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Cyclic guanosine 30,50-monophosphate (cGMP) is an intracellular signalling

molecule involved in many sensory and developmental processes. Synthesis

of cGMP from GTP is catalysed by guanylate cyclase (GC) in a reaction

analogous to cAMP formation by adenylate cyclase (AC). Although

detailed structural information is available on the catalytic region of

nucleotidyl cyclases (NCs) in various states, these atomic models do not

provide a sufficient explanation for the substrate selectivity between GC

and AC family members. Detailed structural information on the GC

domain in its active conformation is largely missing, and no crystal struc-

ture of a GTP-bound wild-type GC domain has been published to date.

Here, we describe the crystal structure of the catalytic domain of

rhodopsin–GC (RhGC) from Catenaria anguillulae in complex with GTP

at 1.7 �A resolution. Our study reveals the organization of a eukaryotic GC

domain in its active conformation. We observe that the binding mode of

the substrate GTP is similar to that of AC–ATP interaction, although sur-

prisingly not all of the interactions predicted to be responsible for base

recognition are present. The structure provides insights into potential

mechanisms of substrate discrimination and activity regulation that may be

common to all class III purine NCs.

Database

Structural data are available in Protein Data Bank database under the accession number 6SIR.

Enzymes

EC 4.6.1.2.

Introduction

Guanylate cyclases (GCs) convert guanosine 50-
triphosphate (GTP) into one of the most important

intracellular messengers, cyclic guanosine 30,50-
monophosphate (cGMP). cGMP is central to many

transduction pathways where it propagates signals in

processes that include neurotransmission, blood

pressure regulation, bone growth, lipolysis or muscle

contraction [1]. All GCs belong to the class III nucleo-

tidyl cyclase (NC) family that also includes many

adenylate cyclases (ACs), which perform an analogous

function of converting adenosine 50-triphosphate
(ATP) to cyclic adenosine 30,50-monophosphate

Abbreviations

AC, adenylate cyclase; ATP, adenosine-50-triphosphate; cAMP, cyclic 30,50-adenosine monophosphate; cGMP, cyclic 30,50-guanosine
monophosphate; GC, guanylate cyclase; GTP, guanosine-50-triphosphate; NC, nucleotidyl cyclase; sGC, soluble guanylate cyclase.
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(cAMP). Class III ACs and GCs are widely distributed

through all kingdoms of life and are closely related in

primary sequence [2]. They have evolved as dimeric

head-to-tail wreath-like assemblies with the active site

(s) formed at the interface between the catalytic sub-

units/subdomains [3].

Mechanistic insights into the activity of class III

NCs have been derived from dozens of crystal struc-

tures of AC domains in a ligand-free form or bound

to substrate-based inhibitors, substrates or ATP ana-

logues in various conformations [3–11]. Structural

analysis suggests that the AC dimer undergoes a func-

tional conformational change that involves ‘closing’ of

the active site region that brings the catalytic residues

distributed across the subunit interface into the proper

register. Such stimulatory dynamic changes can be

governed in trans by factors directly binding to the

catalytic domain such as G proteins [3] and bicarbon-

ate [4,7], or in cis in prokaryotes and lower eukaryotes

[12–14].

Despite many structural insights into AC action, our

understanding of mechanisms of the reaction catalysed

by GCs is largely missing. In particular, the current lit-

erature does not provide a sufficient explanation for

the NC substrate selectivity. Most of the GC struc-

tures available to date represent ligand-free, atypical

head-to-head or canonical head-to-tail dimers that are

inactive due to misaligned active site residues [15–20].

A few reports describe crystal structures of the GC

domain in the active conformation; however, they

exploit enzymes of altered specificity [10,11]. Important

new information has recently emerged from the 3.8 �A

resolution cryo-EM study of the human soluble GC

(sGC) in its inactive and GMPCPP-bound NO-acti-

vated state [21], suggesting that all type III NCs

undergo dynamic structural changes as part of the cat-

alytic cycle.

An aquatic fungus, Blastocladiella emersonii, uses

cGMP-mediated signalling to control zoospore photo-

taxis [22–25]. B. emersonii genome sequencing data

revealed the presence of a unique gene fusion compris-

ing a microbial (type I) rhodopsin fused to a GC

domain [26]. Additionally, orthologues were identified

in the genomes of related species, Catenaria anguillulae

and Allomyces macrogynus, but not in other fungi [26].

The rhodopsin-GC protein fusion (hereafter referred

to as RhGC) was directly demonstrated to function as

a light-activated GC that has a great potential as a

new optogenetic tool linking to reversible cGMP

manipulation in the cell [27,28].

Crystal structures of the soluble GC domain of

B. emersonii RhGC (BeGC) [20] and a calcium- and

ATPaS-bound dimeric form of the C. anguillulae

RhGC GC domain with several mutations that trans-

form substrate specificity into an AC

(CaAC�ATPaS�Ca2+) [11] have been recently described.

Here, we report the crystal structure of the wild-type

GC domain of RhGC from C. anguillulae in its GTP-

and calcium-bound form (CaGC�GTP�Ca2+). This is

the first study that reveals the organization of a native

GC domain in its substrate-bound state. The structural

analysis presented here provides important insights

into substrate binding and selectivity of class III NCs.

Results

Structure of the CaGC�GTP�Ca2+ complex

Rhodopsin–GC (RhGC) contains an N-terminal

autoregulatory element, type I rhodopsin domain,

coiled-coli region (signalling helix) and catalytic GC

domain on the C terminus (Fig. 1A). We cloned,

expressed and purified the C-terminal part of the

C. anguillulae RhGC (residues 442–626, further

denoted as CaGC) in Escherichia coli. Although

RhGC is anticipated to act as a dimer like all other

GCs [29,30], the isolated GC domain is monomeric in

solution (Fig. 1B and [20]). In many of our crystalliza-

tion conditions, we obtained crystals with unit cells

comprising monomeric or unconventional head-to-

head disulphide bond-stabilized dimeric assemblies

that have been reported by others [11,20]; these will

not be discussed further.

In both ACs and GCs, magnesium is the physiologi-

cal active site ion [5,31]. Despite its monomeric nature

in solution, our isolated CaGC was active in the pres-

ence of magnesium or manganese (Fig. 1C), confirm-

ing previous results [11,20]. As observed in other GCs,

CaGC was inactive when calcium was used [16]. This

led us to postulate that the addition of GTP and cal-

cium might promote the stabilization of the active

dimer for use in crystallization trials. Indeed, in the

presence of GTP and calcium chloride, we obtained

distinct orthorhombic crystals, which did not grow in

the absence of these additives. These crystals diffracted

to 1.7 �A resolution, and we solved the structure of

CaGC�GTP�Ca2+ by molecular replacement as

described further below. The atomic model was refined

to Rwork/Rfree of 18.2/21.1% with good statistics with

two dimers in the asymmetric unit (Table 1).

The crystal structure of the C. anguillulae RhGC

GC domain engineered with mutations into an AC

(CaAC) and bound to ATPaS has been described pre-

viously [11]. Primary sequences of CaAC and CaGC

differ only in two positions (E153K/C566D), which

are critical for substrate selectivity [11]. The atomic
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models of CaGC monomer presented herein and CaAC

are almost identical (RMSD of 0.3–0.9 �A across all

atoms, Fig. 2A) with the largest differences found only

in the ‘tongue’ regions. In CaAC�ATPaS�Ca2+, all b7/
b8 tongues are similar and are located on the ventral

side of the dimer, whereas b4/b5 tongues (dorsal side)

are found in two different conformations in the dimer

(distal and proximal, Fig. 2B). On the contrary, b7/b8
tongues of CaGC monomers are somewhat less well

defined and the electron density of chains A and C sug-

gests the presence of two coexisting conformations from

which only the more prominent was modelled. Unlike

in CaAC�ATPaS�Ca2+, in CaGC�GTP�Ca2+ b4/b5 ton-

gues are entirely uniform and all adopt the distal con-

formation. Although in both structures conformations

of b tongues are affected by the crystal packing, these

differences might suggest that these regions play a

functional role (see Discussion).

The CaGC�GTP�Ca2+ atomic model presented here

represents the ‘active’ state of the wreath-like type III

NC assembly. The monomers are related to each other

by a translocation and rotation around the centre of

the dimer interface in comparison with an inactive

ligand-free form of GC (Fig. 2C [21]). Despite some

differences, the CaGC�GTP�Ca2+ dimer conformation

is almost identical as in CaAC�ATPaS�Ca2+ (RMSD

between the dimer conformations ~ 0.4 �A) and in the

reconstruction of the activated human sGC�
GMPCPP�29Mg2+ complex (RMSD 1.4 �A, Fig. 2D)

[21]. The differences account for the slight relative tilt

of the subunits around the axis parallel to the dimer

interface. The ‘closed’ conformation was likely induced

by the presence of two electron-rich atoms (tentatively

assigned as calcium) and two GTP molecules that

occupy the active sites located at the interface between

the monomers (Fig. 2E, discussed further below). GTP

and calcium binding induces closure of the ventral side

of the dimer and overall decrease in the interface area

between the subunits from predicted 1600 to 1300 �A2,

as calculated by PISA [32].

CaGC�GTP�Ca2+ active site

This CaGC�GTP�Ca2+ structure is the first to visualize

a wild-type GC domain dimer bound to its natural

substrate. The phosphate groups of GTP are coordi-

nated by the backbone of Asn460*, Phe461*, Thr462*

and side chain of Arg545*, which is believed to aid the

exit of the product pyrophosphate (residues from the

monomer that binds the triphosphate tail are marked

with an asterisk, Figs 3A and 4). The other subunit

chain contributes two residues to the active site.

Lys612 interacts with the GTP c phosphate, and side

chain of Arg577 is positioned appropriately to help

stabilize a transition state in the reaction cycle [5,33].

The density of these two side chains is less well defined

in chains A and C that display two conformations of

the b7/b8 tongue.

Two divalent cations, typically magnesium or man-

ganese, are postulated to facilitate substrate binding

(ion B) and catalytic turnover (ion A) [5,30]. With a

few exceptions, in ligand- and calcium-bound NC struc-

tures, only the high-affinity ion B site is occupied [4,6–

8,10,11,21,34,35]. This is most probably due to the sig-

nificantly larger atomic radius of calcium compared to

magnesium or manganese. In our CaGC�GTP�Ca2+
model, calcium also only binds in the position analo-

gous to ion B and is coordinated by a pair of aspartic

acids Asp457* and Asp501*, a-, b- and c-phosphate, as
well as the backbone carbonyl of Ile458*. Our electron

density maps are most consistent with a water molecule

occupying the ion A position, which explains our obser-

vation that calcium does not support catalytic activity.

Despite the absence of low-affinity catalytical ion A,

the formation of NC dimers in its fully active confor-

mation is well supported [4,11,36].

In contrast to the polyphosphate tail, in most of the

NC domain structures ribose moiety makes no or only

Fig. 1. Characterization of the crystallized construct. (A) Schematic

domain organization of the full-length RhGC (top) and its potential

dimeric assembly (bottom). M: membrane. From the N terminus: a-

N: N-terminal autoinhibitory region. a0: predicted additional

transmembrane helix. RhI: type I rhodopsin domain. SH: signalling

helix. GC: GC domain. On the bottom panel, one of the monomers

is colour-coded, whereas the second one is shown in grey. (B)

SEC-MALS analysis of the CaGC construct. The chromatogram

displays normalized Rayleigh ratio (black) and molar mass calculated

by MALS (20 kDa, green). (C) Activity of the CaGC construct in

solution in the presence of different divalent cations measured as

concentration of generated pyrophosphate. Activity was measured

in triplicates. Depicted values represent the mean � SD.

2799The FEBS Journal 287 (2020) 2797–2807 ª 2019 Diamond Light Source Ltd. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

A. Butryn et al. Structure of guanylate cyclase domain of RhGC



a few direct contacts with the protein. These contacts

vary among NC structures and are likely to change in

the presence of the transiently bound A site metal dur-

ing the catalysis. The conserved Asn and Ser (a4) resi-
dues were implicated as a catalytically important

whereby they help to orient the sugar in the active site

of ACs by lowering the activation energy of the transi-

tion state [5,7,33,37]. Neither in our CaGC�GTP�Ca2+
model, nor in CaAC�ATPaS�Ca2+ or sGC�GMPCPP�
29Mg2+ structures does the sugar moiety form hydro-

gen bonds to topologically equivalent Asn (Fig. 3B).

However, a hydrogen bond is formed between the Ser

residue via ribose O30 in CaGC�GTP�Ca2+, via O20/O30

in sGC�GMPCPP�29Mg2+ or via O40 in CaAC�
ATPaS�Ca2+ (Fig. 3C).

In NCs, the purine ring binds in a hydrophobic pocket

within the active site with few polar interactions that serve

to discriminate between ATP and GTP. Catalytic

specificity for ATP in ACs is predominantly determined

by two residues: Lys and Asp (or Thr), which have been

shown to directly interact with N1 and N6 atoms of ade-

nine base, respectively [5]. A few of the AC structures con-

tain unmodified ATP [6,8,10,14]. Most of the ligand-

bound ACs were cocrystallized in the presence of a sub-

strate analogue. They provide useful information, but also

have significant limitations, for example, often contain

substrate modifications that eliminate interactions critical

to catalysis [4,5,33]. The Mycobacterium avium

Ma1120CHD [10] and Arthrospira platensis CyaC [4] struc-

tures are good examples of wild-type ACs crystallized

with the ligand in a conformation that represents a state

well aligned for the nucleophilic attack and in which both

direct interactions between the specificity-determining

residues and substrate are present. In GCs, Lys and Asp

present in ACs are replaced by Glu and Cys (or Ser) that

are believed to mediate recognition of the exocyclic amine

and carbonyl group of the guanine, respectively [38]. The

second guanine-specifying residue shows lower conserva-

tion indicating that its interaction varies in different mem-

bers of the GC family [16] (Fig. 5). In BeGC and CaGC,

residues Glu497 and Cys566 control substrate specificity

[11,39]. As expected, the guanine in the CaGC�GTP�Ca2+
complex is positioned as GMPCPP in the active site of

sGC and this orientation is equivalent to adenine in most

of the AC structures. In particular, Glu497 appears to

form a hydrogen bond to N1/N2 of guanine. However, in

all monomers Cys566 side chains clearly adopt rotamer

conformations that face away from the base and are

inconsistent with hydrogen bond formation (Fig. 3B).

Instead, the guanine moiety is indirectly stabilized by

water molecules that also interact with backbone atoms

of Leu567 and Gly500. Although the 3.8 �A resolution of

the sGC�GMPCPP�29Mg2+ cryo-EM model limits the

accuracy of the substrate–enzyme interactions, it does

provide insight into GTP recognition [21]. For example,

Glu473 is also well positioned to form a hydrogen bond

to the guanine N1 or N2 atoms. The Cys541 residue inter-

action with the base is less obvious because it faces away

from the active site; nevertheless, it could form a hydro-

gen bond with the carbonyl group if it assumed a different

rotamer (Fig. 3C). The lack of the second canonical

interaction was also reported in the structural analysis

of the dual-specificity triple mutant of Ma1120CHD,

Ma1120CHD
(KDA?EGY), in which the base is flipped by

180° and the observed mode of interaction is different

than that predicted for GCs.

Discussion

Despite progress in our knowledge of the structure

and regulation of ACs, the molecular mechanisms that

Table 1. Data collection and refinement statistics. Statistics for

the highest-resolution shell are shown in parentheses

CaGC�GTP�Ca2+, PDB 6SIR

Data

Space group P212121

Unit cell a, b, c, a, b, c (�A, �) 58.65, 95.17, 138.66, 90, 90, 90

Resolution range (�A) 36.30–1.70 (1.76–1.70)

Completeness (%) 98.8 (97.8)

Total reflections 1 121 287 (59 894)

Unique reflections 85 087 (8312)

Multiplicity 13.2 (13.5)

Mean I/sigma(I) 20.3 (2.2)

R-merge 0.073 (1.27)

R-meas 0.076 (1.32)

R-pim 0.021 (0.36)

CC1/2 1 (0.79)

Refinement

Resolution range (�A) 36.30–1.70 (1.76–1.70)

No. reflections (work) 85 085 (8311)

No. reflections (free) 4316 (415)

R-work 0.182 (0.273)

R-free 0.211 (0.303)

No. of non-H atoms 6546

Protein 5809

Ligand 162

Solvent 575

R.m.s. deviations

Bonds (�A) 0.007

Angles (°) 1.06

Average B factors (�A2) 28.9

Protein 27.9

Ligand 34.7

Solvent 37.5

Ramachandran plot

Favoured regions (%) 98.2

Additionally allowed (%) 1.8

Outliers (%) 0.0
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determine GC substrate specificity and control its

activity are still poorly understood. Recent cryo-EM

structures of the human sGC provided important new

insights into the mode of enzyme–substrate interaction

of a wild-type GC [21]. In our work, we extend the

interpretation of the cryo-EM results by providing a

high-resolution crystal structure for a GTP complex in

a eukaryotic light-activated GC, RhGC. Together,

these results support the conclusion that GTP binding

and recognition by GCs are very similar to classical

AC–ATP interaction(s). This explains why the speci-

ficity of type III NCs is achieved not upon substrate

binding, but rather during catalysis [8,16,40]. Surpris-

ingly, in our CaGC�GTP�Ca2+ structure only one

canonical, guanine-specific hydrogen bond is formed

via Glu497 located on b5. Therefore, our data support

the hypothesis that, although in ACs both specificity-

determining residues seem to form direct hydrogen

bonds with ATP, in GCs Glu–N1/N2 interaction plays

the major role in GTP specificity. The second base-

specific residue could serve an alternative function;

rather than forming a hydrogen bond to guanine, it

could provide shape complementarity with the nucleo-

tide base [10,16]. The organization of the active site

appears to be sensitive to local rearrangements. There-

fore, the Cys566–base interaction(s) could impact regu-

lation of protein activity. This is reinforced by the

observation that this residue is not located within the

subunit chain of the (pseudo)dimer to which GTP

triphosphates are tightly anchored via strong protein

and metal ion interactions with highly conserved resi-

dues [30]. It is also very likely that perturbations in the

Fig. 2. CaGC�GTP�Ca2+ structure overview. (A) Cartoon representation of the CaGC (light green, PDB 6SIR) and CaAC monomer (grey, PDB

5OYH [11]). Secondary structure elements are depicted and labelled b1–b8 for the strands and a1–a5 for the helices. N and C terminus are

labelled N and C, respectively. (B) Comparison of the tongue regions in CaGC and CaAC. Top: conformation of the b7/b8 tongues differs

between CaGC monomers (light and dark green) whereas it is same for all CaAC monomers (grey). Grey and dark green conformations are

almost perfectly overlapping. Bottom: conformation of the b4/b5 tongues differs between CaAC monomers within each dimer (both grey),

whereas it is distal for all CaAC monomers (light green). (C) Top: comparison of the CaGC dimer (light and dark green) and its ligand-free

form modelled based on the inactive sGC dimer (PDB 6JT1 [21]). View from the ventral side. Structures were superimposed via the light

green monomer shown as single surface. Calcium ions are depicted as green spheres. GTP molecules are shown as sticks. Bottom:

CaGC�GTP�Ca2+ dimer along its twofold axis viewed from the ventral (left) and dorsal side (middle) represented as solvent accessible

surface. Right bottom panel shows cross section of the dimer with the view on one of the substrate binding pockets. (D) Comparison of

CaGC�GTP�Ca2+ dimer and its model based on the sGC�GMPCPP�29Mg2+ assembly (PDB 6JT2 [21]). Structures were superimposed via the

light green monomers shown as single surface. Second subunit in CaGC�GTP�Ca2+ (dark green cartoon) is in almost identical relative

orientation as in sGC�GMPCPP�29Mg2+ (grey cartoon). (E) 2Fo–Fc electron density map carved within 2 �A distance around GTP and calcium,

displayed at 1.5 r level. For clarity, second monomer was omitted. Molecular graphics and analyses were performed with the UCSF CHIMERA

package [52].
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active site geometry originate from the presence of

noncatalytic ions or substrate modifications. For

example, in many AC structures of nonproductive

enzyme–substrate complexes, one or even both base

interactions are missing [6–8,34,35]. In the

CaGC�GTP�Ca2+ structure, the catalytic ion (site A) is

unoccupied. Because our complex is inactive, our

atomic model does not represent a reaction-competent

state. We speculate that the coordination mode we

observe, wherein the guanine–Cys566 hydrogen bond

formation is hindered by the presence of calcium, is

the principal reason our complex does not support

catalysis. Nevertheless, hypothetical modelling of the

CaGC active site suggests that all canonical interac-

tions could be supported in the presence of two cat-

alytic ions (Fig. 6).

RhGC activity is regulated by light via the type I

rhodopsin domain located towards the N-terminal

region the GC domain. The question remains open

as to how light induces structural changes in the rho-

dopsin sensor and how these are transmitted to the

catalytic domain. A parallel coiled-coil element

formed by two signalling (S)-helices is a distinct inte-

gral element involved in the dimerization of diverse

protein fusions [41]. In RhGC, such an element is

thought to bridge the rhodopsin and GC domain. In

addition to playing a structural role, the S-helix has

also been proposed to be involved in the signal trans-

duction from the N-terminal sensory to various C-

terminal catalytic domains, including type III NCs

[19,21,41–43]. According to this model, the activation

signal propagates through the S-helix and a short

‘handle’ helix (also described as cyclase transducer

element) towards the catalytic domain. We favour

the idea that the enzyme catalysis is modulated

through the changes in the N-terminal dimer

Fig. 3. Active site of CaGC�GTP�Ca2+ complex. (A) Active site in CaGC�GTP�Ca2+ structure. Chains A and B are in light and dark green,

respectively. The calcium ion is shown as a green sphere. The GTP, residues crucial for substrate binding and turnover are shown as sticks.

Water molecules are shown as red spheres. The metal coordination and selected hydrogen bonds between protein, triphosphate and ribose

are shown as black dashed lines. (B) Close-up view of the protein–guanine base interaction in the CaGC�GTP�Ca2+ structure. (C) From left to

right: close-up view of the protein–base interaction in CaGC�ATPaS�Ca2+ (PDB 5OYH [11], sGC�GMPCPP�29Mg2+ (PDB 6JT2 [21]),

Ma1120CHD�ATP�Ca2+ (PDB 5D15 [10] and Ma1120CHD
(KDA?EGY) �GTP�Ca2+ (PDB 5D0G [10]) structures. Introduced mutations are marked in

red. In all panels, maximum acceptor–donor distance is 3.5 �A and colour coding as in A. Molecular graphics and analyses were performed

with the UCSF CHIMERA package [52].
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interface, which subsequently affect the conformation

of b4/b5 tongues and thereby affect the active site

region where the base discrimination takes place

[11,14,42]. Although a primary signal transduction

mechanism may be common to type III NCs, the dis-

tinct regulatory mechanisms are likely to be protein-

specific. For example, in the photoactivatable AC

from Beggiatoa sp. (bPAC), the isolated catalytic

domain is inactive and light stimulation promotes a

conformational change to a catalytically competent

state of the full-length protein [14]. Unlike bPAC,

isolated GC domain of RhGC is constitutively active.

This observation suggests that in RhGC the light sig-

nal might release the constraints on an otherwise

intrinsically active enzyme [11,20]. Apart from the

cyclase transducer element, the GC domain interacts

with other regions of the protein through distinct

interfaces providing an additional level of control.

This includes conserved N terminus that precedes the

type I rhodopsin domain [11,27]. Truncations of this

part of the protein, which is unique to RhGC, either

disrupt light-dependent regulation of activity [27,28]

or turn the protein entirely inactive [39]. Clearly, fur-

ther studies on the full-length RhGC and other NCs

in various physiological states will be required to

understand how the interplay between different inter-

actions is responsible for the regulation of the cat-

alytic activity and how it differs between ACs and

GCs.

Materials and methods

Cloning and protein purification

DNA encoding C. anguillulae RhGC was obtained from Inte-

grated DNA Technologies (Leuven, Belgium) as a synthetic

Fig. 4. GTP–CaGC interaction in one of the

active sites. Residues involved in

hydrophobic contacts are shown as a

curved comb. Ionic and hydrogen bond

interactions (maximal donor–acceptor

distance = 3.5 �A) are shown as dark green

dotted lines. Calcium and waters are

represented by light green and light blue

spheres, respectively. Figure generated

using LIGPLOT+ [53].
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gene with a codon distribution optimized for expression in

E. coli. The DNA construct corresponding to the catalytic

domain (amino acid residues 442–626) was PCR-amplified

and cloned into pOPINM vector [44] with an N-terminal

His6-MBP fusion and HRV3C protease cleavage site. His6-

MBP-CaGC was transformed into E. coli Lemo21(DE3) cells

(New England Biolabs, Hitchin, UK) and grown in TB med-

ium (Merck Millipore, Watford, UK) at 37 °C until OD600 nm

reached 1.0. Expression was induced by the addition of IPTG

at 1 mM final concentration and carried out at 18 °C over-

night. After cell harvesting, the pellet was resuspended in lysis

buffer (50 mM Tris 7.5, 500 mM NaCl, 10 mM imidazole,

2 mM b-mercaptoethanol) and sonicated for 15 min on ice.

After centrifugation, supernatant was loaded onto HisTrap

HP column (GE Healthcare, Little Chalfont, UK) equili-

brated in the lysis buffer. The bound fraction was washed

extensively with lysis buffer and eluted with elution buffer

(50 mM Tris 7.5, 500 mM NaCl, 250 mM imidazole, 2 mM b-
mercaptoethanol). HRV3C protease was added to the elution

fractions to cleave off the N-terminal tag. Sample was then

dialysed overnight against 20 mM Tris pH 7.5, 50 mM NaCl,

2 mM b-mercaptoethanol and loaded onto HiTrap Q HP col-

umn (GE Healthcare). Flow-through fractions were then con-

centrated and loaded onto HiLoad 16/600 Superdex 75 pg

column (GE Healthcare) equilibrated in 5 mM Tris pH 7.8,

50 mM NaCl, 2 mM b-mercaptoethanol. Protein fractions

were pooled and concentrated to 20 mg�mL�1, flash-frozen in

liquid nitrogen and stored at�80 °C.

Fig. 5. Alignment of sequences of cyclases: Catenaria anguillulae CaGC (PDB 6SIR, this work), Blastocladiella emersonii BeGC (PBD 6AOB

[20]), Mycobacterium avium Ma1120 (PDB 5D15 [10]), Synechocystis sp. Cya2 (PDB 2W01 [16]), Chlamydomonas reinhardtii GC (PDB 3ET6

[15]). Amino acids that coordinate to the catalytical ion (●), phosphate (▼), ribose (■) or base (*) are marked. Positions marked with red (*)

are mutated in CaAC. Positions marked with red (*) and with red (■) are mutated in Ma1120CHD
(KDA?EGY) mutant. Alignment was created

using CLUSTAL OMEGA [54] and JALVIEW [55].

Fig. 6. Hypothetical model of the CaGC active site in the presence

of two catalytic Mg2+ cations. Model was based on the

Ma1120CHD�ATP�Ca2+ crystal structure (PDB 5D15) [10].

Magnesium ions are shown as blue spheres. Selected hydrogen

bonds between the protein and GTP are shown as black dashed

lines. Colour coding is as in Fig. 3. Molecular graphics and analyses

were performed with the UCSF CHIMERA package [52].
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SEC-MALS

Size exclusion chromatography coupled with multiangle

light scattering (SEC-MALS) was performed on an Agilen-

t1100 system at 22 °C. Hundred microlitres of the protein

solution at 5 mg�mL�1 was injected onto Superdex 75 10/

300 Increase column connected to €AKTA pure (GE Health-

care) equilibrated in 50 mM TRIS pH 7.8, 50 mM NaCl,

0.5 mM TCEP and run at 1.3 mL�min�1. The chromatogra-

phy system was connected to a multiangle light scattering

detector DAWN HELEOS-II (Wyatt Technology, Haver-

hill, UK) and Optilab T-rEX refractometer (Wyatt Technol-

ogy) connected in-line. Data acquisition and processing

were performed using ASTRA software (Wyatt Technology).

Pyrophosphate assay

To quantitate the level of generated cGMP, Phosphate

Assay Kit (MAK168, Sigma-Aldrich, Gillingham, UK) was

used to determine the amount of pyrophosphate. 4.7 lM
CaGC was mixed with 0.8 mM GTP in 50 mM HEPES 7.5,

100 mM NaCl and 2.7 mM MgCl2/MnCl2/CaCl2. After 1 h

of incubation at 22 °C, the reaction was terminated by add-

ing Master Reaction Mix, followed by 20-min incubation

at 22 °C. Subsequently, fluorescence measurement (excita-

tion 316 nm, emission 456 nm) was taken on a Spectramax

M5 plate reader (Molecular Devices, Wokingham, UK).

All measurements were done in triplicates.

Protein crystallization

Crystallization trials were done using CaGC at 20 mg�mL�1

premixed with GTP and CaCl2 (both at 1 mM final concen-

tration). Several screening conditions yield protein crystals,

most of which contained only protein and revealed no sub-

strate bound and/or crystals of the protein–substrate com-

plex that diffracted poorly. Well-diffracting crystals of the

CaGC�GTP�Ca2+ complex in an orthorhombic space group

were grown in 0.1 M MIB pH 4.4 and 22–24% PEG 2000 at

20 °C. Crystals appeared after one or two days as

300 lm 9 20 lm 9 20 lm rods. Crystals grew exclusively

in the presence of GTP and CaCl2. For data collection,

crystals were cryo-cooled in mother liquor supplemented

with 25% glycerol by plunging rapidly into liquid nitrogen.

Data collection and processing

Data were collected at I24, Diamond Light Source, UK,

from a single crystal held at 100 K. Indexing and integra-

tion were done in DIALS to 1.7 �A resolution in space group

P212121 [45]. Intensities were scaled and merged in AIMLESS

[46,47]. The structure was solved by molecular replacement

using PHASER [48] with the cyanobacterial GC Cya2 mono-

mer as the search model (PDB 2W01) [16]. Distinctive elec-

tron density peaks in the 2Fo–Fc and Fo–Fc maps that

corresponded to one GTP and one Ca2+ ion in each active

site of the CaGC�GTP�Ca2+ complex were fitted with these

ligands and included in the structure refinement. Structure

was refined using PHENIX [49] and COOT [50] and using the

PDB_REDO server [51] to further optimize the model.
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