encoding, mainly uses bit status reg-
isters to encode each state. Each state is controlled by its own independent register bit, 
and only one bit is valid at any time. In practical machine learning applications, features 
are not always continuous values, and may be some categorical values. For such features, 
we usually need to digitize the features. For example, gender is a categorical attribute 
with two possible values, male or female. We can use [1, 0] for male and [0, 1] for female 
using one-hot encoding. One-hot encoding solves the problem that the classifier is not 
good at handling attribute data, and it also plays a role of expanding features to a certain 
extent.

Encode amino acid sequence information

Proteins are chains of amino acids that fold into a three dimensional structure that gives 
them their biochemical function. There are 20 different types of amino acids in organ-
ism. In this paper, we use one-hot encoding to encode amino acids, so each amino acid 
can be represented by a 20-dimensional vector consisting of 0 and 1.

The detailed process is as follows, we use natural numbers ranging from 1 to 20 to give 
each unique amino acid an identity, and convert the original amino acid sequence to a 
vector of natural numbers. We construct an identity matrix with shape of 20 ∗ 20 , every 

Fig. 3  The framework of our method. There are two phases, representation phase and prediction phase. In 
representation phase, we apply GCNs to capture the position information and get the final representation 
matrix by combining sequence information and position information. In prediction phase, we take the 
representation matrix as inputs and use DNN modules to extract high-level features and make predictions
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line in the matrix is the feature vector of a unique amino acid. Then we can convert the 
identity vector to feature vector by looking up in the identity matrix. After that, we get 
the amino acid sequence information of protein in the vector form, and for the conveni-
ence of subsequent processing, we set a fixed length for the obtained vector. If its length 
is less than the fixed length, we pad zeros to the front of the sequence and if its length 
is longer than the fixed length, we truncate the sequence in the front. In the previous 
methods, when encoding protein sequence information, the representation vector of the 
protein is usually a trainable parameter. Our method is more simple and efficient, and 
there are no parameters that need to be trained.

Capture proteins’ position information

In our method, we model the PPIs networks as an unweighted and undirected graph 
where each protein is a node, as shown in Fig. 4. The edge between two nodes indicates 
that these two proteins can interact. The position information of protein in the PPIs net-
works graph reflects which proteins it can interact with, which is essentially a reflection 
of the protein’s characteristics. Take protein ‘P1’ as an example, it interacts with ‘P2’, ‘P3’ 
and ‘P4’. So when capturing position information of protein ’P1’, we use GCNs to aggre-
gate information about its neighbor nodes ’P2’, ’P3’ and ’P4’.

In our model, we take the graph structure information and node feature informa-
tion as inputs. The graph structure information mainly includes the adjacency matrix 
and degree matrix of the graph, where the adjacency matrix describes the relationship 
between the nodes in the graph, and the degree matrix describes the number of con-
necting nodes of each node. The dimensions of these two matrices are determined by 
the number of nodes in the graph. Adjacency matrix and degree matrix are constructed 

Fig. 4  The PPIs networks graph. The node in the graph represents protein, and the edge between two nodes 
represents the protein–protein interaction (for example, protein ‘P1’ interacts with ‘P2’, ‘P3’ and ‘P4’)
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based on the training set, without using data of testing set, so there isn’t a label leak-
age problem. The node feature information is also a matrix, where each row represents 
the feature information of a node, the number of rows is determined by the number of 
nodes, and the number of columns is the dimension of the feature vector of each node. 
Here we use one-hot encoding to encode each unique protein, so the dimension of the 
feature vector of each protein is the same as the number of proteins.

The way of GCNs capturing position information for each protein in the graph can be 
expressed by Eq. 5.

In our work, one-layer GCNs achieve the best performance. Here, Ã = A+ IN is the 
adjacency matrix of the PPIs networks graph with added self-connections, IN is the iden-
tity matrix. D̃ii =

∑
j Ãij is the degree matrix, W0 is the trainable weight matrix in the 

first layer and σ(·) denotes an activation function, such as ReLU(·) . XN∗N
0

 is the original 
feature matrix, N is the number of proteins in the graph, here we use one-hot encoding 
to encode each unique protein, so the original feature matrix is the identity matrix with 
shape of N ∗ N  . XN∗f

1  is the output feature matrix, f is the feature length of each node 
after GCNs operation. So after the GCNs operation, each node’s hidden representation 
is composed of its original feature information and first-order neighbor’s feature infor-
mation, which contains the position information of the protein in the PPIs networks 
graph.

Design of DNN modules

To combine amino acid sequence information and position information, we concatenate 
the above two matrices from the amino acid sequence information and position infor-
mation and get the final representation matrix, where each row is a feature vector of 
an unique protein. We take the final representation matrix as inputs of DNN modules. 
There are two separate DNN modules, each module processes one protein of the input 
pairs. These two DNN modules have the same structure, consisting of 4 fully connected 
neural network layers, 4 normalization neural network layers and 4 dropout neural net-
work layers to extract high-level features that hidden in embedding vectors.

As an important achievement of deep learning in recent years, batch normalization 
has been widely proven to be effective and important. During model training, batch 
normalization uses the mean and standard deviation on small batches to continuously 
adjust the intermediate output of the neural network, so that the value of the interme-
diate output of the entire neural network in each layer is more stable. The use of batch 
normalization can make the convergence faster, the total training time is shorter and the 
effect is improved.

Dropout is another important trick widely used in deep learning, it means that dur-
ing the training process of deep neural networks, the neural network unit is temporarily 
dropped from the network with a certain probability. For machine learning models, if 
the model has too many parameters and too few training samples, the trained model is 
prone to be overfitting. Dropout can effectively alleviate the problem of overfitting and 
improve the generalization ability of the model.

(5)X
N∗f
1

= σ

(
D̃−1ÃXN∗N

0 W0

)
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After extracting the features of the two proteins, we concatenate last hidden vectors 
of the both DNN modules. Then the concatenated vector is processed by a joint module 
composed of 2 fully connected neural network layers, and a softmax layer is used to pre-
dict interaction probability.
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