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Abstract: The relationship between periodontitis and systemic diseases, notably including
atherosclerosis and diabetes, has been studied for several years. Porphyromonas gingivalis, a prominent
component of oral microorganism communities, is the main pathogen that causes periodontitis. As a
result of the extensive analysis of this organism, the evidence of its connection to systemic diseases
has become more apparent over the last decade. A significant amount of research has explored the
role of Porphyromonas gingivalis in atherosclerosis, Alzheimer’s disease, rheumatoid arthritis, diabetes,
and adverse pregnancy outcomes, while relatively few studies have examined its contribution to
respiratory diseases, nonalcoholic fatty liver disease, and depression. Here, we provide an overview
of the current state of knowledge about Porphyromonas gingivalis and its systemic impact in an aim
to inform readers of the existing epidemiological evidence and the most recent preclinical studies.
Additionally, the possible mechanisms by which Porphyromonas gingivalis is involved in the onset or
exacerbation of diseases, together with its effects on systemic health, are covered. Although a few
results remain controversial, it is now evident that Porphyromonas gingivalis should be regarded as a
modifiable factor for several diseases.
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1. Introduction

Chronic periodontitis, a multifactorial chronic inflammatory disease resulting from dysbacteriosis,
is characterized by the destruction of connective tissue and alveolar bone, and it has become the primary
reason for tooth loss in adults. It affects nearly 50% of the population worldwide, representing one of
the most common inflammatory diseases in humans [1]. Over the past two decades, mounting evidence
has supported periodontitis as a potential risk factor for multiple systemic diseases, for example,
cardiovascular diseases. As the key etiological agent in periodontitis, Porphyromonas gingivalis
(P. gingivalis) has proved to be closely correlated with the occurrence and development of many
systemic diseases, such as atherosclerosis, cancer, and Alzheimer’s disease [2–4]. The roles of
P. gingivalis in systemic diseases have been discussed for several years, and several reviews have
summarized the effects and the inner mechanisms [5–10]. However, most of these articles only focus
on the relationship between P. gingivalis and one specific disease or one class of diseases. A global
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understanding of the effect of P. gingivalis on overall health is lacking. In this review, we systematically
and comprehensively provide an update and summary of the literature on P. gingivalis-related systemic
diseases that affect the whole body, as well as the internal mechanisms, to provide a more comprehensive
understanding of P. gingivalis and its relationship with systemic diseases.

Characteristics of P. gingivalis

P. gingivalis, one of over 700 bacterial species in the oral cavity, is a Gram-negative, anaerobic,
rod-shaped bacteria that forms black colonies on blood agar and requires the presence of heme or
hemin and vitamin K in its growth milieu. It is a successful colonizer of the oral epithelium and an
important component of subgingival microbiomes [11]. P. gingivalis is responsible for the chronic
form of periodontitis, as it can remodel the commensal bacterial community to promote a state of
dysbiosis [12]. Throughout evolution, it has developed unique and intricate mechanisms, such as the
alteration of signaling pathways of inflammation, the complement system, the cell cycle, and apoptosis,
and the interaction with various host receptors, thereby engineering its environment or modifying
the host’s immune response to modulate the entire ecosystem and to persist in host tissues [13].
The survival strategies and pathogenicity of P. gingivalis largely depend on its diverse virulence factors,
including its own structural components (lipopolysaccharide, fimbriae, heat shock proteins, etc.) and
secretory components (gingipains and outer membrane vesicles).

Fimbriae are crucial for enabling P. gingivalis to specifically bind to eukaryotic cells and other
species of bacteria to enhance bacterial motility, biofilm formation, and bacterial invasion of the
cells [14]. It can also activate various host cells and subvert host immune clearance [14]. P. gingivalis
lipopolysaccharide (LPS) can trigger the innate immune response via activation of Toll-like receptors
(TLRs) [15]. The lipid A component of P. gingivalis LPS exhibits two predominant variations of acylation
that are attributed to different strains and microenvironmental conditions: the penta-acylated LPS
activates TLR4, while tetra-acylated LPS acts as a TLR4 antagonist and TLR2 agonist [15]. The heat
shock protein 60 (HSP60) component of P. gingivalis is remarkably immunogenic and plays a critical
role in P. gingivalis-induced autoimmune diseases [16]. Gingipains, which consist of lysine-gingipain
(Kgp) and arginine-gingipain (Rgp), have multiple impacts on both innate and acquired immunity.
These enzymes play essential roles in host colonization, host defense deactivation, tissue destruction,
and nutrient acquisition [17]. Outer membrane vesicles (OMVs) from P. gingivalis are enriched in major
virulence mediators, such as gingipains, LPS, and the capsule, and participate in biofilm development,
host interaction, colonization, and immune defense evasion [18]. Moreover, its characteristic features,
such as concentrated gingipains, together with its ability to travel to distant sites, might participate in
P. gingivalis-associated systemic disorders [19].

P. gingivalis in local periodontal tissue can enter the vasculature through ulcerated epithelium [20]
and lymph vessels [21] shortly after everyday activities, such as brushing and chewing, along with
dental procedures. Some studies have indicated that P. gingivalis can survive in other organs besides
the oral cavity. Viable P. gingivalis has been detected in human atherosclerotic plaque tissues [22] and
mouse lungs [23] through tissue homogenates that were incubated with cells or cultured directly on
blood agar plates. Cellular experiments have also provided evidence for the survival of P. gingivalis in
some cells. For example, live P. gingivalis has been isolated from human aortic endothelial cells [24],
human pancreatic tumor cells [25], and human myeloid dendritic cells [26]. All of the properties
described above confer this species with the ability to invade distant tissues, where it is then involved
in the onset and/or progression of systemic diseases.

2. Cardiology

Cardiovascular diseases (CVDs) are a cluster of conditions that involve the heart and blood vessels,
and they remain the most common cause of death throughout the world. Considerable epidemiologic
evidence has suggested that periodontal disease is a risk factor for CVDs [27]. For example, periodontal
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pathogens have been found in CVD plaques, and the detection rate of P. gingivalis has been as high as
100% [28]. The relationship between P. gingivalis and CVDs has been deeply studied in recent decades.

2.1. Atherosclerotic Cardiovascular Diseases (ACVDs)

ACVDs, including coronary artery disease and stroke, are a form of CVDs with high morbidity
and mortality rates. Atherosclerosis (AS), resulting from the progressive accumulation of lipids,
calcium, macrophages, and other components in the artery wall, is the pathological basis of ACVDs.
Much evidence has linked periodontitis to an increased risk of AS [27]. Periodontal treatment has
been shown to improve the endothelial function and reduce the biomarkers (such as CRP, IL-6, TNF-α,
fibrinogen, triglycerides) of atherosclerotic disease, particularly in individuals already suffering from
CVDs [29]. Trials in humans have found P. gingivalis in clinical samples at a detection rate of 82.61% by
fluorescent in situ hybridization assay [30]. Subsequently, in vivo experiments confirmed the promoting
effect of P. gingivalis on AS. Infection with P. gingivalis exacerbated atherogenesis in apolipoprotein E
(ApoE)-deficient mice [2,30], and the proximal aortic lesion size in P. gingivalis-inoculated mice was
2-fold larger than that in control mice [2]. These results strongly suggest that P. gingivalis may enter the
lesion area and promote the development of AS.

Most scholars regard AS as an excessive inflammatory response after arterial wall endothelial
dysfunction resulting from many damage factors. The pathogenesis mechanisms of AS are highly
complex and include the activation of endothelial cells and platelets, recruitment of leukocytes
(mainly monocytes and macrophages), migration and proliferation of smooth muscle cells (SMCs),
and formation of a lipid core, along with thrombosis and plaque instability. Studies have shown that
P. gingivalis can promote AS by affecting the function of all of these cells (Figure 1). First, P. gingivalis
can activate endothelial cells and induce endothelial dysfunction. As reported in a previous review,
P. gingivalis invades endothelial cells via the autophagic pathway while suppressing apoptosis [31].
Through the NF-κB or p38 MAPK pathway, its fimbria and LPS positively upregulate the expression of
various adhesion molecules in endothelial cells, such as vascular cell adhesion molecule-1, intercellular
adhesion molecule-1, monocyte chemoattractant protein, P-selectin, and E-selectin [32,33]. This is an
essential step in the pathogenesis of endothelial dysfunction. In recently published research, it was
revealed that P. gingivalis enhanced oxidative stress and the inflammatory response in aortic endothelial
cells via the NF-κB-BMAL1-NF-κB signaling loop, leading to the aggravation of AS [30]. Furthermore,
P. gingivalis can induce procoagulant effects in endothelial cells, and this prothrombotic response
may be associated with plaque progression and instability [34]. Second, it has been reported that
IgG-opsonized P. gingivalis may bind to the FcγRIIa receptor on platelets and activate GPIIb⁄IIIa integrin,
which becomes connected to Hgp44 adhesin through a fibrinogen bridge, inducing further platelet
activation and aggregation [35]. A recent review analyzed the interactions of P. gingivalis with activated
platelets, and the overall outcome may be the modified expression of cytokines (CKs), which might
affect the inflammatory response and fibrinolysis [36]. Third, P. gingivalis and its virulence components
(such as LPS, fimbria) are involved in each phase of monocyte activity during the formation of AS
by supporting monocyte migration to the endothelial surface, intimal infiltration, and differentiation
into pro-inflammatory macrophages and eventually foam cells [37,38]. Fourth, P. gingivalis can play a
distinct role in foam cell formation, which is a critical step in the atherosclerotic process. P. gingivalis LPS
promotes the accumulation of lipids in macrophages and the formation of macrophage-derived foam
cells by upregulating CD36 (a scavenger receptor for low-density lipoprotein and oxidized low-density
lipoprotein) as a result of c-Jun/AP-1 pathway activation and by downregulating ATP-binding cassette
transporter A1 (cholesterol efflux moderator) due to increased calpain activity [38]. A study in 2019
experimentally determined that P. gingivalis promoted lipid uptake in macrophages by inducing
the expression of fatty acid-binding protein 4, which may be dependent on the JNK pathway [39].
In addition, P. gingivalis enhanced the TLR2-CD36/SR-B2-dependent systemic release of IL-1β, leading
to a subsequent increase in lipid uptake by macrophages and foam cell formation as a result of
encountering IL-1β in the vessel wall [40]. Furthermore, the proteolytic activity of Rgp and Kgp
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was shown to induce lipid peroxidation and to change the expression of low-density lipoprotein
and high-density lipoprotein, causing foam cell formation from macrophages [41]. Evidence from
these studies suggests that lipoproteins play a key role in the connection between P. gingivalis and AS
progression. P. gingivalis infection may also contribute to AS by modulating lipid metabolism and
homeostasis. Fifth, vascular calcification is a prominent feature of AS. P. gingivalis LPS can stimulate the
proliferation and calcification of SMCs, resulting in vascular calcification [42]. P. gingivalis OMVs were
also reported to promote vascular SMC calcification through ERK1/2-RUNX2 [43]. Additionally, WADA
et al. proposed a putative molecular mechanism in which P. gingivalis could contact or invade the SMC
layer in blood vessels after endothelial cell injury and induce the expression of S100A9 (a member
of the S100 calcium-binding protein family), which triggers the transformation of SMCs from a
contractile to a proliferative phenotype, stimulating further cell growth and contributing to aortic
intimal hyperplasia [9].
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Figure 1. Porphyromonas gingivalis-induced stimulation of accelerated atherosclerosis. The possible
underlying mechanisms can be summarized as follows: (i) inflammation, (ii) endothelial injury, (iii) lipid
peroxidation, and (iv) molecular mimicry. ox-LDL: oxidized low-density lipoprotein.

In addition to the mechanisms described above, molecular mimicry is also a hub that links
P. gingivalis to AS. Endothelial cells express HSPs under some conditions, such as exposure to bacteria
or CKs. P. gingivalis carries homologs to human HSPs, and P. gingivalis HSP60 antibodies cross-react
with human HSPs [44]. In addition, T lymphocytes that react with both HSP60 from P. gingivalis
and human HSPs have been found in the peripheral blood of CVD patients and in AS plaques [45].
Therefore, the immune response to P. gingivalis may cause cross-reactivity, resulting in endothelial
damage and contributing to the pathogenesis of AS.

In the last two decades, accumulating evidence has supported the role of T cells as critical
drivers and modifiers during AS progression. P. gingivalis infection, especially clones with type II
fimbriae, has been found to decrease the population of regulatory T cells (Tregs) in AS patients [46].
Additionally, in a murine model with a larger lesion area and reduced plaque stability, P. gingivalis
could influence T-cell differentiation and promote a pro-inflammatory Th17 response, suggesting
that Th17/Treg imbalance plays a role during the process of AS [47]. This was also discussed in a
previous review [5]. Moreover, the ability of P. gingivalis to manipulate components of the complement
system, especially C5a, and antimicrobial peptides in remote locations may be implicated in AS
development [10].
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2.2. Myocardial Infarction (MI)

MI is the irreversible necrosis of cardiac cells and scar formation resulting from insufficient
blood supply to the heart. Many studies have reported the promoting role of periodontitis in the
development of MI. A large multicenter study showed that the risk of a first MI was markedly
increased among periodontitis patients: The odds ratio was 1.28 after multi-variable adjustment [48].
Furthermore, analysis of thrombi collected from patients with acute MI showed the existence of
periodontal pathogens. A recent meta-analysis that focused on the detection of periodontal bacteria in
atherosclerotic plaque specimens from MI patients revealed that P. gingivalis was the most frequently
detected species, with an average prevalence of 40% [49]. Further in vivo evidence proved that
experimental P. gingivalis bacteremia induced myocarditis and/or MI in mice [50].

Researchers have attempted to explore the underlying biological mechanisms that link P. gingivalis
and MI. Firstly, P. gingivalis participates in the progression of MI through direct action with
cardiomyocytes. It promotes cardiomyocyte apoptosis by activating Bax and increases matrix
metalloproteinase-9 (MMP-9) activity by enhancing oxidative stress, thereby exerting a strongly
detrimental effect on the healing process of the infarcted myocardium and subsequently leading to
cardiac rupture after MI [51]. Additionally, P. gingivalis may aggravate myocardial injury after MI by
elevating the expression of high mobility group box 1, a nuclear protein from necrotic cells that can
induce an inflammatory response [52]. Lastly, P. gingivalis-associated production of IL-17A might play
an essential role in the pathology of MI, as IL-17A was found to exacerbate ventricular remodeling
after acute MI in mice [50].

2.3. Abdominal Aortic Aneurysms (AAAs)

AAA is a permanent localized widening of the abdominal aorta. A prospective study in 2004
first detected periodontal bacteria by PCR in aneurysmal specimens from AAA patients, and the
detection rate of P. gingivalis was 85%, the highest among all detected periodontal pathogens [53].
Subsequently, further experiments in mice and rats indicated that both intravenous and subcutaneous
injection of P. gingivalis resulted in a significant increase in the abdominal aortic diameter or intraluminal
thrombus (ILT) expansion [54,55].

P. gingivalis mainly promotes AAA progression via three key processes: inflammation, proteolysis,
and SMC apoptosis. Firstly, recognition of P. gingivalis by TLR-2 induces an inflammatory response
and accelerates the development of experimental AAAs [55]. P. gingivalis may also promote neutrophil
recruitment and activation in AAA thrombus, along with the formation of neutrophil extracellular
traps (NETs) in ILT, ultimately stimulating AAA growth [56]. Secondly, MMP expression in infiltrating
inflammatory cells is increased when stimulated by P. gingivalis, which suggests more active proteolytic
activities and neutrophil chemotaxis in the luminal layer of ILT [54]. Lastly, P. gingivalis infection
resulted in a significant elevation of myeloperoxidase–DNA complexes in aneurysm samples and
plasma [56], thereby enhancing oxidative stress and ultimately contributing to AAA pathogenesis
through MMP dysregulation and SMC apoptosis [57].

2.4. Hypertension

Hypertension, currently defined as high systolic blood pressure (BP) (≥140 mmHg) and/or high
diastolic BP (≥90 mmHg), is a growing public health problem worldwide. In recent years, a positive
link between periodontitis and hypertension has been reported by several epidemiological studies.
The results show that patients with diagnosed periodontitis (both moderate-severe and severe) have
an increased likelihood of developing hypertension [58]. Moreover, clinical trials with periodontal
intervention showed a significant decrease in systolic BP and diastolic BP after periodontal therapy [59].
This evidence preliminarily confirms the role of periodontitis in hypertension. Furthermore, in vivo
studies have shown that intraperitoneal injection of P. gingivalis exacerbated the hypertensive response
to angiotensin II in mice [60], suggesting an adverse effect of P. gingivalis on hypertension.
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Hypertension is mainly caused by functional changes in blood vessels, such as increased
vasoconstrictor responses and endothelial dysfunction. Its etiology is complicated, with no simple
mechanism that entirely explains it, and inflammation and the immune response are both implicated.
P. gingivalis has been reported to affect these processes and thereby promote hypertension. It was shown
that repeated exposure of live P. gingivalis or bacteria LPS induced the release of pro-inflammatory CKs
and angiotensin II in human coronary artery endothelial cells, together with P. gingivalis-associated
mediators of systemic inflammation (such as CRP, IL-6, TNF-α), contributing to both endothelial
dysfunction and the development of arterial hypertension [61]. Recently, an animal study supported
the hypothesis that the Th1 immune response induced by P. gingivalis antigens is response for elevated
BP [60]. Moreover, P. gingivalis can induce high expression of endothelial cell adhesion molecules,
platelet aggregation, and SMC proliferation, thus impairing vasomotor function [33,34,42].

3. Oncology

As the major cause of death across the world, cancer is characterized by uncontrolled cell
growth due to aberrant cell cycle progression. Periodontal disease patients were found to have a
greater risk of cancer, with a small but significant correlation [62]. With further research, positive
connections between P. gingivalis and digestive system cancer have been reported. Intriguingly,
increased mortality from P. gingivalis-related digestive system cancer was also exhibited in otherwise
healthy individuals, providing evidence for a direct role that is independent of periodontal disease.
Additionally, the authors identified P. gingivalis as a valuable microbial marker of mortality risk in
digestive system cancer [63].

3.1. Oral Cancer

Oral squamous cell carcinoma (OSCC) often occurs in the tongue, floor of the mouth, buccal
mucosa, and gingiva. A meta-analysis revealed that periodontitis increased the risk of OSCC by
nearly 2-fold [64]. Furthermore, P. gingivalis was shown to increase the chance of OSCC, and its
colonization in tumor tissues has reduced patient survival [65]. The detection of P. gingivalis by
immunohistochemical staining was more than 33% higher in gingival carcinoma tissues than in
normal gingival tissues [66]. Afterwards, in vivo experiments further confirmed the negative effect
of P. gingivalis in OSCC. It was found that P. gingivalis accelerated OSCC progression in an immune
microenvironment through the secretion of C-C motif chemokine 2, chemokine (C-X-C motif) ligand
2, IL-6, and IL-8 from infected oral dysplastic keratinocytes to recruit myeloid-derived suppressor
cells [65]. In addition, oral administration of P. gingivalis promoted 4-nitroquinoline-1-oxide-induced
tongue tumorigenesis and aggravated the disturbance of fatty acid metabolism during oral carcinoma
progression [3].

Large studies have explored the mechanisms of P. gingivalis in OSCC, including
epithelial–mesenchymal transition (EMT) of oral epithelial cells, the inhibition of epithelial cell
apoptosis, the promotion of immune evasion, the proliferation and invasion of tumor cells, and so
on (Figure 2). First, P. gingivalis upregulates the levels of zinc-finger E-box-binding homeobox
proteins (ZEB1 and ZEB2), which are transcription factors that regulate EMT through GSK-3β [67] and
β-catenin/forkhead box-O1 (FOXO1), respectively [68]. A review by Olsen provided a summary of
evidence related to P. gingivalis-induced EMT of OSCC cells and human primary oral epithelial cells [69].
Second, P. gingivalis modulates epithelial cell apoptosis via multiple anti-apoptotic/survival pathways,
including the activation of the PI3K/Akt and JAK/Stat pathways, release of survivin, upregulation
of anti-apoptotic Bad and Bcl-2, downregulation of pro-apoptotic Bax, and inhibition of cytochrome
c release and caspase-9 and caspase-3 activation [70,71]. P. gingivalis infection upregulates miR-203,
which directly inhibits suppressor of cytokine signaling 3 and leads to increased Stat3 activation [72],
which may also be involved in the anti-apoptotic mechanism of the epithelium, given the role of
Jak/Stat mentioned above. In addition, nucleoside diphosphate kinase (NDK), an ecto-ATPase secreted
by intracellular P. gingivalis, confers epithelial cells with an anti-apoptotic phenotype by binding to
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and phosphorylating HSP27, which inhibits cytochrome c release and caspase-9 activation [73]. NDK
from P. gingivalis can also scavenge ATP and inhibit P2X7-mediated host-cell apoptosis [74]. Moreover,
P. gingivalis infection promotes a prosurvival phenotype in human primary oral epithelial cells by
regulating cyclins and p53 [75]. P. gingivalis-induced reactive oxygen species (ROS) activates the
multipurpose transcriptional regulator FOXO1 via JNK signaling and then initiates an anti-apoptotic
program in epithelial cells [76]. Third, internalized P. gingivalis upregulates the expression of B7-H1
and B7-DC receptors on oral cancer cells via a receptor-interacting serine/threonine-protein kinase
2-dependent mechanism, contributing to the escape of tumor cells from immunosurveillance [77].
Furthermore, NDK from P. gingivalis has antagonist effects on ATP activation of P2X7 receptors, leading
to reduced IL-1β production in epithelial cells, thereby promoting the immune evasion of tumor
cells [78]. Fourth, P. gingivalis promotes the proliferation of OSCC cells by regulating the expression of
cyclin D1 through the miR-21/PDCD4/AP-1 negative signaling pathway [79]. Fifth, P. gingivalis-infected
OSCC cells can increase invasiveness through EMT-like changes [80]. In addition to EMT, P. gingivalis
may have the ability to induce proMMP9 expression via ERK1/2-Ets1, p38/HSP27, and PAR2/NF-kB
pathways, which subsequently activate MMP9, promoting OSCC cell invasion [81]. P. gingivalis
exposure also increases the invasive ability of oral cancer cells via the upregulation of MMPs in an
IL-8-dependent fashion, including MMP-1, MMP-2, and MMP-10 [80,82]. Beyond the mechanisms
mentioned above, it has been reported that inflammatory mediators elicited by P. gingivalis could
induce cell proliferation, mutagenesis, oncogene activation, angiogenesis, and immunosuppression,
thus facilitating the development of OSCC [83].
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3.2. Esophageal Cancer

Esophageal cancer is one of the most aggressive cancers in the world. A positive correlation was
found between P. gingivalis and higher esophageal squamous cell carcinoma (ESCC) risk. The expression
of whole P. gingivalis antigen and unique Kgp, along with 16S rDNA, was much higher in cancerous
tissues compared with adjacent and normal tissues from ESCC patients [84]. Moreover, P. gingivalis
was inversely related to the ESCC survival rate [84]. Patients with higher levels of P. gingivalis IgA or
IgG tended to have a worse prognosis [85], indicating the adverse role of P. gingivalis in ESCC.

In order to investigate the underlying mechanisms, a series of in vitro experiments has been
carried out. P. gingivalis dehydrogenates ethanol to its carcinogenic derivative, acetaldehyde, at levels
that are capable of inducing DNA damage, mutagenesis, and excessive proliferation of the epithelium.
Carcinogen metabolism by P. gingivalis may therefore be a possible mechanism [84]. Further, Yuan et al.
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highlighted the ability of P. gingivalis to evade immune surveillance, and they determined that the
blockade of immune-checkpoint B7-H4 and lysine demethylase 5b in ESCC conferred resistance
against P. gingivalis infection and tumor challenge, proposing them as potential therapeutic targets
for controlling P. gingivalis infection and its associated neoplasia [86]. Furthermore, P. gingivalis can
enhance ESCC cell proliferation and metastasis by triggering the NF-κB signaling pathway [87] or via
the miR-194/GRHL3/PTEN/Akt axis [88].

3.3. Pancreatic Cancer

Pancreatic cancer, one of the most rapidly fatal diseases, represents one of the primary causes
of cancer-related mortality. People with a history of periodontal disease showed a higher risk of
developing pancreatic cancer, which was up to 1.64 times higher relative to those without periodontal
disease [89]. Subsequently, researchers aimed to explore the potential relationship between oral
bacteria and pancreatic cancer. For example, in a large European prospective cohort study, investigators
examined 25 oral bacteria and found that higher levels of serum P. gingivalis antibodies were associated
with a two-fold increased risk of pancreatic cancer [90]. In another large-scale and long-term study,
researchers sequenced DNA extracted from the saliva samples of participants and found that individuals
who were positive for P. gingivalis had a 59% greater risk of developing pancreatic cancer compared
with those in whom the species was undetected [91]. This evidence suggests that there may be a
relationship between P. gingivalis and pancreatic cancer.

Some possible mechanisms have been proposed. P. gingivalis infection could induce differential
expression of TLR pathway-associated genes [92], and TLR activation has critical protumorigenic
effects on pancreatic carcinoma [93]. Additionally, P. gingivalis invasion leads to p53 activation,
a tumor suppressor gene, whose mutation rate is higher in pancreatic cancer and whose abnormal
expression plays an important role in pancreatic tumorigenesis [94]. Thus, mutations in p53 may
serve as a bridge that connects P. gingivalis and pancreatic cancer development. Although partly
clarified, further observations are needed to elucidate how P. gingivalis participates in the progression
of pancreatic cancer.

4. Neurology

Mental and neurological disorders, involving alterations in brain or nervous system functions,
together with perception and response to the environment, have afflicted the global human population.
The relationship between periodontitis and neuropsychiatric disorders has recently captured the interest
of scientists. Epidemiological evidence from several studies has indicated that chronic periodontitis and
P. gingivalis infection significantly elevate the risk of neuropsychiatric disorders, such as Alzheimer’s
disease [95] and depression [96].

4.1. Alzheimer’s Disease (AD)

AD is a neurodegenerative disease. It is the most common reason for dementia and is becoming
a major health problem in aging societies worldwide. A historical cohort study found that chronic
periodontitis patients had an elevated risk of AD [95], and P. gingivalis DNA, LPS [97], and gingipains [4]
have been identified in AD brains. Parallel epidemiological studies and animal experiments also
strengthen support for the possible relevance of P. gingivalis in AD pathogenesis. P. gingivalis exposure
induced AD-like phenotypes in mice, which presented as microglia-mediated neuroinflammation,
β-amyloid (Aβ) accumulation in neurons, impaired cognitive function, and a reduction in learning
and memory [98,99].

The pathology of AD has three major hallmarks: Aβ plaques, neurofibrillary tangles,
and microglia-mediated neuroinflammation. P. gingivalis may be involved in the progression of
AD through these processes (Figure 3). Cathepsin B (CatB) is crucial for Aβ deposition and the
mediation of neuroinflammation. Intraperitoneal injection of P. gingivalis LPS into middle-aged
WT mice significantly increased CatB expression in both microglia and neurons, and P. gingivalis
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LPS-induced AD-like phenotypes were found to occur only in a CatB-dependent manner [98].
Furthermore, in P. gingivalis-infected mice, Aβ accumulated in inflammatory monocytes/macrophages,
mainly based on CatB/NF-κB signaling activation, and this is the first evidence to suggest that
inflammatory monocytes/macrophages act as the source of peripheral Aβ when exposed to P.
gingivalis [100]. Therefore, considering the pivotal role of CatB, it has been regarded as a potential
therapeutic target for preventing P. gingivalis-associated cognitive decline in AD [98,100]. In addition,
hippocampal neurons had significantly increased mean mRNA levels of amyloid precursor protein
and CatB when treated with conditioned medium from P. gingivalis LPS-treated WT primary microglia,
but not when treated with P. gingivalis LPS directly [98]. Accordingly, the pivotal, detrimental role
of P. gingivalis against microglia is involved in the pathogenesis and development of AD. A recent
review indicated that P. gingivalis may affect microglia and genes such as apolipoprotein, clusterin,
CD33, and complement receptors to cooperatively promote the neurodegeneration that is typical of
AD [101]. Furthermore, P. gingivalis LPS might induce neuroinflammation and cognitive impairment
in mice via the TLR4/NF-κB signaling pathway [99]. In addition to the direct role of P. gingivalis,
the release of inflammatory molecules may also be involved. Various host cells infected with P. gingivalis
reportedly release a set of CKs, such as TNF-α, IL-1, IL-6, and IL-8, in their immune response [102].
Pro-inflammatory mediators could reach the central nervous system via hematoencephalic barrier-free
areas and fenestrated capillaries or by regulating blood–brain barrier permeability [103]. Systemic
inflammation, including inflammatory mediators such as CRP, TNF-a, IL-6, and IL-1β, may also
increase the risk and progression of cognitive decline and AD. In contrast to the above-described
studies, Liu et al. focused on gingipains, Rgp and Kgp. They revealed that gingipains cooperatively
contributed to the cell migration of microglia towards the infected site and induced neuroinflammation
through the proteolytic activation of protease-activated receptor 2, and the subsequent activation of
PI3K/Akt and MEK/ERK pathways may also play fundamental roles in this process [104]. In addition,
researchers have proposed that P. gingivalis may also be involved in the progress of AD by contributing
to the suppression of the host’s adaptive immune system. P. gingivalis could prevent the entry of
immune cells into the brain, increase blood–brain barrier permeability, and inhibit the local IFN-γ
response. The scarcity of adaptive immune cells in AD neuropathology further implies that P. gingivalis
residing in the brain may impair clearance of Aβ and induce immunosuppression [5].
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4.2. Depression

Depression, a psychological disorder, is affecting increasingly more people around the world. It is
easily affected by social psychology. Previous studies have mainly focused on the psychosocial effects
(such as embarrassment, isolation, loneliness) of tooth loss, poor oral hygiene, and halitosis [105]. It has
been reported that individuals with periodontitis have a higher incidence of subsequent depression [96].
Scholars have attempted to explore the biological mechanisms through which periodontitis contributes
to depression. Wang et al. successfully produced depression-like phenotypes in mice after P. gingivalis
oral colonization or P. gingivalis LPS intraperitoneal injection. The proposed underlying mechanism
was that P. gingivalis induced astrocyte activation and downregulated neurotrophic factor receptor p75
expression in a TLR4-dependent fashion, ultimately inhibiting the maturation of the brain derived of
neurotrophic factor. This study has provided the first experimental evidence that P. gingivalis could be
a risk factor for depression [106]. More studies are needed.

5. Respirology

Respiratory diseases are among the most common pathologies in humans across the world.
Many published epidemiological studies have reported a positive link between periodontitis and
respiratory diseases [107] through the possible aspiration of oral bacteria from the oropharynx into the
lower respiratory tract as a result of a swallowing disorder. Among the different periodontitis-related
respiratory diseases, we mainly discuss pneumonia and chronic obstructive pulmonary disease here.

5.1. Pneumonia

Lower respiratory tract infections, including pneumonia, were the fourth highest cause of death
worldwide in 2016 [108]. A recently published meta-analysis validated a positive correlation between
periodontitis and pneumonia [107], and dental treatment has been regarded as a safe and effective means
of preventing lower respiratory tract infection in intensive care patients [109]. Moreover, mice that
were intratracheally infected with P. gingivalis developed severe bronchopneumonia and lung
abscess [23,110].

Studies have investigated the correlation between P. gingivalis and pneumonia, and some key
findings have been reported. Evidence from in vivo experiments suggests that gingipains are essential
factors in mediating aspiration pneumonia due to P. gingivalis infection, and the authors recommended
it as a useful adjunct treatment site [23]. Interestingly, TLR-2 has been demonstrated to confer protection
against acute pulmonary infection with P. gingivalis [110]. Furthermore, P. gingivalis might affect
pneumonia progression through interactions with other respiratory pathogens. Co-infection of P.
gingivalis and H1N1 in lung epithelial cells promoted the production of inflammatory CKs and NO,
resulting in increased levels of apoptosis via the Bcl-2/Bax/caspase-3 pathway [111]. P. gingivalis can
modulate Pseudomonas aeruginosa-induced respiratory epithelial cell apoptosis via the STAT3 signaling
pathway by causing transient inhibition and, ultimately, exerting promoting effects [112].

5.2. Chronic Obstructive Pulmonary Disease (COPD)

COPDs are a group of diseases characterized by airflow limitation in the airway and include chronic
bronchitis and emphysema. A positive relationship between periodontitis and COPD was reported [107],
and periodontal therapy was found to improve lung function and reduce the frequency of COPD
exacerbation in COPD patients [113]. Through 16S rDNA-based metagenomic analysis, P. gingivalis was
found in tracheal aspirates from patients with severe acute exacerbation of COPD [114], suggesting a
possible role for the bacteria in this disease. Studies have indicated that P. gingivalis-associated enzymes
in saliva (such as proteases) may alter mucosal surface adhesion receptors, destroy salivary pellicles
on pathogenic bacteria, or degrade the salivary pellicles on mucosal layer, all of which promote the
colonization of respiratory pathogens in the respiratory epithelium [115]. These findings suggest that
P. gingivalis plays a role in COPD progression by modulating the colonization of respiratory pathogens.
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6. Metabolism

Metabolic diseases refer to a class of disorders caused by the abnormal metabolism of glucose,
proteins, or lipids. Their prevalence has markedly increased across the world in the last few decades.
Many studies have linked P. gingivalis to several metabolic diseases, especially diabetes and nonalcoholic
fatty liver disease.

6.1. Diabetes

Diabetes, a series of chronic metabolic disorders characterized by hyperglycemia, is the result of
defects in insulin secretion, insulin action, or both. Considerable epidemiologic evidence has shown a
two-way interrelationship between periodontitis and diabetes, and many researchers regard periodontal
infection as a risk factor for diabetes progression. Diabetic individuals with periodontitis were found
to have a significantly higher prevalence of diabetes-related complications [116]. Furthermore, patients
with diabetes had a reduction of 0.4% in glycosylated hemoglobin after non-surgical periodontal
therapy [117]. Further animal experiments have confirmed that P. gingivalis or its components can
induce insulin resistance in mice [118–121], which is one of the vital pathogeneses of type 2 diabetes.

Among the potential P. gingivalis-related mechanisms involved in the course of diabetes,
insulin resistance is considered to be the most important. P. gingivalis infection increased systemic
inflammation, especially in adipose tissue, through the induction of endotoxemia [119], alteration of
gut microbiota [122], or an impaired regional adaptive immune response [118], ultimately resulting in
insulin resistance. Moreover, inflammation and elevated levels of inflammatory markers, such as CRP
and IL-6, can induce insulin resistance [123]. Thus, increased levels of systemic pro-inflammatory CKs
initiated by P. gingivalis may promote insulin resistance. P. gingivalis LPS induced pro-inflammatory
adipokine secretion and oxidative stress in adipocytes through the regulation of TLR-mediated
pathways and redox enzymes and contributed to obesity-associated insulin resistance [124]. A recent
study in 2020 indicated that P. gingivalis aggravated high-fat diet (HFD)-induced insulin resistance in
mice via its biosynthesis of branched-chain amino acids, which can activate the mammalian target of
rapamycin and downstream genes, which leads to the dephosphorylation of insulin receptor substrate
1 [121]. Furthermore, P. gingivalis OMVs were loaded with gingipains and translocated to the liver
in mice, leading to the attenuation of insulin sensitivity and inhibition of hepatic glycogen synthesis,
partly by attenuating the Akt and GSK-3β pathway [120]. Importantly, potential mechanisms other
than insulin resistance should be examined. Higher colonization levels of P. gingivalis are reported to be
linked to higher prediabetes prevalence among diabetes-free adults [125]. P. gingivalis LPS stimulated
insulin secretion by pancreatic β-cells and had significant implications in the progression of β-cell
compensation in prediabetes in subjects with periodontitis [126]. Moreover, oral administration of
P. gingivalis induced the translocation of P. gingivalis/gingipains to the pancreas in mice, leading to
significant changes in islet architecture and β-cell apoptosis, which may be involved in the development
of prediabetes [127]. Lastly, P. gingivalis attenuated the phosphorylation and translocation of FOXO1,
which is regulated by insulin in HepG2 cells, thereby increasing hepatic gluconeogenesis [128] and
potentially leading to elevated blood glucose.

6.2. Nonalcoholic Fatty Liver Disease (NAFLD)

NAFLD is a hepatic manifestation of metabolic syndrome characterized by abnormal accumulation
of fat. Epidemiological evidence in the last decade has supported a positive correlation between
periodontitis and high prevalence odds of NAFLD. In NAFLD patients, liver function parameters
(ALT and AST) were improved after they underwent periodontal therapy [129]. A potential link
between P. gingivalis and NAFLD has also been shown. The detection frequency of P. gingivalis DNA
(46.7%) was markedly higher in NAFLD patients compared with control subjects [129]. P. gingivalis
was also immunohistochemically detected (52.5%) in the liver of nonalcoholic steatohepatitis (NASH)
patients, and NASH patients with P. gingivalis infection had higher fibrosis scores than those who
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did not [130]. Similarly, antibodies against P. gingivalis with type IV fimbriae tended to increase with
fibrosis progression among NASH patients [131]. Moreover, in vivo studies have indicated that P.
gingivalis infection can exacerbate HFD-induced NAFLD/NASH progression [119,129–132].

Over the past decade, potential underlying mechanisms that connect P. gingivalis to NAFLD have
been explored. The involvement of P. gingivalis in the pathogenesis of NAFLD in mice may occur
through the activation of the P. gingivalis LPS-associated TLR2 pathway and inflammasomes [130],
the severe disruption of fatty acid metabolism, and an increase in the monounsaturated/saturated
fatty acid ratio [131]. Moreover, insulin resistance is currently considered to be one of the important
pathogenesis mechanisms of NAFLD. Endotoxemia caused by P. gingivalis injection aggravated NAFLD
in mice, along with impaired glucose tolerance and insulin resistance [119]. We previously described
mechanisms of P. gingivalis related to insulin resistance that may also have effects on NAFLD. This was
also mentioned in related review [6]. A recent study in 2020 further explored the mechanisms of
liver fibrosis. The authors investigated the interaction between P. gingivalis and hepatic stellate cells
(HSCs), which act as effector cells of hepatic fibrosis. The presented data suggested that P. gingivalis
odontogenic infection could play a role in aggravated fibrosis in a NASH mouse model through
HSCs activation caused by the production of TGF-β1 and galectin-3 in HSCs and hepatocytes [132].
Other putative explanations that have been proposed are the alteration of the gut microbial composition
due to swallowed P. gingivalis, along with the production of CKs and ROS triggered by P. gingivalis [6].
Despite recent progress, there is comparatively little research on this subject. Further studies are still
warranted to explore its biological mechanisms. On the other hand, because all of these studies are
cross-sectional and include heterogeneity, further large-scale prospective cohort studies are highly
recommended to verify the association.

7. Obstetrics

Adverse pregnancy outcomes (APOs) refer to any maternal, fetal, and/or neonatal complications
that occur during pregnancy, labor, and/or the postpartum period. Epidemiologic evidence
has consistently suggested a positive correlation between periodontitis and APOs [133].
Furthermore, P. gingivalis DNA and antigens have been found in the placenta, umbilical cord [134],
and amniotic fluid [135]. A positive association has been found between the presence of P. gingivalis
within the placenta or umbilical cord of pregnant women and many pregnancy complications,
including preterm birth (PB), preeclampsia, and pregnancy-related hypertensive disorders [134–136].
These results suggest the involvement of P. gingivalis in APOs through direct invasion and damage
to utero-placental tissues. Subsequently, various rodent models confirmed that P. gingivalis infection
can induce diverse utero-placental pathologies (such as endometrial arteritis, mild chorioamnionitis,
and utero-placental hemorrhage with structural disorder of placenta) and cause a diverse array of
APOs, including fetal growth restriction (FGR), low birth weight (LBW), and PB [137–139].

The direct dissemination of P. gingivalis to the placenta and its pathogenicity mechanisms have
been proposed in many animal experiments. It has been reported that P. gingivalis could translocate
to local placental tissues in rats and enhance the expression of Fas, FasL, and TLR2, leading to PB
and LBW [137]. P. gingivalis infection in pregnant mice induced a fetus-specific placental immune
response and increased the placental Th1/Th2 cytokine ratio (increased expression of IFN-γ, IL-2,
and IL-12, decreased expression of IL-4 and IL-10), which may be related to the occurrence of
FGR [138]. The same research team also found that P. gingivalis induced a maternal immune response
and enhanced FGR in mice, with an elevation in the maternal serum TNF-α and a decrease in
IL-10 [139]. Furthermore, P. gingivalis LPS directly or indirectly upregulated inflammatory factors
such as TNF-α, IL-8, and cyclooxygenase 2 via the production of galectin-3 in the placenta, inducing
PB [140]. Researchers have also explored the impacts of P. gingivalis on trophoblast cells. P. gingivalis can
invade human extravillous trophoblasts and induce G1 arrest and cell apoptosis, which may involve
ERK1/2 and DNA damage response pathways, thereby disrupting the maintenance of pregnancy [141].
The activation of complex signaling networks, for example, the HSP27/p21 pathway via p53/p38
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and JNK, may also contribute to G1 arrest and cell apoptosis [94]. Other mechanisms have been
proposed and summarized in detail previously, including P. gingivalis’ persistence and survival
within utero-placental tissues via sophisticated invasive strategies and immune response evasion,
development of polymicrobial dysbiosis and synergy with other commensal bacteria to increase the
overall microbial burden at the maternal–fetal interface, increased expression of acute-phase proteins
such as CRP and pentraxin3, excessive generation of ROS, increased production of fetal adrenal
cortisone, and fetal stress [7].

8. Rheumatology

As a chronic autoimmune disease, rheumatoid arthritis (RA) is characterized by persistent
inflammatory synovitis and progressive degeneration of cartilage and bone. A meta-analysis found
a higher RA prevalence in periodontitis patients compared with controls [142], and non-surgical
periodontal therapy in individuals with RA and periodontitis was associated with improvements
in markers of disease activity in RA [143]. Many periodontal bacteria, particularly P. gingivalis,
were detected in synovial fluid from patients with RA at the DNA level (42.1%) [144].
Subsequently, a great deal of preclinical experiments in different animal models revealed that
P. gingivalis increased the incidence and progression of RA [145–148].

The etiology of RA is very complicated. Autoantibodies against citrullinated proteins are
confirmed to be one of its pathological bases. Protein citrullination is carried out by peptidyl-arginine
deiminases (PAD), and, so far, P. gingivalis is the only microorganism known to express the PAD
enzyme. A previous review investigated and proposed that P. gingivalis PAD may set in motion a
chain of events that break immunotolerance to citrullinated proteins, leading to the development of
RA [8]. Treatment with a PAD-deficient strain effectively reduced the extent of experimental arthritis in
animals compared with those infected with wild-type P. gingivalis [147]. Additionally, oral inoculation
of P. gingivalis prior to RA activated the immune system by inducing a TLR2- and IL-1-driven Th17 cell
response, which suggests that exposure to P. gingivalis may accelerate RA progression predominantly
through Th17-related pathways [145]. Furthermore, it has been proposed that the promotion of C5a
generation, the induction of NETosis, osteoclastogenesis [149], and orally administered P. gingivalis,
which alters the gut immune system and gut microbiota composition [146], may also be implicated
in the progression of RA. Inflammatory arthritis alters the intestinal inflammatory response with
the downregulation of some protective mediators, including resolvin D5n-3 DPA, which weakens the
intestinal barrier function and facilitates a switch in P. gingivalis behavior to the pathogenic tendency,
thus further promoting gut bacterial translocation and increasing joint inflammation [150].

9. Strategies for Controlling P. gingivalis for the Potential Treatment of Systemic Diseases

Given the inseparable link between P. gingivalis and several systemic diseases, many researchers
naturally want to explore whether controlling P. gingivalis can be regarded as a feasible disease
management strategy. Proposed approaches include broad-spectrum antibiotics and specific
inhibitors that target P. gingivalis. Firstly, administration of doxycycline or metronidazole resulted
in a significant reduction in the percentage of atherosclerotic lesions in P. gingivalis-inoculated
mice [151,152]. Additionally, Dominy and colleagues made a new breakthrough, as they designed
an orally administered small molecule that targets gingipains [4]. Gingipain inhibitors have been
found to block gingipain-induced neurodegeneration, rescue neurons in the hippocampus, and
significantly reduce the P. gingivalis load and Aβ production in the mouse brain, suggesting that
it could be valuable for treating P. gingivalis brain colonization and neurodegeneration in AD [4].
More recently, pre-immunization with purified recombinant Rgp domains alleviated experimental
arthritis in rats [153]. Pretreatment with inhibitors to block the proteolytic activity of gingipains in
mice significantly relieved the symptoms and reduced the mortality of pneumonia, indicating that
inhibition of gingipains may be a useful adjunct in the treatment of P. gingivalis-mediated aspiration
pneumonia [23]. Besides gingipains, sublingual immunization with a recombinant vaccine that targets
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P. gingivalis HSP60 or nasal immunization with OMVs prior to P. gingivalis injection also significantly
reduced AS lesion formation in ApoE-deficient mice, and it may be an effective strategy for preventing
naturally occurring or P. gingivalis-accelerated AS [154,155]. Targeting the main virulence factors
of P. gingivalis (such as gingipains) by pre-immunization or, if possible, small-molecule inhibitors
may reduce the ability of the bacteria to translocate to remote tissues and instigate and/or exacerbate
pathology in some chronic inflammatory diseases [153]. Despite the positive results mentioned above,
more research is still warranted, which may provide novel therapeutic strategies for some diseases.

10. Conclusions

The latest studies have tended to focus on exploring possible direct and indirect links between
P. gingivalis and certain systemic diseases, especially AD and AS, and an increasing amount of evidence
has been accumulating. P. gingivalis invades the human body and influences general health in four
main ways (Figure 4). (i) Bacteremia: The direct invasion of P. gingivalis in epithelium, endothelial
cells, and subepithelial tissues has been demonstrated [156]. Transient bacteremia of P. gingivalis
frequently occurs during daily activities, such as toothbrushing, chewing, and flossing, and after dental
treatment procedures [20], which enable the bacteria to enter the rest of the body and take part in local
pathogenesis. (ii) Immunologic sounding: Persistent local infection caused by P. gingivalis induces
the upregulation of inflammatory cascades involving IL-1, IL-6, IL-8, TNF-α, CRP, and IFN [102].
A low-level, long-term systemic inflammatory status might be implicated in the pathology of systemic
disorders. (iii) Specific toxins of P. gingivalis, such as gingipains and OMVs, have been detected at
multiple body sites (such as the brain and liver) and play pivotal roles in the progression of local
diseases [4,120]. (iv) Pathogen trafficking: Direct infection and internalization in host immune cells,
such monocytes, and subsequent recruitment to tissues throughout the whole body may be another
pathogenic strategy of P. gingivalis [4].
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In this article, we comprehensively summarize the adverse effects of P. gingivalis on multiple
systems and a variety of diseases, from extensively studied fields (CVDs, cancer, APOs, etc.) to
emerging areas (AD, NAFLD, depression, etc.). Some of the clearer and more direct mechanisms are
discussed here. However, many of the exact mechanisms are not fully clear yet, and a few conclusions
are controversial. Current evidence emphasizes that promoting oral health should be encouraged as an
indispensable part of a healthy lifestyle to reduce the burden of global chronic noncommunicable and
communicable diseases [157], which was an initiative of the World Health Assembly as early as 2007.
There is currently no doubt that periodontitis is certainly preventable and controllable, as is P. gingivalis,
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and should be regarded as a modifiable factor for diseases. Reducing the load of P. gingivalis through
periodontal intervention has potential benefits for oral health and a direct or indirect positive impact
on overall health, even if it prevents the possibility of such a connection. We should be aware of the risk
and address it as soon as possible to avoid threatening our health. Moreover, interrelations between
P. gingivalis and other oral pathogens (such as Actinobacillus actinomycetemcomitans and Fusobacterium
nucleatum), together with gut microbiota, are another subject of intensive study.
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