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Abstract. RCJ 3.1, a clonally derived cell population 
isolated from 21-d fetal rat calvaria, expresses the 
osteoblast-associated characteristics of polygonal mor- 
phology, a cAMP response to parathyroid hormone, 
synthesis of predominantly type I collagen, and the 
presence of 1,25-dihydroxyvitamin D3-regulated alka- 
line phosphatase activity. When cultured in the pres- 
ence of ascorbic acid, sodium 13-glycerophosphate, and 
the synthetic glucocorticoid dexamethasone, this clone 
differentiated in a time-dependent manner into four 
morphologically distinct phenotypes of known mesen- 
chymal origin. Multinucleated muscle cells were ob- 
served as early as 9-10 d in culture, lipid-containing 
adipocytes formed after 12 d, chondrocyte nodules 
were observed after 16 d, and mineralized bone nod- 
ules formed after 21 d in culture. The differentiated 
cell types were characterized morphologically, 
histochemically, and immunohistochemically. The for- 
mation of adipocytes and chondrocytes was dependent 
upon the addition of dexamethasone; the muscle and 
bone phenotypes were also expressed at low frequency 
in the absence of dexamethasone. The sex steroid hor- 

mones progesterone and 1713-estradiol had no effect on 
differentiation in this system, suggesting that the effects 
of dexamethasone represent effects specific for gluco- 
corticosteroids. Increasing concentrations of dexameth- 
asone (10-9-10 -6 M) increased the numbers of myo- 
tubes, adipocytes, and chondrocytes; however, when 
present continuously for 35 d, the lower concentra- 
tions appeared to better maintain the muscle and adi- 
pocyte phenotypes. Bone nodules were not quantitated 
because the frequency of bone nodule formation was 
t o o  low. Single cells obtained by plating RCJ 3.1 cells 
at limiting dilutions in the presence of dexamethasone, 
were shown to give rise to subclones that could 
differentiate into either single or multiple phenotypes. 
Thus, the data suggest that this clonal cell line con- 
tains subpopulations of mesenchymal progenitor cells 
which can, under the influence of glucocorticoid hor- 
mones, differentiate in vitro into four distinct cell 
types. It is, therefore, a unique cell line which will be 
of great use in the study of the regulation of mesen- 
chymal stem cell differentiation. 

T 
HE regulation of the differentiation of mesenchymal 
precursor cells into specialized connective tissue cells 
such as the cells of bone, cartilage, muscle, and adi- 

pose tissues is poorly understood. Osteoblasts, chondro- 
cytes, myotubes, and adipocytes may be related at the level 
of a less restricted precursor cell population. This is sug- 
gested by the observation that demineralized bone induces 
formation of cartilage in rat skeletal muscle (49, 65); by the 
finding that embryonic chick limb bud mesenchymal cells 
differentiate into muscle, cartilage, and bone (9, 10, 45, 46); 
and by the observed differentiation of clonal mouse embryo 
fibroblasts into muscle, fat, and cartilage (63). Recently, we 
(7) and others (41) have shown that mixed populations of cells 
enzymatically isolated from 21-d fetal rat calvaria and cul- 
tured for periods ranging from 14 to 21 d form bone nodules 
which mineralize in the presence of organic phosphate. Quan- 
titation of the numbers of bone nodules formed suggested 
that in the mixed cell population a limited number of progen- 

itor cells are present which have the capacity to differentiate 
along the osteogenic pathway (Bellows, C. G., and J. E. Au- 
bin, manuscript submitted for publication). The exact nature 
of these putative progenitor cells and the factors regulating 
their activities are not known, although it has recently been 
shown that glucocorticoids increase the expression of the 
bone phenotype (6, 7) and permit the expression of cartilage 
in this system (Bellows, C. G., J. E. Aubin, and J. N. M. 
Heersche, manuscript submitted for publication). It is also 
not known how this type of osteoprogenitor is related to other 
mesenchymally derived cells, such as cartilage, muscle, and 
adipose tissue (for review see reference 47). 

Earlier, we isolated a number of clonal cell lines from cell 
populations derived from 21-d fetal rat calvaria and showed 
that distinct populations with characteristic biochemical 
phenotypes could be recovered (4). In the present study, we 
wished to determine whether any of the clonal lines that ex- 
pressed properties associated with the osteoblast phenotype 
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had the capacity to differentiate in vitro under conditions pre- 
viously shown to maximally stimulate bone nodule forma- 
tion in mixed rat calvaria cultures (6, 7). We found that one 
of these clonal cell lines, RCJ 3.1, differentiated into four 
morphologically distinct cell types: multinucleated muscle 
cells, fat-containing adipocytes, chondrocytes, and osteo- 
blasts. In addition, we analyzed the potential of subclones 
isolated from RCJ 3.1 cells to generate populations differen- 
tiating into one or more phenotypes. 

Materials and Methods 

Cloning and Cell Culture 
The cell population used in this study, RCJ 3.1, was isolated in 1980 by limit- 
ing dilution cloning from population III of a sequential collagenase diges- 
tion of 21-d fetal rat calvaria cells (4). Single-cell suspensions of fourth sub- 
culture population III were plated at limiting dilutions of "~1 and 5 cells/ 
16-mm well and left undisturbed for "~10 d. Multicolony wells were used 
only for the determination of plating efficiency; from a total of 432 cells 
plated, 41 colonies were detectable, yielding a plating efficiency of "~9%. 
The percentage of wells containing more than 1 colony was low, varying be- 
tween 4 and 15%, whereas the percentage of wells containing no colonies 
was high, varying between 40 and 90%. Clones from twelve wells contain- 
ing single colonies were subcultured and maintained, and 4 (designated 3.1, 
3.2, 3.4, and 3.12) survived to population doubling levels of >20. Spe- 
cifically, RCJ 3.1 was derived from a multiwell plate seeded at 5 cells/well 
which, upon screening, had 67 % of the wells containing no colonies, 25 % 
containing one colony, and 8% containing >1 colony, suggesting a high 
probability that the single colony wells were clonal in origin (34). Since we 
were interested in obtaining clonal cell lines with phenotypic properties of 
osteoblasts, the four clonal lines surviving to population doubling levels 
>20 were screened for the presence of osteoblast properties (e.g., cAMP 
responsiveness to parathyroid hormone, type I collagen synthesis) as early 
as possible (population doubling levels •20-25) and were frozen soon 
thereafter. As expected based on previous cloning experiments (4), the four 
clones were different with respect to their morphology, hormone respon- 
siveness, and collagen synthesis. All experiments reported here were per- 
formed on RCJ 3.1 cells recovered from the same frozen stock; i.e., cells 
at ,'~45 population doublings from the initial single cell. This was done to 
avoid the possibility that the phenotype expressed by the cells would change 
during the course of our experiments (4a, 8, 26). 

For analysis of subclones, single cell suspensions of RCJ 3.1 cells were 
plated at limiting dilutions of '~0.25, 0.5, and 1.0 cells/6-mm-diam microti- 
ter well (Nunc; Gibco, Grand Island, NY) in the presence of sodium I~-glyc- 
eropbosphate (I~-GP), ~ ascorbic acid, and 10 -7 M dexamethasone; 300 
wells were prepared at each dilution. Only single-colony wells were selected 
for study; these were maintained for 30 d, fixed, stained, and scored for 
the presence of each phenotype, as described below. 

Cells were routinely maintained in standard medium: a-Minimal Essen- 
tial Medium (ct-MEM + RNA-DNA, Flow Laboratories, Inc., McLean, 
VA) containing 15 % FBS and antibiotics (100 p,g/ml penicillin G, 50 p,g/ml 
gentamicin, and 0.3 p.g/ml fungizone) at 37°C in a humidified atmosphere 
of 5% CO2 in air. For all experiments, RCJ 3.1 cells were plated at --50,000 
cells/35-mm culture dish (5.2 × 103 cells/era 2) in standard medium. 24 h 
after plating, the medium was changed to either standard medium, sup- 
plemented medium (standard medium plus 50 lag/ml ascorbic acid [Fisher 
Scientific Co., Don Mills, Ontario] and 10 mM I~-GP [BDH Chemicals, 
Toronto, Ontario]) or supplemented medium containing various concentra- 
tions of dexamethasone, other steroid hormones (progesterone, 17~estra- 
diol, hydrocortisone; Sigma Chemical Co., St. Louis, MO), or ethanol ve- 
hicle. Dexamethasone stock solutions were prepared in absolute ethanol at 
10 -3 M and the final ethanol concentration in all cultures did not exceed 
0.1% vol/vol. Media supplemented with fresh [~-GP, ascorbic acid, and the 
appropriate concentration of steroid hormones were changed three times 
weekly. Under these conditions, cells reached confluence by 5 d and could 
be maintained for at least 35 d. 

cAMP Determination 
Cells were plated in standard medium at 50,000 cells/35-mm culture dish 

1. Abbreviations used in this paper: 13-GE sodium 13-glycerophosphate; 
1,25-(OH)2D3, 1,25-dihydroxyvitamin D3. 

and assayed at confluence. The effects of parathyroid hormone (bPTH 
[1-84], 2,200 U/mg, donated by Dr. T. M. Murray, University of Toronto, 
Canada), l-lsoproterenol (Sigma Chemical Co.), and prostaglandin E2 
(Upjohn Co., Kalamazoo, MI) on intracellular cAMP were analyzed by in- 
cubating intact cells with [3H]adenine as described previously (23). All 
agonist incubations were for 10 min at room temperature, after pretreatment 
of the cells with phosphodiesterase inhibitor, 3-isobutyl-l-methylxanthine 
(Sigma Chemical Co.). 

Alkaline Phosphatase Activity 
Cells were plated in standard medium at 50000 cells/35-mm culture dish. 
After 24 h, the medium was changed to standard medium containing 2% 
FBS and either vehicle (0.1% ethanol) or 10 -7 M 1,25-dihydroxyvitamin 
D3 (1,25-[OH]2D3) and cultured for a further 72 h. Alakaline phosphatase 
activity was measured according to the method of Lowry (38) as described 
previously (23). 

Analysis of Collagen ~pes 
Cells were cultured for 72 h in either standard medium or supplemented 
medium containing either vehicle or dexamethasone. At confluence, the 
cells were pulse-labeled for 30 rain at 37°C in medium containing 50 p.Ci 
[35S]methionine (New England Nuclear Corp., Lachine, Quebec). After 
the pulse, the cells were washed and incubated for4 h in medium containing 
1% FBS. The chase media were then collected and aliquots were digested 
with 0.1 mg/ml pepsin (Worthington Biochemical Corp., Freehold, NJ) at 
pH 2.3 (0.5 N acetic acid-HCl) for 4.5 h at 15°C. The pepsin-resistant col- 
lagen was lyophilized and the a chains were analyzed by SDS-PAGE using 
delayed reduction as described previously (8, 36). 

Quantitation of Muscle, Fat, Cartilage, and Bone 
Living cultures were routinely examined using phase-contrast microscopy 
and were fixed at various times for histology, indirect immunofluorescence, 
and quantitation of the cell types present. 

Muscle was identified morphologically by the appearance of multi- 
nucleated myotubes, and immunochemically by the presence of the muscle- 
specific intermediate filament protein desmin and the presence of acetylcho- 
line receptors. After various culture periods, representative cultures were 
fixed in neutral buffered formalin and stained with haematoxylin and eosin. 
For desmin staining, cells were fixed in situ with -20°C methanol for 5 min 
and incubated with a mouse mAb against desmin (15; Boehringer-Mann- 
heim Canada, Montreal, Quebec) at 15 p.g/ml in PBS. The second antibody 
was sheep anti-mouse FITC-conjugated F(ab')2 fragments of IgG at 50 ~tg/ 
ml in PBS. Both incubations were for 45 min at 37°C, each followed by three 
5-min washes in PBS. The cells were then covered with PBS and observed 
immediately with a water immersion objective on a Zeiss Photomicroscope 
III equipped for epifluorescence and photographed with Kodak Tri-X Pan 
film. For detecting the presence of acetylcholine receptors, cells were in- 
cubated with 7 × 10 -s M tetramethylrhodamine-a-bungarotoxin (Molecu- 
lar Probes Inc., Eugene, OR; see reference 48) in tt-MEM containing 
3 mg/ml BSA for I h at 37°C as described previously (66). Cells were then 
washed and fixed in 1% formaldehyde at 4°C for 30 min, and observed and 
photographed as described above. Since there was a large variation in the 
size of myotube colonies and in the number of nuclei per myotube, an ac- 
curate assessment of myotube formation could not be achieved; therefore 
the effect of dexamethasone on myotube formation was evaluated by estimat- 
ing the percentage of microscope fields which contained at least one myo- 
tube (minimum 60-75 fields/dish, 2-ram field diam). 

For quantitation of adipocytes, cultures were fixed overnight in neutral 
buffered formalin, washed in 70% ethanol, and stained in situ for neutral 
lipid with Sudan IV for 10 min (13). Each dish was examined in its entirety 
for adipocyte colonies using a Nikon inverted microscope by placing the 
dish on a transparent acetate grid ruled in 2-mm squares. A focus of adipo- 
cytes was defined as a group of one or more lipid-containing (Sudan IV- 
positive) cells separated from other similar colonies by at least one micro- 
scope field (2-mm field diam). The total number of stained adipocyte foci, 
and the number of adipocytes per focus were counted. Adipocyte foci were 
photographed with Kodak Technical Pan film 2415. 

For quantitation of cartilage, cultures were fixed overnight with neutral 
buffered formalin and stained in situ for glycosaminoglycans with either AI- 
cian blue or toluidine blue. Single loci of cartilage were defined as cartilage 
nodules, whereas groups of discrete nodules clus~red together within a 
2-ram field diam were defined as cartilage clusters. Cartilage nodules and 
clusters were counted and photographed in a similar manner as described 
above for the adipocyte foci. 
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Figure 1. Phase-contrast micrographs of RCJ 3.1 cells. Cells cul- 
tured in standard culture medium typically appear fibroblast-like at 
subconfluence (a), while at confluence the cells form a layer of cu- 
boidal or polygonal cells (b). Bar, 20 p.m. 
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Figure 2. Hormone responsiveness and alkaline phosphatase activ- 
ity of RCJ 3.1 cells. (A) Cells were cultured in standard medium 
and the effects of parathyroid hormone (PTH, 2.5 U/ml), isoproter- 
enol (IPT, 5 x 10 -4 M), and prostaglandin E2 (PGE2, 2.5 ~tg/ml) 
on intracellular cAMP were analyzed at confluence as described in 
Materials and Methods. (B) The effects of 1,25-(OH)2D3 (0.1 p.M) 
on alkaline phosphatase activity. Cells were plated in standard 
medium; after 24 h the medium was changed to a-MEM containing 
2% FBS and either vehicle (0.1% absolute ethanol) or 1,25- 
(OH)2D3 and cultured for a further 72 h. Alkaline phosphatase ac- 
tivity was measured as described in Materials and Methods. 

Bone was identified morphologically and histologically as previously de- 
scribed (6). Briefly, cultures were fixed overnight with neutral buffered for- 
malin, the nodules were removed and embedded either in paraffin or O.C.T. 
compound (Tissue-Tek 4583, Miles Scientific Div., Naperville, 1L) for 
paraffin and frozen tissue sections, respectively. All sections were 6 ~tm 
thick and were stained with hematoxylin and eosin, van Gieson's picrofuch- 
sin for collagen, yon Kossa for mineral deposits, and Alcian blue for glycos- 
aminoglycans. The frequency of bone nodule formation was low; therefore 
we did not quantitate the number of bone nodules. 

Results 

Morphological and Biochemical Characteristics 
of  RCJ 3.1 

At subconfluence, RCJ 3.1 cells comprise a relatively homo- 
geneous population of fibroblast-like cells (Fig. 1 a), while 
at confluence the cells appear more polygonal and form a 
tightly packed monolayer (Fig. 1 b). To establish the osteo- 
blast-like nature of these cells, we analyzed their hormone 
responsiveness, alkaline phosphatase activity, and collagen 
synthesis. RCJ 3.1 cells responded to exogenously added 
parathyroid hormone, l-isoproterenol, and prostaglandin E: 
with an increase in intracellular cAMP over basal levels of 
,~12-, 17-, and 5-fold, respectively (Fig. 2 a). Previous results 
have shown that RCJ 3.1 cells respond to exogenous 
parathyroid hormone and prostaglandin E2 by cytoplasmic 

retraction (3). RCJ 3.1 cells also expressed moderately high 
basal levels of alkaline phosphatase activity, which increased 
over twofold after incubating the cells for 72 h with 10 -7 M 
1,25-(OH)2D3 (Fig. 2 B). These cells synthesized predomi- 
nantly type I collagen (90%) and ~10% type III collagen 
(Fig. 3). Incubating the cells for 72 h with either 10 -9 M or 
10 -7 M dexamethasone did not affect the relative amount of 
type I or type III collagen synthesized (Fig. 3, lanes 5 and 
6). However, there was a slight reduction in the percentage 
of total collagen synthesized (<5%) in cultures treated for 
72 h with 10 -7 M dexamethasone (data not shown). 

Myotube Formation 

In the absence of dexamethasone, RCJ 3.1 cells consistently 
formed a small number of myotubes after at least 9-10 days 
in culture. In the presence of dexamethasone (10 -7 M), the 
number of myotubes per culture dish was increased. These 
myotubes, which were elongated and contained many nuclei, 
formed both on top of and within the tightly packed mono- 
layer of RCJ 3.1 cells (Fig. 4, a-c). The size of the myotube 
colonies varied, depending upon the presence of dexametha- 
sone and the time in culture; some colonies contained a few 
large myotubes (Fig. 4 a), while others comprised as many 
as >50 densely packed, smaller myotubes (Fig. 4 b). In addi- 
tion, there was a large variation in the number of nuclei per 
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Table L The Effect of Dexamethasone on Myotube 
Formation in RCJ 3. I Cells 

Treatment Areas containing myotubes* 

Control (0.1% ethanol) + 
Dexamethasone (10 -9 M) + + 

Dexamethasone (10 -7 M) + + + 

RCJ 3.1 cells were plated at 50,000 cells/35-mm culture dish in standard cul- 
ture medium containing 15 % FBS. After 24 h, the medium was changed to sup- 
plemented medium containing 15% FBS and either vehicle (0.1% absolute 
ethanol) or the concentration of dexamethasone indicated. Cultures were fixed 
after 15 d, and scored for the percentage of microscope fields (2-mm field diam) 
containing one or more myotubes as described in Materials and Methods. 
* +, 10% of the microscope fields contain one or more myotubes; + +, 20% 
of the microscope fields contain one or more myotubes; + + +, 40% of the 
microscope fields contain one or more myotubes. 

Figure 3. Analysis of collagen types synthesized by RCJ 3.1 cells. 
[3~S]Methionine-labeled proteins from culture media of cells were 
digested with pepsin and the collagen ct chains separated by SDS- 
PAGE with 7.5 % gels and delayed reduction as described in Mate- 
rials and Methods. Lane 1, type I collagen standard; lane 2, type 
III collagen standard; lane 3, standard medium; lane 4, standard 
medium supplemented with Na I~-glycerophosphate and ascorbic 
acid; lane 5, supplemented medium plus 10 -9 M dexamethasone 
(72 h); lane 6, supplemented medium plus 10 -7 M dexameth- 
asone (72 h). 

myotube (data not shown). Some of the large myotubes ex- 
hibited regular cross-striations across portions of the cell 
(Fig. 4 c); these cells often twitched spontaneously in culture 
and were observed to contract when a drop of acetylcholine 
(1 mM) was added to the medium. Indirect immunofluores- 
cence staining with a mouse mAb to the muscle-specific in- 
termediate filament protein desmin showed that all the mul- 
tinucleated myotubes stained brightly, while the rest of the 
RCJ 3.1 cell population was unstained (Fig. 4, d and e). The 
typical clustering of acetylcholine receptors associated with 
differentiated muscle cells was observed in some myotubes 
after staining with the acetylcholine receptor agonist, ct-bun- 
garotoxin, conjugated to tetramethylrhodamine (Fig. 4 f ) .  

The effect of dexamethasone (10 -9 M and 10 -7 M) on myo- 
tube formation was determined by measuring the percentage 
of microscope fields per dish containing myotubes. The num- 
ber of myotubes could only be determined semiquantitatively 
due to the aforementioned heterogeneity in myotube colony 
size and the varying number of nuclei per myotube. Dexa- 
methasone caused an increase in the number of myo- 
tube-containing fields (Table I). Once formed, the myotubes 
seemed relatively stable, although myotubes appeared to de- 
generate after exposure to the drug for more than 25 d in 
some cultures treated with high concentrations of dexameth- 
asone (10 -7, 10 -6 M; data not shown). 

Adipocyte Formation 

RCJ 3.1 cells cultured in supplemented medium for up to 
35 d did not form foci characteristic of differentiated adipo- 
cytes. However, after 10-12 d of dexamethasone treatment, 
we observed the appearance of large, rounded cells which 
started to accumulate cytoplasmic lipid droplets, and which 
were clearly distinguishable from the cells in the surround- 
ing monolayer under phase-contrast optics. Eventually, the 
entire cytoplasm of these cells accumulated large, refractile 
lipid droplets (Fig. 5 a). These lipid droplets stained posi- 
tively with Sudan IV (Fig. 5 b), a stain characteristic for neu- 
tral lipid in fat cells. Similar to the distribution of muscle 
colonies, the adipocytes appeared both as foci containing 
numerous cells or as single cells. The number of adipocyte 
foci per culture dish after 35 d of hormone treatment was de- 
pendent on the concentration of dexamethasone: the number 
was highest at 10 -9 M dexamethasone, and decreased with 
increasing dexamethasone concentrations (Fig. 6). To see 
whether the observed dose relationship was related to the 
time of exposure to dexamethasone, we analyzed the effects 
of a low (10 -9 M )  and high (10 -7 M) concentration of the 
drug. In 10 -7 M dexamethasone, the number of adipocyte 
foci was highest at day 10 and decreased up to day 32, 
whereas in 10 -9 M dexamethasone a slower but steady in- 
crease up to day 16 was followed by a stable plateau up to 

Figure 4. Phase-contrast (a-c) and fluorescence (d-f) micrographs of myotubes formed in cultures of RCJ 3.1 ceils grown in supplemented 
culture medium containing 10 -7 M dexamethasone for at least 10 d. Some myotube colonies contain a few large myotubes (a and c), while 
others contain over 50 densely packed smaller myotubes (b). Myotubes contain many nuclei (e.g., arrowheads in a) and contain regular 
cross striations (c). Only muscle cells present in the confluent monolayer are stained by desmin staining (d and e). (f) Cluster of acetylcho- 
line receptors visible after staining with tetrarnethylrhodamine-ct-bungarotoxin; upper panel, bright field; lower panel, fluorescence. Bars: 
(a, c, d, and f )  5 I.tm; (b) 10 Ixm; (e) 2 txm. 
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Figure 5. Phase-contrast (a) and bright field 
(b) micrographs of adipocyte loci formed in 
cultures of RCJ 3.1 cells grown in supple- 
mented medium containing 10 -9 M dexa- 
methasone for at least 18 d. (b) A typical 
adipocyte colony stained with Sudan IV and 
counterstained with haematoxylin as de- 
scribed in Materials and Methods. The lipid 
vacuoles in the cells are strongly stained. 
Bar, 40 ~tm. 

at least day 32 (Fig. 7). When the total number of  adipocyte 
foci at each time point in Fig. 7 was analyzed for the actual 
number of adipocytes per focus of cells, it was observed that 
as the culture time progressed, foci comprised predomi- 
nantly small numbers of adipocytes in 10 -7 M dexametha- 
sone (1-5 adipocytes/focus Fig. 8 A), whereas in 10 -9 M 
dexamethasone, large foci containing 21-30, or >30 adipo- 
cytes/focus were predominant at all time points after day 12 
(Fig. 8 B). 

Cartilage Formation 

After ~16 d of  dexamethasone treatment, numerous nodules 
appeared comprising round or cuboidal cells which morpho- 
logically resembled chondrocytes and which were distinctly 
different from the surrounding cells (Fig. 9 a). The cells pro- 
duced a matrix which was highly refractile when viewed with 
phase-contrast microscopy, and which displayed intense AI- 

Figure 6. The effect of various concentrations of dexamethasone on 
the number of adipocyte foci per culture dish. RCJ 3.1 cells were 
cultured in supplemented medium containing dexamethasone as de- 
scribed in Materials and Methods. After 35 d, cultures were fixed, 
stained with Sudan IV, and counted as described in Materials and 
Methods. Values represent the mean + SEM of 3-5 culture dishes. 
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Figure 7. Time dependency of the formation of adipocyte foci in the 
presence of 10 -9 M (1) and 10 -7 M (1~) dexamethasone. RCJ 3.1 
cells were cultured in supplemented medium containing dexameth- 
asone as described in Materials and Methods. At the indicated 
times, cultures were fixed, stained with Sudan IV, and counted as 
described in Materials and Methods. No adipocyte foci were ob- 
served in control cultures. Values represent the mean + SEM of 3-5 
culture dishes. 

cian blue staining and metachromasia with toluidine blue 
staining (Fig. 9, b-d). Chondrocyte-like nodules did not ap- 
pear in cultures treated with supplemented medium alone for 
periods of up to 35 d. In some cultures treated with high con- 
centrations of dexamethasone (10 -7 M, 10 -6 M), we ob- 
served several nodules clustered in a small defined area of 
the culture dish; such groups of nodules were defined as 
clusters of nodules (Fig. 9 e). In addition to the observation 
that cartilage formed either as discrete nodules or in clusters 

Figure 8. Analysis of the size of the adipocyte foci at each time point 
shown in Fig. 7. Cultures treated with 10 -7 M (A) and 10 -9 M (B) 
dexamethasone were stained with Sudan IV and the number of 
adipocytes per focus counted. (11) <5; (1~) 5-10; ([]) 11-20; (~]) 
21-30; (17) >30. 

of nodules, we have observed mixed colonies containing both 
adipocytes and chondrocytes in several cultures treated with 
dexamethasone concentrations >110 -8 M; these were present 
at low frequencies and were not quantitated (data not shown). 

The formation of both cartilage nodules and clusters of 
nodules increased with increasing concentrations of dexa- 
methasone (Fig. 10) when analysis was done after 35 d in cul- 
ture. Analysis of the time dependency of low (10 -9 M) and 
high (10 -7 M) concentrations of dexamethasone showed that 
10 -9 M caused a slight stimulation of the number of chon- 
drocytes per culture dish which remained constant with in- 
creasing time of exposure to the drug. In contrast, the effect 
of 10 -7 M dexamethasone was to increase cartilage nodule 
formation throughout the entire 32-d culture (Fig. 11). 

Bone Formation 

RCJ 3.1 cells cultured for at least 21 d also formed three- 
dimensional nodular structures (Fig. 12 a) which morpho- 
logically were distinctly different from the cartilage nodules 
shown in Fig. 9. These nodules appeared to form with or 
without dexamethasone added to the culture medium. Upon 
further examination in cross section, the nodules consisted 
of a dense connective tissue matrix containing round cells 
resembling osteocytes, covered by a layer of polygonal or cu- 
boidal cells resembling osteoblasts (Fig. 12 b). That the ma- 
trix was collagenous in nature was confirmed by the positive 
staining of adjacent sections with van Gieson's picrofuchsin 
(data not shown). Both nonmineralized (Fig. 12 b) and min- 
eralized (Fig. 12 c) nodules were observed. Sections of a 
mineralized nodule stained with von Kossa showed intense 
staining associated with the mineralized portion of the nod- 
ule (Fig. 12 c). We did not attempt to quantitate the number 
of bone nodules formed because the frequency of bone nod- 
ule formation was very low. 

Subclone Analysis 

Wells containing single cells were obtained by plating single- 
cell suspensions of RCJ 3.1 cells at limiting dilutions in the 
presence of 13-GP, ascorbic acid, and 10 -7 M dexamethasone 
as described above. A total of 164 single colonies were 
selected for further study; single-colony wells found to con- 
tain more than one colony after a second screening were dis- 
carded. Of these 164 subclones, 52 (32%) gave rise to com- 
binations of muscle, adipocyte, and chondrocyte phenotypes 
(Table II). Specifically, 36 colonies (22%) were restricted to 
a single cell type, 14 colonies (9%) gave rise to two pheno- 
types, and 2 colonies (1%) gave rise to three phenotypes: 
muscle, fat, and cartilage. Bone nodules were not detected 
in these cloning experiments, as expected based on the low 
frequency measured earlier. 

Steroid Hormone Specificity 

To assess the steroid specificity of induction of the different 
phenotypes, cultures were treated for 30 d with 10 -7 M con- 
centrations of either progesterone, 1713-estradiol, hydrocorti- 
sone, or dexamethasone. The steroid hormones progesterone 
and 17~estradiol did not induce RCJ 3.1 cells to form any 
of the differentiated cell types observed with dexamethasone, 
whereas the effects of the glucocorticoid hydrocortisone 
were similar to those of dexamethasone (Table III). 
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Figure 9. (a) Phase-contrast micrograph of a cartilage nodule formed in a culture of RCJ 3,1 cells treated with supplemented medium contain- 
ing 10 -7 M dexamethasone for at least 20 d. Large rounded cells synthesize a matrix which is very refractile under phase-contrast optics. 
(b) Bright field micrograph of a toluidine blue-stained frozen section (6 ~tm) of a large cartilage nodule. (c and d) Bright field micrographs 
of cartilage nodules after Alcian blue staining in situ show intense matrix-associated staining. (e) Phase-contrast micrograph of a typical 
cluster of cartilage nodules. Alcian blue staining and "clusters" of cartilage nodules are described and defined in Materials and Methods. 
Bars: (a-c) 5 p.M; (d and e) 10 Ixm. 

6 
6 
z 

20 

15 

10 

Co 10 -9 10 "s 10.7 

Dexarnethasone Concentration (M) 

10 .6 

Discussion 

We have shown that a clonal cell population derived from fe- 
tal rat calvaria cells has the capacity to differentiate into four 
distinct tissue types: muscle, fat, cartilage, and bone. Under 
control conditions, RCJ 3.1 cells always differentiated at a 

Figure 10. The effect of different concentrations of dexamethasone 
on the number of cartilage nodules (11) and on the number of carti- 
lage nodule clusters (E~). RCJ 3.1 cells were cultured in supple- 
mented medium containing dexamethasone as described in Mate- 
rials and Methods. After 35 d, cultures were fixed, stained with 
Alcian blue, and counted as described in Materials and Methods. 
Values represent the mean + SEM of 3-5 culture dishes. 
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Figure 11. Time dependency of the formation of cartilage nodules 
in the presence of 10 -9 M ([]) and 10 -7 M (11) dexamethasone. 
RCJ 3.1 cells were cultured in supplemented medium containing 
dexamethasone. At the indicated times, cultures were fixed, stained 
with Alcian blue, and counted as described in Materials and 
Methods. No cartilage nodules were observed in control cultures. 
Values represent the mean + SEM of 3-5 culture dishes. 

low frequency into muscle cells, and occasionally into osteo- 
blasts, but adipocytes and chondrocytes appeared only after 
the addition of dexamethasone. The chronological develop- 
ment of the four tissue types (that is, muscle first, followed 
by fat, cartilage, and then bone) was identical in all experi- 
ments and only occurred after the cells reached confluence. 
The dexamethasone effect on the expression of the muscle, 
adipocyte, and chondrocyte phenotypes was both dose and 
time dependent, and apparently specific for glucocortico- 
steroid hormones since the sex steroid hormones progester- 
one and 17ffestradiol had no effect. 

Myotubes appeared mainly in colonies of varying size, 
suggesting that they formed as a result of local proliferation 
of muscle progenitor cells and fusion of mononuclear myo- 
blast-like precursor cells, similar to myotube formation in 
primary muscle cell cultures or in isolated myoblast cell 
lines (for example L6; 68, 69). The formation of myotubes 
in the absence of dexamethasone suggests that a certain sub- 
population of cells in RCJ 3.1 has the capacity to differentiate 
along a myogenic pathway without exogenous stimulation. 
The increase, after treatment with dexamethasone, in the 
percentage of microscopic fields per culture dish that con- 
tained myotubes suggests that the drug stimulated the 
proliferation and/or differentiation of these putative muscle 
progenitor cells. Since our standard culture medium was 
supplemented with 15% FBS, it is not clear whether this 
effect reflects a direct action of glucocorticoids on muscle 
differentiation in vitro, or an indirect effect (see below). 

Adipocytes were not observed in control cultures, despite 
supplementation of the culture medium with 50 Ixg/ml ascor- 
bic acid which has been reported to stimulate adipocyte con- 
version in other cell systems (63). This is in direct contrast 
to all previously described preadipocyte cell lines (e.g., 3T3- 
L1 [20], 3T3-F422A [21], TA1 [11], and Ob17 [42] to mention 
but a few), which differentiate under normal culture condi- 
tions into lipid-containing adipocytes if the cultures are 
maintained after the population reaches confluence. Thus, 
RCJ 3.1 is unique in that dexamethasone appears to be an ab- 
solute requirement for the expression of the adipocyte pheno- 

type. However, dexamethasone has been shown to accelerate 
the appearance of the adipocytes in some of the above men- 
tioned preadipocyte cell lines (11, 31, 52, 53), and stimulate 
the differentiation and expression of several mRNAs specific 
for mature adipocytes (11, 51). 

Most adipocytes appeared typically in foci of either a few 
cells or many tightly packed cells, suggesting that they origi- 
nated from the proliferation and differentiation of single 
adipocyte precursor cells. Interestingly, the stimulation of 
adipocyte differenfiaton by 10 -7 M dexamethasone was great- 
er than the response to 10 -9 M dexamethasone at day 10-11 
of culture, while after day 16, the number of adipocytes ob- 
served in 10 -9 M dexamethasone was greater than that seen 
with 10 -7 M. In addition, cultures treated with 10 -9 M 
dexamethasone contained many foci with >30 adipo- 
cytes/foci, whereas cultures in 10- 7 M dexamethasone com- 
prised foci with very small numbers of adipocytes, suggest- 
ing that the lower steroid concentration may be stimulating 
the proliferation of adipocytes. Alternatively, higher concen- 
trations of dexamethasone may be toxic to adipocytes over 
long exposure periods. Consistent with this latter view is the 
observation that some lipid droplets which formed in cells 
in response to 10-6-10 -7 M dexamethasone gradually de- 
creased in size at later time points (data not shown). That 
high concentrations of dexamethasone may be inhibitory for 
lipid accumulation in adipocytes has been reported in MC3T3- 
G2/PA6 cells (31). An additional factor, perhaps insulin, may 
be required for the maintenance of the differentiated pheno- 
type (31, 56, 61). 

Dexamethasone treatment also caused the appearance of 
cells with the phenotype of cartilage cells. Since we did not 
observe any chondrocytes in the RCJ 3.1 population without 
dexamethasone treatment, it appears that dexamethasone 
was required for the differentiation of chondroblast-like cells 
in this system. In addition, the fact that the clusters of carti- 
lage nodules were observed only in the presence of 10 -7 M 
and 10 -6 M dexamethasone suggests that the higher concen- 
trations of dexamethasone may have also stimulated the 
proliferation of chondrocyte progenitors. The effects of glu- 
cocorticoids on chondrocyte proliferation vary, depending 
upon the culture system or species used (29, 39, 62; Bellows, 
C. G., J. E. Aubin, and J. N. M. Heersche, manuscript sub- 
mitted for publication). 

RCJ 3.1 cells also differentiated into three-dimensional 
nodules with the morphological and histological properties 
of bone. The cuboidal layer of cells resembling osteoblasts 
which covered the nodules, the collagenous matrix contain- 
ing cells resembling osteocytes, and the fact that the matrix 
had the capacity to mineralize, are properties which are iden- 
tical to those of the bone nodules formed in mixed cultures 
of fetal rat calvaria cells previously described in our labora- 
tory (7) and that of Nefussi et al. (41). Although the forma- 
tion of bone nodules by RCJ 3.1 cells did not appear to be 
dependent upon the addition of dexamethasone, further 
effects of dexamethasone could not be analyzed because the 
low frequency of bone nodule formation precluded their 
quantitation. Consistent with the initial observation that RCJ 
3.1 cells possess several biochemical and morphological 
properties associated with cells of the osteoblast lineage (see 
Figs. 1-3 and reference 3), these data further support the 
presence within the RCJ 3.1 cell population of osteoprogeni- 
tor cells which have the capacity to differentiate along an os- 
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Figure 12. (a) Phase-contrast micrograph 
of an unmineralized bone nodule formed 
in a culture of RCJ 3.1 cells after 25 d 
of culture in supplemented medium con- 
raining ethanol vehicle (0.1% [vol/vol]). 
The nodule is lined by polygonal cells 
which are at a different focal plane than 
those in the adjacent cell layer. (b) Bright 
field micrograph of a paraffin section (6 
gtm) through the bone nodule in a, 
stained with haematoxylin and eosin. 
The nodule consists of a layer of cuboidal 
osteoblast-like cells (e.g., arrowheads) 
covering an eosinophilic collagenous ma- 
trix containing rounded osteocytelike 
cells (e.g., arrow). (c) Bright field micro- 
graph of a frozen section (6 I.tm) through 
a mineralized bone nodule formed in a 
culture of RCJ 3.1 cells after 30 d in sup- 
plemented medium containing 10 -7 M 
dexamethasone and stained with von 
Kossa for calcium mineral deposits. 
Bars, 5 I.tm. 

teogenic pathway and form bone. It remains to be seen 
whether it is a certain proportion of cells, or all the cells 
within RCJ 3.1 which confer these osteoblast-like properties 
to the RCJ 3.1 cell population. We are currently investigating 
whether subclones restricted to particular lineages also ex- 
press the biochemical parameters of osteoblast-like cells. 

Taken together, our results indicate that the RCJ 3.1 clonal 
cell population contains a subpopulation(s) of progenitor 

cells which is susceptible to the regulatory effects of gluco- 
corticoid hormones, and can differentiate into several differ- 
ent cell types. As a clonally derived population, the earliest 
precursor of the four cell types was a single type of cell. 
However, that there exist multiple progenitors within RCJ 3.1 
which can differentiate along several distinct pathways is evi- 
dent from the subclone experiments, where it was possible 
to isolate both subclones containing mixed colonies (muscle 
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Table II. Analysis of the Differentiation Potential of RCJ 
3.1 Subclones 

Contents of clone Colonies (% total)* 

M y o t u b e s  on ly  
Adipocytes only 
Chondrocytes only 
Myotubes and adipocytes 
Myotubes and chondrocytes 
Adipocytes and chondrocytes 
Myotubes, adipocytes, and chondrocytes 

n 

8 (5%) 
15 (9%) 
13 (8%) 
2 (1%) 
8 (5%) 
4 (2%) 
2 (1%) 

Single-cell suspensions of RCJ 3.1 cells were plated at limiting dilutions of 
",,0.25, 0.5, and 1.0 cells/6-mm-diam microtiter well (300 wells prepared at 
each dilution) in the presence of [~-GP, ascorbic acid, and 10 -7 M dexametha- 
sone. Only single-colony wells were selected for study; single-colony wells 
found to contain more than one colony after a second screening were discarded. 
These were maintained for 30 d, fixed, stained, and scored for the presence 
of each phenotype as described in Materials and Methods. Values represent the 
results combined from two separate subcloning experiments. 
* Total number of single colonies, 164. 

and fat; muscle and cartilage; fat and cartilage; muscle, fat, 
and cartilage), and subclones containing colonies restricted 
to only one phenotype (muscle only, fat only, and cartilage 
only). Bone, which was present at very low frequencies in 
the parent RCJ 3.1 population was not detected in any of these 
subclones. Since these experiments were performed on RCJ 
3.1 cells at a population doubling level of ,',,45, this hetero- 
geneity may be one consequence of the repeated passaging 
before the onset of these experiments. Clearly, however, RCJ 
3.1 does not merely contain a heterogeneous population of 
committed precursor cells restricted to each of the four line- 
ages, but rather it contains cells that are pluripotent. It is not 
known which of these progenitors, if any, can also differenti- 
ate into bone. Which cell type(s) is acted upon by dexametha- 
sone is not yet known. We have confirmed, however, that 
dexamethasone is required for progenitors to become com- 
mitted to and differentiate along adipocyte and chondrocyte 
lineages, because RCJ 3.1 cells, subcloned in the absence of 
dexamethasone, only produced clones which differentiated 
into muscle, but not into fat or cartilage (data not shown). 

The observation that there exist several less differentiated 
progenitor cell subpopulations in RCJ 3.1 is also interesting 

Table IlL Steroid Hormone Specificity for the Induction 
of Myotubes, Adipocytes, and Chondrocytes in 
RCJ 3.1 C Cells 

Myotubes Adipocyte Chondrocyte 
Treatment per dish foci per dish nodules per dish 

n n n 

Contro l  + 0 0 

D e x a m e t h a s o n e  + + + 2 .0  ___ 0 .3  8.7 _+ 1.2 

Hydroco r t i sone  + + 20.2  + 1.4 5 .6  + 0 .9  

P roges te rone  + 0 0 

1713-estradiol + 0 0 

RCJ 3. I cells were plated at 50,000 cells/35-mm culture dish in standard cul- 
ture medium containing 15% FBS. After 24 h, the medium was changed to sup- 
plemented medium containing 15% FBS and either vehicle control (0.1% 
absolute ethanol) or the appropriate steroid hormone at 10 ~ M. Cultures 
were fixed after 30 d and each phenotype was quantitated as described in 
Materials and Methods. Values represent the mean + SEM of three to five cul- 
ture dishes. 

in view of the observations of Constantinides et al. (14) and 
of Taylor and Jones (63) who have shown that C3H101"1/2 CI 
8 (10Tl/2), a clonal mouse embryo fibroblast cell line, can 
develop colonies of myotubes, adipocytes, and chondrocytes 
after exposure to 5-azacytidine. Similar results were also ob- 
tained after treatment of Swiss 3T3 mouse fibroblasts with 
5-azacytidine (63). In some ways, the properties of the RCJ 
3.1 cell line described in this study are similar to those de- 
scribed for 10"1"1/2 and 3T3 cells, including the development 
of myotubes, adipocytes, and chondrocytes in the same 
chronological order, the similarity of morphological and 
histochemical properties of each phenotype, and the pres- 
ence both of colonies containing one cell type and mixed 
colonies (64). Perhaps more important, however, is that 
there are also clear differences between the presumptive pro- 
genitor cell population within RCJ 3.1 cells and the progeni- 
tors within 10"I"1/2 and 3T3 cells. (a) lffrl/2 is a clonal cell 
line derived from mouse embryo fibroblasts (50), and Swiss 
3T3 cells are a mixed population of fibroblast-like cells that 
both differentiate in the absence of any inducer into fat- 
containing adipocytes (20, 21, 63). In contrast, RCJ 3.1 is a 
clonally derived cell line expressing some osteoblast-like 
characteristics and derived from a population of normal rat 
calvaria cells (3, 4, 4a), and differentiates in the absence of 
any added inducer into muscle and bone. (b) The nature of 
the inducer is different in these two cell systems: in 10T1/2 
and 3T3 cells, differentiation into muscle, fat, and cartilage 
was dependent upon or enhanced by 5-azacytidine, an inhibi- 
tor of eukaryotic DNA methylation (for review see reference 
28), whereas the formation of the same three cell types in 
RCJ 3.1 cells was dependent upon or enhanced by the gluco- 
corticoid, dexamethasone. There is currently no evidence 
suggesting that the mechanisms of action of these two in- 
ducers are similar in any way. (c) The fact that RCJ 3.1 cells 
also form bone in addition to muscle, fat, and cartilage clear- 
ly makes this cell line unique as no other isolated cell line 
possessing the capacity to differentiate into all these cell 
types has previously been reported. Some of the above points 
are summarized in Table IV. 

It remains to be investigated whether dexamethasone is 
acting directly or indirectly on the progenitor cell popula- 
tion, and whether it is required during the logarithmic 
growth phase, after the cells become quiescent, or during the 
entire culture period. It is possible, for example, that dexa- 

Table IV. A Comparison of the Differentiated Phenotypes 
Observed in Different Putative Progenitor Cell Populations 

Differentiated cell types 
Starting 
population Inducer* Muscle Fat Cartilage Bone Reference 

RCJ 3.1 - Yes  No No Yes  

(rat) + Yes  Yes  Yes  Yes  

10TI /2  - No Yes  No NR$ 

(mouse)  + Yes  Yes  Yes  NR 

3T3 - No Yes  No NR 
(mouse)  + Yes  Yes  Yes  NR 

63 

63 

* Inducer: RCJ 3.1, dexamethasone; 10T1/2, 5-azacytidine; 3T3, 5-azacy- 
tidine. 

NR, not reported. 
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methasone may act by affecting the cell sensitivity to other 
regulatory factors present in FBS. With regard to muscle 
differentiation in vitro, previous reports indicate that the 
effects of glucocorticoid hormones are complex and vary, de- 
pending on the cell type (e.g., species, primary cell cultures 
vs. established cell lines) and the nature of the culture 
medium (e.g., serum-containing vs. defined medium) used 
(1, 5, 24, 57, 71). It is also known that factors contained in 
serum-for example, g~'owth hormone, insulin, retinoids, 
and vitamin D3 metabolites, or growth factors like insulin- 
like growth factor I, fibroblast growth factor, epidermal 
growth factor, or transforming growth factor-13-can have a 
profound effect on the differentiated state of cells that are 
committed to muscle cell, adipocyte, chondrocyte, and os- 
teoblast lineages (2, 17, 19, 22, 27, 32, 33, 37, 40, 43, 44, 
54, 58, 60, 61, 70, 71). The composition of extracellular ma- 
trices and cell-matrix interactions have also been shown to 
elicit effects on muscle and adipocyte differentiation (16, 25, 
30, 35, 55, 59). In addition, dexamethasone and other gluco- 
corticoids have been shown to have dramatic effects on the 
production by cells of local cellular mediators such as prosta- 
glandins both in vitro and in vivo (e.g., see 12, 18, 67). 
Whatever the mechanisms, it remains that dexamethasone 
regulates the differentiation potential of this clonal, non- 
transformed, rat-derived cell population containing less dif- 
ferentiated mono- and multipotential progenitor cells. We are 
currently investigating further the lineage relationships be- 
tween muscle, fat, cartilage, and bone in RCJ 3.1 cells, which 
is the first time such lineage relationships will be analyzed 
in isolated rat mesenchymal cell populations. 

Received for publication 19 April 1987, and in revised form 12 January 
1988. 
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