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Abstract: Zinc (Zn) is abundantly present in the brain, and accumulates in the synaptic vesicles.
Synaptic Zn is released with neuronal excitation, and plays essential roles in learning and
memory. Increasing evidence suggests that the disruption of Zn homeostasis is involved in various
neurodegenerative diseases including Alzheimer’s disease, a vascular type of dementia, and prion
diseases. Our and other numerous studies suggest that carnosine (β-alanyl histidine) is protective
against these neurodegenerative diseases. Carnosine is an endogenous dipeptide abundantly present
in the skeletal muscles and in the brain, and has numerous beneficial effects such as antioxidant,
metal chelating, anti-crosslinking, and anti-glycation activities. The complex of carnosine and Zn,
termed polaprezinc, is widely used for Zn supplementation therapy and for the treatment of ulcers.
Here, we review the link between Zn and these neurodegenerative diseases, and focus on the
neuroprotective effects of carnosine. We also discuss the carnosine level in various foodstuffs and
beneficial effects of dietary supplementation of carnosine.
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1. Introduction

Zinc (Zn) is an essential trace element abundantly present after iron (Fe). It is a co-factor of more
than 300 enzymes or metalloproteins, and plays a critical role in many functions including cell division,
immune system, protein synthesis, and DNA synthesis [1,2]. Increasing evidence suggests that Zn acts
as a second messenger in various biological systems, similar to calcium (Ca) [3]. Zn reportedly binds
with a Zn-binding motif or metal-responsive element of about 10% of all proteins and regulates their
levels of expression by recent bioinformatics research of the human genome [4].

Given these crucial functions in humans, Zn deficiency causes various adverse effects [5–8].
Zn deficiency in childhood causes the retardation of mental and physical development, learning
disabilities, dwarfism, and dysfunction of the immunological system in humans. Because Zn is
essential for olfaction and taste, Zn deficiency leads to learning, taste, and olfactory disorders in adults.
Moreover, Zn deficiency is related to levels of depression and stress.

It was recommended that the estimated average requirement (EAR) of Zn is 12 mg/day for
adult males and 9 mg/day for adult females by the Japanese Ministry of Health, Labour and Welfare.
Although daily intake of Zn is estimated to be 10–15 mg, many patients suffer from a mild Zn deficiency
because Zn intake and absorption are distinctive. The bioavailability of Zn is influenced by many food
constituents such as phytates and fibers in plants, which form poorly soluble complexes with Zn and
inhibit its gastrointestinal absorption [9]. Yasuda and Tsutui reported that approximately 20% or more
of the elderly and children in Japan suffers from Zn deficiency [10]. The World Health Organization
reported that 1.4% (0.8 million) of deaths worldwide are attributed to Zn deficiency [11]. Therefore,
supplementation is important for the prevention and treatment of Zn deficiency. Zn supplementation
therapy is used in the treatment of pressure ulcers, measles, and taste disorders [12–14]. A complex of
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Zn and carnosine (β-alanyl histidine), termed polaprezinc, is widely used for this purpose [15].
Polaprezinc is also used for protecting the mucosa against ulcerations and for the treatment of
Helicobacter pylori-associated gastritis [16,17].

Carnosine is an endogenou dipeptide [18]. Carnosine is small and water-soluble. Carnosine and
its analogues (homocarnosine and anserine) (Figure 1) exist in many organisms such as birds, fish,
and mammals, including humans. It is abundantly present in skeletal muscles, but is also observed
in the stomach, kidneys, cardiac muscle, and brain. Thus, daily foods such as meats or fish contain
considerable amounts of carnosine.

Carnosine has various advantageous characteristics, such as anti-glycation, anti-stress, and
antioxidant properties, hydroxyl radical scavenging, maintenance of pH-balance, and chelation of
metals including divalent zinc ion (Zn2+) and bivalent copper ion (Cu2+) (Figure 2) [19]. Carnosine is
one of the most abundant small-molecule compounds in skeletal muscle, with concentrations similar
to those of creatine and adenosine triphosphate (ATP). Carnosine contributes to the physicochemical
buffering of lactate caused by exercise in skeletal muscles and has anti-fatigue effects. It is possible that
carnosine contributes to the regulation of Zn availability in the brain [9]. Ours and other numerous
studies indicate that carnosine is neuroprotective against various neurodegenerative diseases such
as Alzheimer’s disease (AD) [20], the vascular type of senile dementia (VD) [21], prion diseases [22],
autism spectrum disorder [23], and Gulf War syndrome [24]. Furthermore, supplementation therapy
with carnosine and anserine is reported to be effective for improving cognitive impairment in the
elderly [25].

Here, with a focus on the neuroprotective functions of carnosine, we review the link between Zn
and neurodegenerative diseases, and investigate the neuroprotective roles of carnosine in terms of
nutrients as a drug for these neurodegenerative diseases. We also discuss the levels of carnosine in
foodstuffs based on our developed convenient quantitative analysis method using high performance
liquid chromatography (HPLC).
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Figure 1. Structures of carnosine and its analogues: (a) carnosine (b) anserine (c) homocarnosine.
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2. Roles of Zinc in the Brain

Zn is abundantly present in the testes, muscle, liver, and brain tissues, and total Zn content is
approximately 2 g. Zn is accumulated in the hippocampus, amygdala, cerebral cortex, thalamus,
and olfactory cortex in the brain [26]. Zn is estimated to be present as 70–90 ppm (~20 µM) in the
hippocampus [27]. Zn in the brain binds to metalloproteins or enzymes; however, approximately
10% or more Zn is stored in the presynaptic vesicles of glutamatergic excitatory neurons as free zinc
ions (Zn2+). During neuronal excitation, the chelatable Zn2+ is secreted into synaptic clefts from
vesicles with glutamate. The secreted Zn reportedly regulates the overall excitability of the brain
by binding with various neurotransmitter receptors such as N-methyl-D-aspartate (NMDA)-type
glutamate receptors, amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate
receptors, γ-aminobutyric acid (GABA) receptors, and glycine receptors [28]. Ueno et al. reported that
secreted Zn2+ modulates spatio-temporal information in the hippocampus [29]. Thus, the secreted
Zn is essential for synaptic plasticity, information processing, and memory formation. Indeed, Zn is
reported to be essential for the induction of long-term potentiation (LTP) in the mossy fiber, a form of
synaptic information storage [30]. It is possible that secreted Zn2+ has neuromodulators roles. Since Zn
has been shown to generate neural inhibition, Zn can modulate the activity of the neighboring synapses
by diffusing into synaptic clefts to the adjacent synapses in a distance-dependent manner. A similar
phenomenon was reported as ‘lateral inhibition’, which caused the contrast of signals underlying the
mechanism of synaptic plasticity [31].

Similar to Zn2+, Cu2+ was also reported to exist in synaptic vesicles. During neuronal excitation,
Cu2+ is secreted into the synaptic cleft [32]. The secreted Cu2+ modulates neuronal excitability by
binding to various receptors, including the GABA receptor, AMPA-type glutamate receptor, and
NMDA-type glutamate receptor. The size of the synaptic cleft is estimated to be 20 nm in height
and 120 nm in width, and is composed of ~1% of the total extracellular volume in the brain [33].
Considering its small size, it is more than plausible that the levels of neurotransmitters or metals are
high in the synapse. Indeed, the concentration of glutamate is estimated to reach the mM range after
neuronal depolarization in the synaptic cleft. Although the level of Zn in cerebrospinal fluid (CSF) is
less than 1 µM, its level in the synaptic clefts is reported to be 1–100 µM [34]; meanwhile, the level of
Cu2+ in the synaptic clefts is reported to be 2–15 µM [35]. Since Zn2+ and Cu2+ compete for entry into
the body or for many binding proteins, it is possible that excess Zn can also lead to Cu dyshomeostasis.

Carnosine is reported to be synthesized in astrocytes and oligodendrocytes. It exists in olfactory
bulb neurons and in glial cells, and is secreted from glial cells into the synaptic cleft [36]. Thus, it is
highly possible that carnosine regulates Zn and Cu homeostasis in synaptic clefts. The hypothetical
roles of Zn2+ and Cu2+ in the synapse are displayed in Figure 3.

Zn homeostasis is regulated by three factors, besides carnosine; metallothioneins, Zn transporters
(ZnT), and Zrt-, Irt-like protein (ZIP) Zn transporters [37,38]. Metallothioneins are ubiquitous
metal-binding proteins composed of 68 amino acids. These proteins possess 20 cysteine residues,
and bind seven metal atoms including Cu, cadmium (Cd), and Zn. Among three types of
metallothioneins: MT-1, MT-2, and MT-3, MT-3 is mainly observed in the central nervous system.
However, MT-1 and MT-2 generally exist in the whole body.

There are 14 types of ZnTs in mammals. ZnTs decrease intracellular Zn by facilitating Zn efflux
from cells. They are encoded with the solute carrier (SLC30) gene family. ZnT-1 has a pivotal role in Zn
efflux and is involved in protection from excess Zn. ZnT-1 and ZnT-3 are co-localized with chelatable
Zn in the brain. ZnT-3 transports Zn into synaptic vesicles, and maintains high Zn concentrations in
these vesicles.

ZIP Zn transporters transport Zn from extracellular compartments to those which are intracellular
and increase cytosolic Zn. ZIP Zn transporters are encoded by fourteen SLC39 genes. ZIP transporters
are also located in the membranes of the Golgi apparatus or the endoplasmic reticulum (ER),
and regulate Zn in subcellular organelles. Genetic defects of Zn transporter mutations produce
severe diseases such as Ehlers-Danlos syndrome [39].



Nutrients 2018, 10, 147 4 of 20

Nutrients 2018, 10, x FOR PEER REVIEW  3 of 19 

 

2. Roles of Zinc in the Brain 

Zn is abundantly present in the testes, muscle, liver, and brain tissues, and total Zn content is 
approximately 2 g. Zn is accumulated in the hippocampus, amygdala, cerebral cortex, thalamus, and 
olfactory cortex in the brain [26]. Zn is estimated to be present as 70–90 ppm (~20 µM) in the 
hippocampus [27]. Zn in the brain binds to metalloproteins or enzymes; however, approximately 10% 
or more Zn is stored in the presynaptic vesicles of glutamatergic excitatory neurons as free zinc ions 
(Zn2+). During neuronal excitation, the chelatable Zn2+ is secreted into synaptic clefts from vesicles 
with glutamate. The secreted Zn reportedly regulates the overall excitability of the brain by binding 
with various neurotransmitter receptors such as N-methyl-D-aspartate (NMDA)-type glutamate 
receptors, amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors, 
γ-aminobutyric acid (GABA) receptors, and glycine receptors [28]. Ueno et al. reported that secreted 
Zn2+ modulates spatio-temporal information in the hippocampus [29]. Thus, the secreted Zn is 
essential for synaptic plasticity, information processing, and memory formation. Indeed, Zn is 
reported to be essential for the induction of long-term potentiation (LTP) in the mossy fiber, a form 
of synaptic information storage [30]. It is possible that secreted Zn2+ has neuromodulators roles. Since 
Zn has been shown to generate neural inhibition, Zn can modulate the activity of the neighboring 
synapses by diffusing into synaptic clefts to the adjacent synapses in a distance-dependent manner. 
A similar phenomenon was reported as ‘lateral inhibition’, which caused the contrast of signals 
underlying the mechanism of synaptic plasticity [31]. 

Similar to Zn2+, Cu2+ was also reported to exist in synaptic vesicles. During neuronal excitation, 
Cu2+ is secreted into the synaptic cleft [32]. The secreted Cu2+ modulates neuronal excitability by 
binding to various receptors, including the GABA receptor, AMPA-type glutamate receptor, and 
NMDA-type glutamate receptor. The size of the synaptic cleft is estimated to be 20 nm in height and 
120 nm in width, and is composed of ~1% of the total extracellular volume in the brain [33]. 
Considering its small size, it is more than plausible that the levels of neurotransmitters or metals are 
high in the synapse. Indeed, the concentration of glutamate is estimated to reach the mM range after 
neuronal depolarization in the synaptic cleft. Although the level of Zn in cerebrospinal fluid (CSF) is 
less than 1 µM, its level in the synaptic clefts is reported to be 1–100 µM [34]; meanwhile, the level of 
Cu2+ in the synaptic clefts is reported to be 2–15 µM [35]. Since Zn2+ and Cu2+ compete for entry into 
the body or for many binding proteins, it is possible that excess Zn can also lead to Cu 
dyshomeostasis. 

Carnosine is reported to be synthesized in astrocytes and oligodendrocytes. It exists in olfactory 
bulb neurons and in glial cells, and is secreted from glial cells into the synaptic cleft [36]. Thus, it is 
highly possible that carnosine regulates Zn and Cu homeostasis in synaptic clefts. The hypothetical 
roles of Zn2+ and Cu2+ in the synapse are displayed in Figure 3. 

 

Cu2+CAR

ZnT-3
Zn2+

Zn2+

Cu2+Zn2+

CAR

Zn2+

Zn2+Zn2+

CAR

Cu2+

Zn2+

Cu2+

Cu2+

Zn2+

Zn2+

Ca2+

glia

Zn2+

Zn2+

NMDA-R

Synaptic plasticity
Information processing
Learning and memory formation

ZnT-1

Zn2+

NMDA-R

Figure 3. Under physiological conditions, Zn2+ and glutamate are released from presynaptic vesicles,
and inhibit NMDA-type glutamate receptors (NMDA-Rs) and regulate other receptors. Zn2+ spilled
over into the neighboring synapse, modulating excitability. It is possible that Zn is essential in the
maintenance of synaptic plasticity and the formation of memory. Cu2+ is also secreted and acts in a
similar manner to Zn2+. Carnosine binds to Zn2+, as well as Cu2+, and regulates these concentrations
at the synapse. Zn2+: divalent zinc ion; Cu2+: bivalent copper ion; Ca2+: divalent calcium ion;
CAR: carnosine; ZnT-1: zinc transporter 1, • glutamate.

Furthermore, the excess or deficiency of Zn, namely, the dyshomeostasis of Zn in the brain,
is considered to have relationships with the pathogenesis of several neurodegenerative diseases
including AD, VD, prion diseases, and amyotrophic lateral sclerosis (ALS) [40–43].

3. Zinc, Carnosine and Alzheimer’s Disease

3.1. The Amyloid Hypothesis

In Japan, elderly adults aged more than 75 years represented 10% of the total population in 2013.
Therefore, approximately 4 million people are affected by senile dementia and this is a number that
continues to grow annually.

Most senile dementia is divided into AD, VD, and dementia with Lewy bodies (DLB). AD accounts
for more than half the cases of senile dementia. Although AD was first reported in 1906, the number
of AD patients was estimated to be more than 5 million in the U.S. in 2016. AD is characterized
by the deposition termed senile plaques and neurofibrillary tangles (NFTs). The selective loss of
synapses and neurons in the hippocampal and cerebral cortical regions is also observed [44]. The major
component of NFTs is phosphorylated tau protein, and that of senile plaques is β-amyloid protein
(AβP). The primary factor of AD pathogenesis remains controversial. The accumulation of tau protein
and/or the degeneration of cholinergic neurons might occur during the pathogenesis. However,
the idea of the amyloid cascade hypothesis, which suggests that the accumulation of AβP and the
consequent neurodegeneration play a central role in AD is supported by many researchers [45,46].
AβP is a small peptide composed of 39–43 amino acid residues. AβP is secreted from a large precursor
protein (amyloid precursor protein; APP) in the N-terminal by β-secretase (β-site APP cleaving
enzyme; BACE), which is followed by the intra-membrane cleavage of its C-terminal by γ-secretase.
The truncated AβPs, such as AβP (1−40), the first 40 amino acid residues, or AβP (1–42) are produced
by the different C-terminal cleavage of APP (Figure 4). Secreted AβP is generally degraded by specific
proteases such as neprilysin. It was reported that APP mutations and AβP metabolism are associated
with AD from genetic studies of early-onset cases of familial AD indicated in [47]. It was also revealed
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that mutations in the presenilin genes account for the majority of cases of early-onset familial AD.
Presenilins are reported to be one of the γ-secretases. Their mutations also influence the production of
truncated AβP and its neurotoxicity.
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Figure 4. Secretion and oligomerization of AβP. AβP is secreted from APP by β-secretase (BACE) and
by γ-secretase. The expression of APP is regulated by Fe and may be influenced by Al. APP also
binds to Cu and Zn. Three amino acids (Arg5, Tyr10, and His13) of human AβP are substituted
in rodent AβP. Under aging conditions or in the presence of acceleratory factors, monomeric AβP
with random or α-helix structures self-aggregates and forms several types of oligomers (SDS-soluble
oligomers, amyloid β-derived diffusible ligands, globulomers, protofibrils) before finally forming
insoluble aggregates (amyloid fibrils). The monomeric and fibril aggregates are relatively nontoxic;
however, oligomeric soluble AβPs are toxic. APP: amyloid precursor protein; mRNA: messenger
ribonucleic acid; AβP: β-amyloid protein; Al: aluminum; Fe: iron; IRP: iron regulatory protein.

In 1990, Yankner et al. found that AβP (1–40) caused the toxicity of cultured rat hippocampal
neurons [48]. Although these findings were controversial, the neurotoxicity of AβP was demonstrated
to be influenced by its oligomerization and subsequent conformational change [49]. AβP has a
tendency to self-aggregate into oligomers. AβP exists as a monomeric protein when freshly prepared
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and dissolved in an aqueous solution, and exhibits a random coil structure. However, AβP forms
aggregates (oligomers) after incubation at 37 ◦C for several days (aging). The oligomer AβP possess
β-pleated sheet structures and finally forms insoluble aggregates (amyloid fibrils). Neurotoxicity of
AβP was reported to be enhanced during the aging process [50].

3.2. Metals and Amyloid

AβP is reportedly secreted in the CSF of non-dementia aged individuals, as well as young
individuals [51]. Therefore, not only the amount of AβP, acceleratory factors, or inhibitory factors of its
oligomerization may be essential in AD pathogenesis. AβP oligomerization is influenced by peptide
concentrations, pH, solvent composition, and temperature. The oxidation, mutation, and racemization
of AβP can affect it [52]. Zn and other trace elements such as aluminum (Al), Cu, and iron (Fe) are
important accelerating factors. The amino acid sequences of humans and rodents AβP are similar,
and rodent AβP is different from primate AβP by only three amino acids (Arg5, Tyr10, and His13).
However, the accumulation of AβP is rarely observed in the rodent brains. Indeed, rodent AβP has less
of a tendency to aggregate compared with primate AβP in vitro [53]. Interestingly, all of these three
amino acids have the ability to bind metals. Bush et al. found that Zn induced the oligomerization of
AβP, even the low concentrations (300 nM) [54]. They also reported that Cu remarkably enhanced the
AβP aggregation [55]. Zn binds to three histidine residues (His6, His13, and His14) and/or to carboxyl
group of Asp1 of AβP [56].

However, the oligomerization of AβP by metals is still controversial. The morphologies of AβP
oligomers with Al, Cu, Fe, and Zn are quite different [57]. Metals such as Al, Cu, Fe, and Zn alter the
oligomerization and toxicity of AβP in a different manner [58]. Cu-oligomerized AβP is more toxic
compared with Zn-oligomerized AβP [59]. We found that Al caused more marked oligomerization
than other metals, such as Zn, Cu, Fe, and cadmium (Cd) [60]. Furthermore, Al-aggregated AβPs bind
tightly to the surfaces of cultured neurons and form fibrillary deposits several days after exposure,
compared to Zn-aggregated AβPs.

Meanwhile, Zn can attenuate AβP-induced neurotoxicity and contributes to AD as a protector [40].
Various adverse effects after AβP exposure are reported, such as the induction of cytokines,
the induction of ER stress, the production of reactive oxygen species, and the abnormal increase
of intracellular calcium levels ([Ca2+]i) [61]. Although these effects may interact with each other,
the disruption of Ca2+ homeostasis could be the primary adverse event of AβP neurotoxicity given that
Ca2+ is involved in numerous cellular functions [62]. Arispe et al. first demonstrated that AβP forms
pore-like channel structures on artificial lipid bilayers, which are permeable to Ca2+ and other cations,
multilevel, voltage-independent, and long-lasting [63]. We found that AβP forms pore-like channels
on neuronal membranes [64], and demonstrated that AβP caused the increase of intracellular Ca2+

levels of cultured neurons using fura-2 Ca2+ imaging [65]. Based on these results, the ‘amyloid channel
hypothesis’ was demonstrated; which suggests that the direct incorporation of AβPs on neuronal
membranes and the subsequent increase of intracellular Ca2+ through the amyloid channels might be
the primary event in AβP neurotoxicity [66]. AβP might share the similar mechanism underlying the
toxicity of various antimicrobial or antifungal peptides that also exhibit channel-forming activity and
cell toxicity in this respect [67]. We and other researchers found that the channel activity was inhibited
by the exposure to Zn2+, and recovered by o-phenanthroline, a Zn chelator [64,68]. Since His residues
are exposed to inner surfaces of amyloid channels, Zn can bind to these His residues and protect
neurons from AβP-induced Ca dyshomeostasis [69]. Therefore, the role of Zn in the pathogenesis of
AD is still controversial and Zn may act as a contributor of AD pathogenesis, as well as a protector.
In this context, Zn might play a role like Janus, the ancient Roman god of doorways, who is depicted
with two different faces [40].

Moreover, APP is a metal binding protein that has two Cu and/or Zn binding domains in its
N-terminal. APP possesses the ability to reduce Cu2+ to Cu+. Cu and Zn influence the expression and
processing of APP and enhance AβP production [70,71]. Cu induces the dimerization and trafficking
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of APP from the ER to neurites. APP also regulates Fe homeostasis. APP mRNA possesses an
iron responsive element (IRE). It means that the expression of APP is regulated by Fe, as well as
ferritin (iron storage protein) [72]. In contrast, APP binds to ferroportin, which controls Fe efflux [73].
Therefore, APP is suggested to regulate the homeostasis of metals including Zn, Cu, and Fe.

3.3. Carnosine as an Anti-Crosslinker of AβP

Molecules that inhibit the oligomerization of AβP may be candidates for preventive AD
therapeutics. Several compounds such as rifampicin, curcumin, and transthyretin have been reported
to inhibit the oligomerization of AβP [52]. A small peptide composed of five amino acids, called a
β-sheet breaker peptide, markedly blocks AβP oligomerization [74].

Carnosine has an anti-crosslinking ability, as shown in Figure 2, and inhibits the oligomerization
of proteins such as α-crystalline [75]. Thus, N-acetyl carnosine has been used for the treatment of
cataracts [76]. Increasing evidence indicates that carnosine inhibits the oligomerization of AβP and
blocks its neurotoxicity [77,78]. Corona et al. demonstrated that orally administered carnosine inhibits
the accumulation of AβP, and prevents learning deficits in a murine model of AD [20]. Moreover,
histidine and carnosine are significantly reduced in the CSF of AD patients [79]. Therefore, carnosine
may well play neuroprotective roles against AD.

4. Zinc, Carnosine, and Vascular Type of Dementia

4.1. Zinc and Ischemia-Induced Neuronal Death

VD accounts for about one-third of senile dementia cases in Japan. Its risk factors are high blood
pressure and diabetes. The interruption of blood flow causes the oxygen-glucose deprivation and
membrane depolarization after transient global ischemia or stroke [80]. Thereafter, an excess release of
glutamate into synaptic clefts causes the overstimulation of the glutamate receptor and the entry of
large quantities of Ca2+ into neurons, and triggers the death of pyramidal neurons in the hippocampus,
which are crucial in memory formation.

Zn plays a crucial role in the neuronal death after ischemia and the pathogenesis of VD [81,82].
Excess Zn can be neurotoxic in spite of its importance in the brain. The concentration of Zn in synaptic
clefts is estimated to be 1–100 µM. However, a considerable amount of Zn (up to 300 µM) is co-released
with glutamate into synaptic clefts during ischemic conditions [27]. Koh et al. demonstrated that Zn
accumulates in apoptotic neurons in the hippocampus after ischemia [83]. The membrane-impermeable
Zn chelator (calcium ethylene diamine tetraacetic acid (Ca-EDTA)) protects hippocampal neurons after
ischemia and reduces infarct volume [84]. Zn can cause mitochondrial failure and oxidative stress [85].

4.2. Molecular Mechanism of Zn-Induced Neurotoxicity: GT1–7 Cells as an In Vitro Model System

We investigated the molecular mechanism underlying Zn neurotoxicity and the protective
mechanism of carnosine in immortalized hypothalamic neurons (GT1–7 cells). We found that Zn
causes the death of GT1–7 cells in a dose-dependent manner [86]. The degenerated GT1–7 cells
exhibited apoptotic characteristics including DNA fragmentation, as well as terminal deoxynucleotidyl
transferase-mediated biotinylated uridine triphosphate (UTP) nick-end labeling (TUNEL)-positive.
GT1–7 cells were revealed to be much more sensitive to Zn and exhibited much lower viability after
Zn exposure compared with other neuronal cells, such as primary cultured rat hippocampal neurons,
B-50 neuroblastoma cells, and PC-12 cells [87]. The GT1–7 cells were developed by Mellon et al. from
mouse hypothalamic neurons by genetically targeted tumorigenesis [88]. The cells possess neuronal
characteristics, such as the extension of neurites and expression of neuron-specific proteins or receptors.
Meanwhile, the GT1–7 cells possess low levels of ionotropic glutamate receptors and are not subject
to glutamate toxicity. These properties imply that the GT1–7 cell line is a good model system for the
investigation of Zn-induced neurotoxicity.
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Using GT1–7 cells, it was found that pyruvate, citrate, the antagonists of Ca2+ channels (nifedipine,
conotoxine), and Al3+ blocked the Zn-induced death of GT1–7 cells [86,87,89]. We also found that
intracellular Ca2+ levels ([Ca2+]i) are increased after exposure to Zn. The preadministration of Al3+,
a Ca2+ channel blocker, inhibited the Zn-induced rise in [Ca2+]i and attenuated Zn-induced neurotoxicity.
Thus, it is highly possible that Ca2+ homeostasis is implicated in Zn neurotoxicity pathways.

4.3. Protective Substances against Zn-Induced Neuronal Death

Considering the significance of Zn in the pathogenesis of VD, it is highly possible that substances
that inhibit Zn-induced neurotoxicity may become candidate drugs for the prevention or treatment
of VD. Thus, we developed an assay system for screening such substances using GT1–7 cells and
examined various agricultural products (such as fruits, vegetables, fish, and sea-products) [90].
Among the compounds tested, we found that the water-soluble extract of muscle tissue of Japanese eel
(Anguilla japonica) exerted marked protective activity [91]. This activity was not diminished when the
extract was boiled at 95 ◦C for 30 min. We separated the heated extract using HPLC and determined
the structure of the active fraction as that of carnosine using liquid chromatography mass spectrometry
(LC-MS). Moreover, we found the protective activities in the extract of mango fruits (Mangifera indica)
and in the extract of round herring (Etrumeus teres), and determined the active fraction as pyruvate
and histidine, respectively [92,93].

4.4. The Protective Roles of Carnosine

We investigated the neuroprotective mechanism of carnosine, and firstly focused on Zn
translocation since carnosine can chelate Zn. First, we analysed intracellular Zn2+ levels ([Zn2+]i)
in Zn-treated GT1–7 cells using Zn-specific fluorescent dye, ZnAF-2. However, neither carnosine
nor anserine inhibited Zn influx into GT1–7 cells, whereas treatment with Ca-EDTA, a membrane
impermeable chelator, decreased [Zn2+]i [94]. Thus, it is plausible that carnosine did not act as a Zn
chelator and protect neurons from Zn-induced neurotoxicity.

Second, we have analyzed the genetic changes induced by Zn, and our real-time polymerase
chain reaction (RT-PCR) analysis revealed that Zn caused the upregulation of several genes, including
metal-related genes (MT-1, MT-2, ZnT-1), ER-stress related genes (GADD (growth-arrest- and
DNA-damage-inducible gene) 34, GADD45, p8, CHOP (CCAAT-enhancer-binding protein homologous
protein)), and a Ca2+-related gene (Arc). Although carnosine is able to chelate Zn2+, we demonstrated
that carnosine did not influence the intracellular concentration of Zn nor the Zn-induced upregulation
of MT-1 or ZnT-1. Meanwhile, carnosine was found to inhibit the upregulation of ER stress-related
genes such as GADD34, GADD45, CHOP, Ca2+ homeostasis-related genes such as activity-regulated
cytoskeleton-associated protein (Arc). We also found that carnosine attenuated neurodegenerations
induced by the ER-stressor such as thapsigargin and tunicamycin, and/or induced by hydrogen
peroxide (H2O2). We demonstrated that anserine also attenuated Zn-induced neurotoxicity, as well
as carnosine. Furthermore, we recently found that sub-lethal concentrations of Cu2+ strongly
enhance Zn2+-induced neurotoxicity and the expression of ER stress-related genes [95]. The Cu2+

enhanced Zn2+-induced neurotoxicity was attenuated by pyruvate and thioredoxin-albumin fusion
protein [96,97]. Taken together, we hypothesize the possible molecular mechanisms underlying Zn
neurotoxicity and the action of carnosine (Figure 5). After exposure to Zn, intracellular Zn levels
increase for at least 30 min. Chelators such as Ca-EDTA block this process. Zn leads to an increase in
intracellular Ca2+ levels and then triggers ER stress. This process is inhibited by Al3+ and other Ca2+

channel blockers. Zn triggers the inhibition of the energy production machinery in the mitochondria
and the production of oxidative stress. The energy substrates pyruvate and citrate prevent this
process. The oxidative stress was attenuated by the thioredoxin-albumin fusion protein. Finally,
these three processes trigger neurodegenerative pathways and lead to the neuronal death observed
in VD. Carnosine, released from glial cells, enters neurons by peptide transporters and inhibits
Zn-induced ER stress. Numerous in vivo studies have suggested that carnosine is protective against
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ischemia-induced neurodegeneration using experimental animals [98–100]. We have published a
patent for carnosine to prevent or treat senile dementia based on the activities of carnosine [101].Nutrients 2018, 10, x FOR PEER REVIEW  9 of 19 
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Figure 5. Possible molecular mechanisms underlying the protective effects of carnosine in preventing
the neuronal death induced by Zn. Secreted excess amounts of Zn can translocate into cells and cause
the disruption of Ca2+ homeostasis, energy failure in mitochondria, the induction of ER (reticulum)
stress as well as oxidative stress, and apoptotic neuronal death. Carnosine is released into the synaptic
cleft and is transported into cell bodies, where it can inhibit ER stress-related and/or Arc-related
apoptotic pathways activated by Zn. Details are shown in the text. Ca-EDTA: calcium ethylene diamine
tetraacetic acid; NAD+: nicotinamide adenine dinucleotide; CytC: cytochrome C; ATP: adenosine
triphosphate; CHOP: CCAAT-enhancer-binding protein homologous protein; GADD34: growth-arrest-
and DNA-damage-inducible gene 34. AMPA-R: AMPA-type glutamate receptor.

5. Zinc, Carnosine, and Prion Diseases

5.1. Zinc, Copper and Prion Diseases

Zn and carnosine are also involved in prion diseases. Prion diseases include Creutzfeldt-Jakob
disease (CJD), Gerstmann-Straussler-Scheinker syndrome (GSS), and Kuru disease in humans.
They also include bovine spongiform encephalopathy (BSE) in cattle and scrapie in sheep [102].
Prion diseases are characterized by the spongiform degeneration of neurons and glial cells and
the accumulation of amyloidogenic prion protein (PrP). The administration of pathogenic tissue
causes the characteristic infections, and thus, prion diseases are also called transmissible spongiform
encephalopathies. During the transmissible infections, a normal prion protein (PrPC) is converted to
an abnormal scrapie-type isoform (PrPSc). Although both of PrPC and PrPSc have the same primary
sequence, PrPC differs from PrPSc in that PrPSc possesses a high content of β-sheet secondary structure
compared to PrPC, and therefore has resistance to protease digestion. PrPC is ubiquitously expressed
throughout the entire body (Figure 6). It is speculated that the misfolded PrPSc administrated from
contaminated food induces normal PrPC molecules in the brain to misfold and aggregate.

Therefore, prion diseases are considered to be protein-misfolding diseases (conformational
diseases), namely, the conformational change from PrPC to PrPSc is crucial for the pathogenesis
of prion diseases [103]. These features are similar to AD. PrPC is reported to be a metalloprotein
and regulates metal homeostasis [41]. PrPC is a 30–35-kDa glycoprotein and contains 208 amino acid
residues. In its N-terminal, PrPC possesses an octa-repeat domain composed of multiple tandem
copies of the eight-residue sequence –PHGGGWGQ– The octa-repeat domain can bind four metal ions
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(including Cu2+, Zn2+, and other divalent ions), and two other histidine residues, His96 and His111,
can bind two metal ions [104]. The levels of Cu in the brains of PrP-knockout mice were decreased
compared with wild-type mice [105]. PrPC possesses protective roles against oxidative stress as Cu/Zn
superoxide dismutase (Cu/Zn SOD) [106].

Zn2+ also binds PrP, and can influence Cu binding to PrPC. Moreover, prion genes and genes
encoding ZIP transporters possess evolutionary sequence similarities [107]. Watt et al. hypothesized
that PrPC acts as a ‘Zn sensor’ and facilitates the uptake of Zn into neurons by binding with AMPA
receptors [108].

Nutrients 2018, 10, x FOR PEER REVIEW  10 of 19 

 

Zn2+ also binds PrP, and can influence Cu binding to PrPC. Moreover, prion genes and genes 
encoding ZIP transporters possess evolutionary sequence similarities [107]. Watt et al. hypothesized 
that PrPC acts as a ‘Zn sensor’ and facilitates the uptake of Zn into neurons by binding with AMPA 
receptors [108].  

 
Figure 6. The structure of the prion protein. PrP: prion protein. 

5.2. Carnosine and PrPSc-Induced Neurotoxicity 

Normal PrPC has regulatory and neuroprotective functions such as regulating Cu homeostasis 
and antioxidant. Thus, loss of the protective functions by converting to PrPSc will lead to 
neurodegeneration. Meanwhile, PrPSc is neurotoxic. Since PrPSc has strongly infectious characteristics, 
using a full-length prion protein is difficult [109]. Thus, we and other researchers have used synthetic 
fragment peptides of PrP (PrP106–126) in the study of PrPSc neurotoxicity, owing to its similar 
characteristics with PrPSc such as β-sheet formation, neurotoxicity, and metal-binding ability.  

Our results using primary cultured rat hippocampal neurons and the thioflavin T fluorescence 
method exhibited that PrP106–126 forms β-sheet structures during the “aging” process (incubation 
at 37 °C for several days), and that aged PrP106–126 causes significant neurotoxicity. These 
characteristics are quite similar to AβP [22]. Either Zn2+ or Cu2+ significantly attenuates PrP106–126 
neurotoxicity. Furthermore, either Zn2+ or Cu2+ inhibits the oligomerization of PrP106–126 during the 
aging process, observed by thioflavin T fluorescence and atomic force microscopy observation. 

Although chelators such as clioquinol and deferoxamine did not influence PrP106–126 
neurotoxicity, we found that carnosine attenuates the neurotoxicity of PrP106–126 and inhibits 
oligomerization (Figure 7). Therefore, it is possible that carnosine acts as an anti-crosslinker of 
PrP106–126. Carnosine also inhibits the oligomerization of α-synuclein, which is a major player in 
DLB and Parkinson’s disease [110], and α-crystalline in lens [111]. In this respect, the anti-crosslinking 
activity of carnosine is important for the protective functions of carnosine against these diseases. 

 
Figure 7. Effects of carnosine on the neurotoxicity and the conformational changes of PrP106–126. (A) 
Effects of carnosine on the neurotoxicity of PrP106–126. The viability of cultured rat hippocampal 
neurons was analyzed using the lactate dehydrogenase (LDH) method after three days of exposure 

(octarepeat domain)

(PrP106-126)

PHGGGWGQPHGGGWGQPHGGGWGQPHGGGWGQ

60 90 126106 231
GPI

KTNMKHMAGAAAAGAVVGGL 

M M MM

M

M

PrP
96

M : Cu2+ and/or Zn2+

0

20

40

60

80

100

120

0

20

40

60

80

100

120A B

Ce
ll 

vi
ab

ili
ty

 (%
)

Re
la

tiv
e 

flu
or

es
ce

nc
e 

in
te

ns
ity

cont PrP
106-126

PrP
106-126
+
Carnosine

Aged PrP
106-126

AgedPrP
106-126
+
Carnosine

Fresh PrP
106-126

Figure 6. The structure of the prion protein. PrP: prion protein.

5.2. Carnosine and PrPSc-Induced Neurotoxicity

Normal PrPC has regulatory and neuroprotective functions such as regulating Cu homeostasis and
antioxidant. Thus, loss of the protective functions by converting to PrPSc will lead to neurodegeneration.
Meanwhile, PrPSc is neurotoxic. Since PrPSc has strongly infectious characteristics, using a full-length
prion protein is difficult [109]. Thus, we and other researchers have used synthetic fragment peptides
of PrP (PrP106–126) in the study of PrPSc neurotoxicity, owing to its similar characteristics with PrPSc

such as β-sheet formation, neurotoxicity, and metal-binding ability.
Our results using primary cultured rat hippocampal neurons and the thioflavin T (ThT)

fluorescence method exhibited that PrP106–126 forms β-sheet structures during the “aging” process
(incubation at 37 ◦C for several days), and that aged PrP106–126 causes significant neurotoxicity.
These characteristics are quite similar to AβP [22]. Either Zn2+ or Cu2+ significantly attenuates
PrP106–126 neurotoxicity. Furthermore, either Zn2+ or Cu2+ inhibits the oligomerization of
PrP106–126 during the aging process, observed by thioflavin T fluorescence and atomic force
microscopy observation.

Although chelators such as clioquinol and deferoxamine did not influence PrP106–126
neurotoxicity, we found that carnosine attenuates the neurotoxicity of PrP106–126 and inhibits
oligomerization (Figure 7). Therefore, it is possible that carnosine acts as an anti-crosslinker of
PrP106–126. Carnosine also inhibits the oligomerization of α-synuclein, which is a major player in
DLB and Parkinson’s disease [110], and α-crystalline in lens [111]. In this respect, the anti-crosslinking
activity of carnosine is important for the protective functions of carnosine against these diseases.
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Figure 7. Effects of carnosine on the neurotoxicity and the conformational changes of PrP106–126.
(A) Effects of carnosine on the neurotoxicity of PrP106–126. The viability of cultured rat hippocampal
neurons was analyzed using the lactate dehydrogenase (LDH) method after three days of exposure to
50 µM PrP106–126 aged alone or with 1 mM carnosine. Data are presented as mean ± S.E.M. (n = 6);
(B) Effects of carnosine on the thioflavin T (ThT) fluorescence of PrP106–126. The ThT fluorescence
(ex. 490 nm, em. 520 nm) of 25 µM of fresh PrP106–126 or aged PrP106–126 with 1 mM carnosine was
analyzed. Data are presented as mean ± S.E.M. (n = 7).

6. Crosstalk of Metals and Amyloidogenic Proteins at Synapse

6.1. Colocalization of APP and PrP at Synapse

Synapses are small but critical nodes for information processing and memory formation in neural
networks. Since synaptic plasticity is essential to memory formation, synaptic degenerations are
primary observed in many neurodegenerative diseases. As discussed in the previous sections, metals
(Zn2+ or Cu2+) as well as neurotransmitters are co-released from synaptic vesicles into synaptic clefts.
They bind to receptors at postsynaptic densities.

Two amyloidogenic proteins, APP and PrPC, are localized in the synapse, and play essential roles
in the regulation of metal homeostasis. APP is in the presynaptic region and AβP is secreted into
synaptic clefts in the presence of neuronal stimuli [112]. PrPC is coupled to glutamate receptors in the
postsynaptic membranes [113]. Considering the short distance across the synaptic cleft (approximately
20 nm), APP can interact with PrPC in this small compartment surrounded by a considerable amount
of Zn2+ and Cu2+. Indeed, PrPC reportedly binds to AβP oligomers and attenuates its neurotoxicity.

Given that the homeostasis of metals regulated by APP and PrPC is disrupted, it triggers the
degeneration of synapses, causing neurodegeneration and finally leading to the pathogenesis of
these diseases. ZnT-1 is also localized in postsynaptic membranes and regulates Zn homeostasis
by enhancing Zn efflux to the extracellular compartment [114]. ZnT-1 also regulates the activity of
NMDA-type glutamate receptors. Meanwhile, PrPC controls Zn2+ influx into cells as an analogue of
ZIP transporters, with AMPA-type glutamate receptors regulating synaptic Zn2+ levels. MT-3, brain
specific metallothionein, may also regulate Zn homeostasis at synapses [115]. In addition, MT-3 is
decreased in the brains of patients with AD [116].

6.2. Carnosine: A Regulator of Zn and Cu in the Synapse

Carnosine is another important contributor to regulating metal homeostasis in the synapse.
The concentration of carnosine in the olfactory bulb is as high as 0.5 mM [18]. Carnosine and
homocarnosine is synthesized in glial cells, and carnosine-like immunoreactivity was observed in
astrocytes or oligodendrocites [117]. Carnosine is reported to be secreted into the synaptic cleft from
oligodendrocytes by glutamate in a Zn-dependent manner [36,118]. Therefore, carnosine is suggested
to contribute the availability of Zn at the synapse and to control Zn homeostasis and, therefore,
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provides wide protection against various neurodegenerative disorders. Figure 8 exhibits a hypothetical
scheme showing interactions between carnosine, APP, PrP, Zn, and Cu at the synapse.
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7. Carnosine in Foodstuffs

Considering the beneficial and neuroprotective roles of carnosine, dietary supplementation
with carnosine may become important for the prevention of various neurodegenerative diseases.
The supplementation with carnosine/anserine improves the cognitive decline of AD model mice [119],
or of elderly people [120]. Orally administered carnosine can cause increased carnosine levels in the
brain [121]. Moreover, the amount of carnosine is age-dependently decreased [122].

Therefore, the quantitative analysis of carnosine in foods is essential for developing
supplementation therapy. For this purpose, we established a convenient system for the analysis
of carnosine and anserine in various foods using HPLC [123,124]. However, it is difficult to separate
carnosine and anserine by performing reversed phase HPLC with a conventional octadecylsilyl (ODS)
column used in ordinary peptide analysis, since carnosine and its analogues are highly hydrophilic
and not retained in an ODS column. Thus, we used a carbon column (Hypercarb™ column; Thermo
Electron Corp., Waltham, MA, USA) containing porous graphite carbon. The typical chromatograms of
standard carnosine and anserine are shown in Figure 9A. Under these conditions, carnosine appeared at
5.7 min and anserine at 7.3 min. We used conventional UV spectroscopy for measuring the absorbance
at 215 nm to detect carnosine and anserine. The typical chromatograms of the water extract of chicken
breast and the pork shoulder after being heated at 95 ◦C for 30 min to reduce and remove proteins are
shown in Figure 9B,C. The recovery rate of carnosine was determined to be 98.8 ± 6.6% and that of
anserine was 99.4 ± 1.8% after this simple pretreatment.



Nutrients 2018, 10, 147 13 of 20

Using this method, the level of carnosine and anserine in food extracts was examined (Figure 10).
Our results suggest that relatively high concentrations of carnosine exist in muscles. For example,
1 g of chicken muscle (breast) contained 2.16 ± 0.67 mg/g (i.e., approximately 1 mM) of carnosine.
The concentrations of carnosine and anserine were different among species and varied in various
regions. These results coincide with previous studies [18].
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Furthermore, we analyzed the amount of carnosine in the muscle of thoroughbred horses
and found that the gluteus medius exhibited the highest concentration of carnosine among five
muscle tissues (flexor capri radius, triceps branchii, masseter, gluteus medius, sternocleidomastoid).
Considering that the gluteus medius is abundant in Type IIa muscles and mainly used in high intensity
exercise, carnosine may play essential roles in high intensity exercise. Indeed, the supplementation of
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β-alanine reportedly increases muscle carnosine concentrations and improves exercise performance,
as concluded by the International Society of Sports Nutrition [125].

8. Conclusions and Future Perspectives

Zn plays critical roles in the pathogenesis of neurodegenerative diseases, such as AD, VD, and
prion diseases. Although Zn acts as an enhancer of neurotoxicity as well as a protector in AD and
VD, it is possible that carnosine, a Zn chelator, acts as a neuroprotector in these diseases owing to its
numerous beneficial characteristics including anti-ER stress, antioxidant, and anti-crosslink activities.
Additionally, the properties of carnosine such as being water-soluble, heat-inactive, and nontoxic make
it a good neuroprotective nutrient beneficial for health. Considering the beneficial characteristics of
carnosine, dietary supplementation with carnosine or its component may become useful for health,
as carnosine in food plays a critical role in the regulation of Zn homeostasis and the prevention
of neurodegenerative diseases. Further research about the molecular mechanism of carnosine in
preventing neurotoxicity is required.
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Abbreviations

AD Alzheimer’s disease
AMPA amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
CSF cerebrospinal fluid
EAR estimated average
ER endoplasmic reticulum
GABA γ-aminobutyric acid
HPLC high performance liquid chromatography
NMDA N-methyl-d-aspartate
VD vascular type of senile dementia
ZIP Zrt-, Irt-like protein
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