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Simple Summary: Pet animals’ bacterial skin infections represent the main reason for presentation
in small animal practice and are generally secondary complications of other pathological conditions.
Pyoderma and otitis externa are generally caused by Staphylococcus spp., and particularly Staphylo-
coccus pseudintermedius is often isolated from dogs and cats suffering from skin disorders. However,
also Gram-negative bacteria, such as Pseudomonas aeruginosa and Escherichia coli, can be responsible
for both otitis externa and pyoderma. Since multi-drug-resistant bacterial strains have become a
relevant threat in veterinary medicine, this study aimed to identify the bacteria most frequently
associated with the most common clinical cases of skin infections in dogs and cats attending the
University Veterinary Teaching Hospital of Naples in the period from January 2016 to December
2019. Moreover, their antibiotic resistance profiles were evaluated, highlighting an increasing spread
of multi-drug-resistant strains. It is worth noting that this spread may also concern humans because
of their close contact with pets. Thus, it not only is of veterinary significance but also has zoonotic
importance, with pets acting as reservoirs for humans, especially pet owners and veterinarians.

Abstract: A 4-year retrospective study (2016–2019) of selected routine bacteriological examinations
of the veterinary microbiology laboratory of the University Veterinary Teaching Hospital of Naples
(Italy) was carried out. A total of 189 bacteriological samples were collected from 171 dogs and 18 cats
suffering from skin infections. In dogs, the most common cutaneous infection was otitis externa,
while pyoderma was found to be prevalent in cats. The number of recorded Gram-positive strains
over the study period did not vary considerably from year to year and was always significantly higher
(p-value = 0.0007) in comparison with Gram-negative bacterial isolations. In dogs, Staphylococcus
pseudintermedius was the most common identified Gram-positive bacterium (65%), while Pseudomonas
aeruginosa (36%) was the one among the isolated Gram-negative bacteria. In cats, coagulase-negative
staphylococci were the most predominant isolated bacteria (47%). The phenotypic profiles of antibi-
otic resistance showed that most of the strains were resistant to amoxicillin–clavulanate, penicillin,
clindamycin, and trimethoprim–sulfamethoxazole. Several multi-drug-resistant strains (35%) were
detected in canine isolates. An updating of antibiotic resistance profiles of the main Gram-positive
and Gram-negative bacteria principally associated with skin infections of pet animals is necessary to
improve stewardship programs of veterinary hospitals and clinics.

Keywords: Gram-positive and Gram-negative bacteria; pet animals; skin infections; antibiotic
resistance
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1. Introduction

Dogs and cats are exposed to bacteria daily, and most of the time, their immune
systems are able to fight them off without showing any sign of disease. Bacterial disease
occurs when a pet’s immune system is weakened, and bacteria can replicate and spread in
the pet’s body. Furthermore, cleanliness practices of pet owners are essential to prevent the
onset of diseases. Pet animals’ skin infections represent the main reason for presentation in
small animal practice and are generally secondary complications of other pathological con-
ditions, such as allergies, atopic dermatitis, and adverse food reactions. When skin barrier
dysfunction occurs, a propensity toward secondary bacterial infections is established [1,2].

Usually, most of Gram-positive or Gram-negative infections are caused by the normal
resident microflora of the skin, mucous membranes, and gastrointestinal tract. Cases of
otitis, respiratory, urinary, and dermatological infections in pets involve principally both
groups of bacteria. Pyoderma and otitis externa can affect dogs of any age or gender and
are usually caused by Staphylococcus spp. [3,4]. Other bacteria commonly associated with
otitis include Pseudomonas aeruginosa, Escherichia coli (E. coli), Streptococcus spp., Proteus
mirabilis, Enterococcus spp., and Corynebacterium spp. [5]. Some bacteria, such as Staphylo-
coccus spp. and Pseudomonas spp., may produce biofilm, which may increase the ability of
these pathogens to resist antibiotics [6]. Particularly, the opportunistic Gram-positive bac-
terium, skin commensal or pathogen, Staphylococcus pseudintermedius (S. pseudintermedius) is
considered the main causative agent of skin and ear infections in small animals [7–9]. Even
though Gram-negative bacteria, such as E. coli and Pseudomonas aeruginosa, are prevalent
as bacterial agents of canine and feline urinary tract infections [10], they are increasingly
reported to be responsible for secondary skin infections, not only in humans [11], but also
in small animals [12,13]. Study data on the prevalence and antibiotic resistance profiles of
Gram-positive and Gram-negative bacteria isolated from owned dogs and cats referred
daily to the teaching hospital appear to be not numerous in Italy. Antibiotics, important
tools for the therapy of infectious bacterial diseases in companion animals, are typically
used to treat infections, but antibiotic susceptibility testing is rarely requested. An Italian
study conducted 10 years ago highlighted that in a veterinary teaching hospital, less than
5% of antibiotic prescriptions were made following antibiotic sensitivity test results [14].
In fact, antimicrobial therapy appears to be mainly empirical rather than based on antimi-
crobial susceptibility testing. This test should always be performed, especially in cases
of recurrent infections, such as skin or urinary infections, where the rearing of resistant
microorganisms is favored. Indeed, it has been reported that antibiotic-resistant bacterial
infections commonly affect the skin, the gastrointestinal tract, the urinary tract, or the
respiratory tract [15]. Furthermore, in our previous study, performed at the University Vet-
erinary Teaching Hospital, antimicrobial prescription data were collected before and after
the mandatory use of veterinary electronic prescription, highlighting that broad-spectrum
antimicrobials such as amoxicillin–clavulanate and first-generation cephalosporins are the
antibiotics more frequently administered in dogs and cats [16]. Thus, trends in antibiotic
resistance among major bacterial pathogens isolated from pets are important to know, in
order to recognize the bacterial infections that are minimally or no longer responsive to
commonly used antibiotics. In other words, these bacteria, resistant to antibiotics, espe-
cially the ones with zoonotic potential, represent a worrisome threat to public health, since
they could be transmitted to other pets or to humans [17].

Recently, a first study on the prevalence of bacterial pathogens and their antimicrobial
resistance sampled from dogs and cats at the College of Veterinary Medicine Teaching
Hospital of Colombia was published [18], and a similar study based on a large number of
clinical cases collected within the Iberian Peninsula was published [5].

In recent years, in our hospital, request for bacteriological examinations before a
therapy prescription has increased. Probably recommendations for prudent use of antimi-
crobials have allowed the increase of bacteriological tests. In addition, a more in-depth
bacteriological diagnosis to know the molecular characterization, the main sequence type,
the clonal spread of new variants or new approaches to conventional therapies was carried
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out [9,19]. It is more and more important to know the distribution of pathogens and their
antibiotic resistance profile in pets, especially for their close contact with people, which of-
fers favorable conditions for interspecies transmission of multi-drug-resistant bacteria [20].
Dogs are the major reservoirs for zoonotic infections that can be transmitted to humans by
infected saliva, aerosols, contaminated urine or feces, and direct contact with the dog, and
several case reports suggest household transmission of resistant strains between pets and
their owners [21].

Here, clinical and laboratory findings and outcomes of animals with Gram-negative
versus Gram-positive skin infections and susceptibility testing performed for the right
choice of antibiotic treatment were compared.

2. Materials and Methods
2.1. Informed Consent

This work did not involve the use of animals; instead, only noninvasive skin swab
samples were obtained from animals being investigated for clinical reasons and for their
benefit. Therefore, informed consent was not required.

2.2. Ethics Statement

No animal was used in the study. All the reports used had been collected for routine
veterinary investigations. The design of this study was approved by the Ethical Animal
Care and Use Committee of the University of Naples Federico II (certificate number
PG/2021/0035101), in compliance with the Italian Legislative Decree 26/2014, Article 2.

2.3. Sample Collection

This research was conducted through the analysis of the database belonging to the
Laboratory of Microbiology of the Department of Veterinary Medicine and Animal Pro-
duction (University of Naples Federico II, Italy) from January 2016 to December 2019. All
specimens were collected from clinically ill patients, precisely from independent cases of
otitis or pyoderma, involving dogs and cats referred to the University Veterinary Teach-
ing Hospital called Ospedale Veterinario Universitario Didattico (OVUD) of the above-
mentioned department.

Samples were plated on blood agar base supplemented with 5% sheep blood, selective
medium used for the isolation of Gram-positive microorganisms; on mannitol salt agar
(MSA), selective medium to identify staphylococci; and on MacConkey agar (MCA), se-
lective and differential medium to grow Gram-negative bacteria, which were incubated
aerobically at 37 ◦C for 24–48 h. The plates were all microbiological media from Oxoid Ltd.,
Basingstoke, Hampshire, UK. Each morphotype colony was subjected to Gram staining,
catalase, oxidase, and coagulase tests, followed by biochemical identification with the API
system (BioMerieux, Marcy l’Etoile, France) according to the manufacturer’s instructions.
The species identification by miniaturized biochemical tests was accepted when probability
was >88%.

Pure colonies were stored into tryptone soy broth supplemented with 30% glycerol at
−20 ◦C for future analysis.

The laboratory database refers to the exam files containing animal identification items
(name, ID number, species, breed, sex, age, material collected, clinical diagnosis, and previ-
ous antibiotic intake), identification of the isolated bacteria, and results of the diameter of
the bacterial growth inhibition zones obtained by Kirby–Bauer disk diffusion susceptibility
tests. For Gram-positive and Gram-negative bacteria, the following antimicrobials were
tested: amoxicillin–clavulanate (AMC, 20/10 µg), ampicillin (AMP, 10 µg), gentamicin
(CN, 10 µg), imipenem (IMI, 10 µg), enrofloxacin (ENR, 5 µg), marbofloxacin (MAR, 5 µg),
pradofloxacin (PRA, 5 µg), erythromycin (E, 15 µg), tetracycline (TE, 30 µg), trimethoprim–
sulfamethoxazole (SXT, 25 µg). Gram-positive bacteria were also tested for penicillin (P,
10 IU) and clindamycin (CD, 2 µg). Moreover, staphylococci were tested for susceptibility to
oxacillin (OX, 1 µg) as an indicator for methicillin resistance. The tested antibiotics belonged
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to 8 different classes. The interpretation of antimicrobial resistance/susceptibility was per-
formed according to Clinical Laboratory Standards Institute guidelines [22] for clindamycin,
enrofloxacin, erythromycin, gentamicin, marbofloxacin, oxacillin, penicillin, pradofloxacin,
tetracycline, and trimethoprim–sulfamethoxazole, while for amoxicillin–clavulanate, ampi-
cillin, and imipenem, the European Committee on Antimicrobial Susceptibility Testing
guidelines were used [23].

Multidrug resistance was defined according to Magiorakos et al. [24] for bacteria
showing resistance to at least 3 different antibiotic classes.

The reference strains S. pseudintermedius ATCC 49444, S. aureus ATCC 33591, E. coli
ATCC 25922, and Pseudomonas aeruginosa ATCC 15442 were used as quality controls.

All the information obtained from the house database was inserted into spreadsheets
using Excel software, where it was separated by year of isolation, type of skin infection,
bacterial species, and profiles of antimicrobial susceptibility.

The bacteria were organized into two groups:
(I) Gram-positive bacteria: Staphylococcus spp., Streptococcus spp.;
(II) Gram-negative bacteria: Pseudomonas spp., Enterobacterales, and Acinetobacter spp.

2.4. Data Management

All diagnostic data generated by the bacteriology laboratory were recorded in a data-
capturing format and entered into a Microsoft 365 Excel™ spreadsheet for subsequent
analysis. Descriptive statistics were employed to analyze the proportions of each group
(age, gender, skin infection types, Gram-positive and Gram-negative bacteria, antimi-
crobial drugs) related to dogs or cats. The graphics were made by Excel software also
for the frequencies of antimicrobial resistance, which were determined using descriptive
statistical analysis.

2.5. Statistical Analysis

The statistical significance level between bacteria groups was investigated using
Fisher’s exact test (GraphPad Software Inc., Avenida De La Playa La Jolla, CA, USA).
p-Values ≤ 0.05 were considered statistically significant at 95% confidence interval.

3. Results
3.1. Gram-Positive- and Gram-Negative-Bacteria-Associated Pet Animal Skin Infections

In this 4-year retrospective study, a total 189 samples from cases of canine and feline
skin infections were microbiologically analyzed. Year-wise distribution of pet animal
skin infection type over the 4 years is shown in Figure 1a,b. In dogs, cases related to
otitis externa were always extremely significantly (p-values < 0.001) higher compared with
pyoderma ones (Figure 1a). Different from dogs, pyoderma samples in cats were the most
frequently remitted to the lab (83%) and were particularly significantly (p-values < 0.001)
higher than otitis externa ones (Figure 1b).

The examinations involved 171 dogs (101 males and 70 females) and 18 cats (10 males
and 8 females). The gender and age distributions in pet animals suffering from skin
infections are reported in Figures 2 and 3. Regarding gender, in the examined 4 years,
skin infection frequency was always higher in males than females for both dogs and cats
(Figure 2). Concerning age distribution, most of canine and feline patients were placed in
the 5–10 age group, followed by the <5 age group (Figure 3).

The highest number of processed samples (73/189; 38.6%) was recorded in 2019,
whereas the lowest number (35/189; 18.5%) was observed in 2016.

From all canine and feline processed samples, a total of 232 bacterial strains were
isolated and classified in 148 Gram-positive bacteria (64%) and 84 Gram-negative bacteria
(36%). Precisely, from a total of 213 canine bacterial isolates, 132 (62%) were Gram-positive
strains, while 81 (38%) were Gram-negative strains. Among the 19 (8%) isolated feline
strains, Gram-positive bacteria were the most prevalent isolates (16/19; 84%). Moreover,
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from 28/171 samples (16%) and 1/18 (6%) for dogs and cats, respectively, multiple bacteria
were isolated.
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In dogs, S. pseudintermedius was the most common identified Gram-positive bacterium
(86/132; 65%), followed by Pseudomonas aeruginosa (29/81; 36%) for Gram-negative bac-
terium (Figure 4a,b). Among coagulase-negative Staphylococcus (CoNS) species (29/132;
22%), S. xylosus, S. simulans, S. epidermidis, S. sciuri, S. chromogenes, S. hyicus, and S. cohnii
were identified, whereas among Streptococcus spp. (17/132; 13%), Streptococcus canis, Strepto-
coccus mitis, Streptococcus dysgalactiae, and Streptococcus agalactiae were detected (Figure 4a).
E. coli (24/81; 30%) and other Enterobacterales (22/81; 27%), such as Klebsiella pneumoniae,
Proteus mirabilis, Raoultella ornithinolytica, Enterobacter cloacae, Serratia marcescens, and Cit-
robacter youngae, were the most predominant Gram-negative bacteria isolated in dogs
(Figure 4b).
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We detected the presence of other pathogens belonging to the ESKAPE group, encom-
passing both Gram-positive and Gram-negative species, including Enterococcus faecium,
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa,
and Enterobacter species. Particularly, Acinetobacter baumannii (A. baumannii) strains were
isolated from dogs suffering from otitis externa in the years 2018 (4%) and 2019 (11%)
(Figure 4b).

Different from dogs, over the 4 years of study, feline skin infections were caused
principally by CoNS (9/19; 47%), S. aureus (4/19; 21%), and S. pseudintermedius (2/19; 11%),
while a low frequency of 5.2% was recorded for Streptococcus canis (1/19), Pseudomonas
aeruginosa (1/19), E. coli (1/19), and Klebsiella pneumoniae (1/19) strains.

The bacterial strains derived from otitis specimens were 170, of which 165/170 (97%)
were of canine origin, and 5/170 (3%) of feline origin, while those derived from pyoderma
samples were 62: 48/62 (77%) of canine origin and 14/62 (23%) of feline origin. From
otitis and pyoderma specimens, infections by Staphylococcus spp. were highly detected
in both dogs and cats. Precisely, the prevalence of CoNS was significantly higher in cats
than in dogs, resulting in extreme statistical significance (p-value = 0.0032). However, dogs
presented a larger bacterial diversity in skin infection samples than cats, as reported in
Figure 5.
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3.2. Gram-Positive and Gram-Negative Bacteria Antibiotic Resistance Profiles

In the present study, the antibiotic resistance profiles of canine S. pseudintermedius,
CoNS, Streptococcus spp., Pseudomonas aeruginosa, E. coli and other Enterobacterales, and
Acinetobacter baumannii strains were analyzed. The antibiotic resistance profiles of feline
strains were not systemically analyzed due to the reduced number of the isolates collected
from cats.

Both canine Gram-positive and Gram-negative strains showed high resistance to
tested antibiotics. Among the Gram-positive strains analyzed, the most resistant species
was represented by S. pseudintermedius. As shown in Figure 6, the antimicrobial susceptibil-
ity profiles of S. pseudintermedius strains showed high resistance to amoxicillin–clavulanate,
ampicillin, and penicillin being around 80% for all 4 years of study. Resistance to oxacillin
was detected in 35 of 86 total isolated strains of S. pseudintermedius (41%). Precisely, S. pseud-
intermedius frequency of resistance to oxacillin ranged from 12% (2016) to 50% (2018–2019),
displaying an alarming increase over the studied years. A worrying increasing resistance
trend of this pathogen was observed also for gentamicin and imipenem, ranging from 18%
to 36% and 18% to 53%, respectively. Resistance to erythromycin in S. pseudintermedius
exhibited a relevant downward trend, ranging from 47% to 17%. A similar trend was
observed also for enrofloxacin and tetracycline with values of resistance ranging from 35%
to 17% and 76% to 53%, respectively. Clindamycin, marbofloxacin, pradofloxacin, and
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trimethoprim–sulfamethoxazole fluctuated lightly, ranging from 41% to 50%, 24% to 17%,
18% to 22%, and 35% to 42%, respectively. However, the overall prevalence of antimicrobial
resistance among S. pseudintermedius isolates detected in this study appeared high, being
few resistances with values below 20% (Figure 6). A multi-drug-resistance profile was
present in 30% (26/86) of S. pseudintermedius isolates.
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The antibiotic resistance profiles of CoNS strains isolated from canine samples are
reported in Figure 7. The resistance frequencies for CoNS to amoxicillin–clavulanate and
penicillin were higher than 80% in 2017–2018 with a value of 100% in 2018. Then, they
were relevantly reduced for both antibiotics in 2019 (64%). CoNS resistance to oxacillin was
lower than that for S. pseudintermedius strains, showing fluctuating values over the 4 years,
but never higher than 50% (2018). Resistances to clindamycin, erythromycin, imipenem,
tetracycline, and trimethoprim–sulfamethoxazole demonstrated a downward trend over
the 4-year test period. The resistance rates of gentamicin, enrofloxacin, and marbofloxacin
varied slightly over the studied period, with values always lower than 20%.

Animals 2021, 11, x  9 of 16 
 

 

 
Figure 7. Antimicrobial resistance profiles of canine CoNS strains to commonly used antibiotics. 

Streptococcus spp. strains presented the lowest levels of resistance in comparison with 
other Gram-positive bacteria. The highest antibiotic resistance values were recorded for 
amoxicillin–clavulanate, penicillin, and marbofloxacin in the years 2018–2019 (data not 
shown). 

Among Gram-negative bacteria isolated from canine specimens, Pseudomonas aeru-
ginosa appeared to be the most resistant strain, presenting the highest levels of antibiotic 
resistance (Figure 8). Particularly, the highest values of resistance were recorded for amox-
icillin–clavulanate and trimethoprim–sulfamethoxazole during the 4 years of study, 
reaching a resistance value of 100% for these antibiotics in the years 2018–2019. On the 
other hand, gentamicin, enrofloxacin, marbofloxacin, and pradofloxacin showed variable 
antibiotic resistance values over the years. Intriguingly, resistance to imipenem decreased 
from 77% to 43% during the years of study. Moreover, 79% of Pseudomonas aeruginosa iso-
lates (23/29) were multi-drug-resistant strains. 

 
Figure 8. Antimicrobial resistance profiles of canine Pseudomonas aeruginosa strains to commonly 
used antibiotics. 

Within Enterobacterales, E. coli exhibited interesting profiles of antibiotic resistance. 
Particularly, as shown in Figure 9, resistance to imipenem in E. coli exhibited a downward 
trend, ranging from 100% to 14%. Similar decreasing trends were also observed for amox-
icillin–clavulanate, ampicillin, enrofloxacin, and trimethoprim–sulfamethoxazole ranging 
from 100% to 71%, from 100% to 57%, from 50% to 29%, and from 100% to 43%, respec-
tively. For marbofloxacin, pradofloxacin, and tetracycline, trends marginally changed 

Figure 7. Antimicrobial resistance profiles of canine CoNS strains to commonly used antibiotics.

Multidrug resistance was found in 24% (7/29) of CoNS strains.
Streptococcus spp. strains presented the lowest levels of resistance in comparison

with other Gram-positive bacteria. The highest antibiotic resistance values were recorded
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for amoxicillin–clavulanate, penicillin, and marbofloxacin in the years 2018–2019 (data
not shown).

Among Gram-negative bacteria isolated from canine specimens, Pseudomonas aerug-
inosa appeared to be the most resistant strain, presenting the highest levels of antibiotic
resistance (Figure 8). Particularly, the highest values of resistance were recorded for
amoxicillin–clavulanate and trimethoprim–sulfamethoxazole during the 4 years of study,
reaching a resistance value of 100% for these antibiotics in the years 2018–2019. On the
other hand, gentamicin, enrofloxacin, marbofloxacin, and pradofloxacin showed variable
antibiotic resistance values over the years. Intriguingly, resistance to imipenem decreased
from 77% to 43% during the years of study. Moreover, 79% of Pseudomonas aeruginosa
isolates (23/29) were multi-drug-resistant strains.
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used antibiotics.

Within Enterobacterales, E. coli exhibited interesting profiles of antibiotic resistance.
Particularly, as shown in Figure 9, resistance to imipenem in E. coli exhibited a downward
trend, ranging from 100% to 14%. Similar decreasing trends were also observed for
amoxicillin–clavulanate, ampicillin, enrofloxacin, and trimethoprim–sulfamethoxazole
ranging from 100% to 71%, from 100% to 57%, from 50% to 29%, and from 100% to 43%,
respectively. For marbofloxacin, pradofloxacin, and tetracycline, trends marginally changed
during the considered years; meanwhile, the lowest levels of resistance were recorded
for gentamicin. During 2016–2019, 46% (11/24) of multi-drug-resistant E. coli strains
were identified.
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Furthermore, the other Gram-negative bacteria isolated and belonging to the En-
terobacterales group displayed antibiotic resistance profiles like E. coli (Figure 10). Pre-
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cisely, the highest levels of resistance were observed for amoxicillin–clavulanate and
ampicillin, while variable and decreasing trends were observed for antibiotics such as
imipenem, trimethoprim–sulfamethoxazole, and the three fluoroquinolones, enrofloxacin,
marbofloxacin, and pradofloxacin, during the 4-year test period. Similar to E. coli, for all
Enterobacterales strains, the highest levels of susceptibility were obtained against gentamicin.
In addition, multi-drug-resistance profiles were detected in 64% (14/22) of the strains.
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4. Discussion

In pet animals, skin infections represent the main reason for presentation to veteri-
nary examination, often leading to empirical antimicrobial prescription in small animal
practices [14,25,26]. Thus, timely detection, identification, and antimicrobial suscepti-
bility testing of causative pathogens and their surveillance are needed to improve the
management of otitis externa and pyoderma in pets and to prescribe a successful therapy.

This study reports data on the prevalence of otitis externa and pyoderma in dogs and
cats and the frequency of most isolated bacteria and evaluates their susceptibility profiles to
the main antibiotics used in veterinary treatments in the period between January 2016 and
December 2019. Moreover, this retrospective research can be a guideline for clinicians,
especially those in our veterinary teaching hospital, in making rational decisions on the use
of antibiotics, since empirical antimicrobial treatment is frequently given out to companion
animals visiting hospital or veterinary health care facilities.

In this 4-year study period, a total of 189 auricular and cutaneous samples were
examined, of which 171 and 18 were of canine and feline origin, respectively. However, a
notable increase in the number of routine bacteriological examinations was observed in the
4th year of the study compared with the previous years, probably due to the information
and conviction policy of our department on the need to request bacteriological analysis
before prescribing antimicrobial therapies.

For the examined years, skin infections occurred predominantly in male patients aged
from 5 to 10 years old in both dogs and cats, in accordance with other studies [27,28].
Precisely, in dogs most of the specimens were from ears (74%), while in cats they were
from skin lesions (83%). Intriguingly, in cats we detected a higher number of pyoderma
cases than in dogs, even though in the literature feline pyoderma is considered rare [29–31].
However, our results are in accordance with those reported by Yu et al. [28], which already
highlighted an underestimation of this infection in cats.

Staphylococcus was the most isolated bacterial genus from skin infection samples of
both canine and feline origins, confirming the role of Staphylococcus spp. as opportunistic
pathogens of skin and mucous membrane sites. Since staphylococci are part of the natural
skin microbiota [32], they are commonly reported as the leading cause of otitis externa,
pyoderma, and postoperative wound infections in companion animals [33,34]. Moreover,
according to the literature, also in this 4-year study, staphylococci, in particular CoNS
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(47%), S. aureus (21%), and S. pseudintermedius (11%), were found to be the main causative
agents of feline skin infections [28,35–37].

S. pseudintermedius (40%), Pseudomonas aeruginosa (14%), CoNS (13%), E. coli (11%),
Enterobacterales (10%), and Streptococcus spp. (8%) were the most frequently isolated mi-
croorganisms from the culture of canine specimens. Our findings are consistent with other
reports, which define these bacteria as the most common isolates from dogs suffering from
otitis externa and pyoderma [4,5,38–44]. Furthermore, the results of this study show a high
prevalence (40%) of S. pseudintermedius among the other bacterial species, approving its role
as the main causative agent of canine skin infections [4,45]. The high rate of colonization
with Staphylococcus spp. in both dogs and cats may represent a public health issue, since
the transmission of staphylococci from carrier or infected pet animals to humans has been
documented [46–48].

Pseudomonas aeruginosa was the second most common isolated bacteria from canine
samples. Our results agree with the study of Bourély et al. [44], which reported S. pseudinter-
medius, followed by Pseudomonas aeruginosa, as the most common isolated canine pathogens.
By contrast, Budgen [40] described Pseudomonas aeruginosa as the most frequently isolated
bacterium from canine otitis externa samples in Australia, followed by S. pseudintermedius,
linking the higher prevalence of Pseudomonas aeruginosa to an increased diagnosis of chronic
otitis externa.

The percentage of CoNS positivity (13%) among the processed samples highlights
a relevant dog susceptibility to these bacterial species. Streptococci and E. coli and other
Enterobacterales, such as Proteus mirabilis, Klebsiella pneumoniae, and Enterobacter spp., were
also isolated from canine auricular and cutaneous samples. This finding is not surprising, as
they are often involved in canine otitis externa and pyoderma [5]. Moreover, A. baumannii
strains were isolated from dogs suffering from otitis externa in the years 2018 (4%) and
2019 (11%). This bacterial strain has become an important emerging pathogen in veterinary
medicine, since it is more and more frequently associated with otitis, abscess, sepsis,
urinary tract, and respiratory infections in pet animals [49–51]. In addition, A. baumannii
zoonotic potential should not be underestimated with pet animals as potential reservoirs
of A. baumannii, including those resistant to carbapenems [52,53].

Among the Gram-positive bacteria analyzed, the most resistant species was rep-
resented by S. pseudintermedius. High resistance to amoxicillin–clavulanate, ampicillin,
and penicillin (>80%) has also been reported by other authors [45,47,54]. Regarding
oxacillin resistance, it was detected in 41% (35/86) of the isolated strains, and the resis-
tance level ranged from 12% (2016) to 50% (2018–2019), highlighting the increasing spread
of methicillin-resistant S. pseudintermedius (MRSP) strains. Besides β-lactam antibiotics,
multi-drug-resistance profiles were detected in 30% of S. pseudintermedius strains, which
showed relevant resistance values also to other antibiotics approved in veterinary medicine
and used for systemic treatment in dogs (gentamicin, imipenem, clindamycin, tetracycline,
trimethoprim–sulfamethoxazole), confirming, thus, the multi-drug-resistance trend re-
ported worldwide [54–57]. In this context, the emergence in dogs of MRSP, often associated
with an even broader drug resistance, has become a great veterinary challenge [58] and has
assumed new public health relevance due to its zoonotic potential. Particularly, veterinary
environments (hospitals and clinics) seem to play an important role in the dissemination of
MRSP between small animals and humans, especially people who have constant contact
with pets [59,60].

CoNS spp., members of the normal flora of human and animal skin, have long been
considered nonpathogenic, possessing fewer virulence properties than coagulase-positive
Staphylococcus (CoPS) species. Recently, they have assumed an important role as pathogens
in skin and soft tissue infections, overall, because of their increasing multi-drug-resistance
profiles. In this study, CoNS displayed interesting antibiotic resistance profiles. CoNS
showed high resistance to amoxicillin–clavulanate and penicillin, reaching 100% resistance
in the years 2018–2019, while low resistance was shown for gentamicin, enrofloxacin, and
marbofloxacin. However, 7/29 (24%) strains were found to be multi-drug-resistant strains.
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This result is of great interest, since CoNS spp. are known to be the reservoir of resistance
genes; therefore, the resistances shown in this study could spread among pathogenic
staphylococci, such as S. pseudintermedius and S. aureus, and increase difficulties in treating
infections caused by multi-drug-resistant pathogens [61].

In this study, Streptococcus spp. strains presented the lowest levels of resistance in
comparison with other Gram-positive bacteria. However, in the years 2018–2019 high levels
of Streptococcus spp. resistance to amoxicillin–clavulanate, penicillin, and marbofloxacin
were recorded, in contrast to other studies where high levels of Streptococcus spp. suscepti-
bility also to these antibiotics were reported [5,34]. Furthermore, Pseudomonas aeruginosa
showed the highest values of antibiotic resistance among Gram-negative bacteria, and 79%
(23/29) of isolates were found to be multi-drug-resistant strains. Pseudomonas spp. are in-
trinsically resistant to many antibiotics, such as β-lactams, combinations with β-lactamase
inhibitors, chloramphenicol, tetracycline, and trimethoprim–sulfamethoxazole [62], and are
also known for their ability to rapidly acquire further resistances [63]. On the other hand,
we observed that gentamicin, enrofloxacin, marbofloxacin, and pradofloxacin showed vari-
able antibiotic resistance levels over the years. Precisely, Pseudomonas aeruginosa showed
lower levels of resistance to gentamicin and marbofloxacin, but higher values of resis-
tance to enrofloxacin, which is commonly used systemically in combination with a topical
treatment to treat canine otitis caused by Pseudomonas aeruginosa [64]. The high level of
resistance of Pseudomonas aeruginosa to enrofloxacin over the studied years is in accordance
with results from many other studies [64–66]. These results suggest that gentamicin and
marbofloxacin can be considered to have potential as antipseudomonal drugs [67].

In the present study, E. coli and the other Enterobacterales strains isolated from dogs
showed similar antibiotic resistance profiles, with high levels of resistance to β-lactams.
Interestingly, a decreasing trend of resistance was recorded for imipenem in the studied
period, suggesting a reduced circulation of carbapenem-resistant Enterobacteriaceae in
pet animals, even though these bacteria have been increasing rapidly worldwide [68,69]
and are considered priority pathogens for which new antibiotics are urgently needed by
the World Health Organization [70]. The lowest levels of resistance were observed for
gentamicin, often used to topically treat otitis externa in small animals, and marbofloxacin.
However, multidrug resistance was observed in 46% (11/24) and 64% (14/22) of E. coli and
Enterobacterales strains, respectively.

Furthermore, it is worth noting that, as already reported by Kroemer et al. [71], in this
study all the isolated strains showed good susceptibility to fluoroquinolones, mainly to
marbofloxacin, which represents an effective antibiotic for the treatment of otitis, pyoderma,
UTIs, and respiratory infections in pet animals. This is a reassuring result, considering that
fluoroquinolones are considered critically important antibiotics in human medicine. The
results of this study provide information on susceptibility profiles of bacterial isolates at the
University Veterinary Microbiology Diagnostic Laboratory of Naples. Samples remitted
to our microbiology laboratory may reflect clinical cases of dogs and cats within this city,
and knowledge of the most frequently isolated bacteria from dog and cat infections and
their associated antibiotic resistance profiles and trends is an important consideration to
improve the appropriate use of antibiotics decreasing resistance selection pressure.

The findings of the present study highlight encouraging evidence that requests for
bacteriological examinations increased in 2019, probably also due to the frequent organiza-
tions of seminars, workshops, and events on the importance of the antimicrobial resistance
surveillance in our veterinary teaching hospital. In addition, in Italy since April 2019,
veterinary electronic prescription has been mandatory for the prudent use of antibiotics.
In fact, Article 3 of Law No. 167 of 20 November 2017 [72] provides the adoption in our
country of a computerized system for the traceability of veterinary medicinal products and
medicated feed. This new computerized system has replaced the paper form of prescription
in the whole national territory, simplifying procedures, reducing administrative obliga-
tions, improving control activities, and re-elaborating data useful to contain antimicrobial
resistance. All those favor the control of antimicrobial-resistant microorganisms isolated
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from pets. Although the true magnitude of antibiotic resistance in pets and other animals,
as well as humans, is not fully known, pets can contribute to the spread of antibiotic resis-
tance due to their close contact with humans and their status as family members in urban
households. Antibiotic resistance is currently a public health problem, and it is mainly
linked to inappropriate use of antibiotics in both humans and animals. Obviously, risk
exists when the same antibiotic is used in both veterinary and human medicine or exhibits
cross-resistance with other antibiotics used mainly in human medicine. Furthermore, great
concern is presented toward zoonotic resistant bacteria, which can spread from animals
to humans and vice versa, and have become a worrying threat in both veterinary and
human medicine.

5. Conclusions

Request for antimicrobial susceptibility testing before antimicrobial prescription,
which should always be performed, particularly before treatment of recurrent infections,
has increased over the years. Mandatory use of electronic prescription can certainly help to
control and combat antibiotic resistance, limiting both the improper use of antimicrobials
and the spread of multi-drug-resistant pathogens [16]. Furthermore, the results of this work
highlight the potential of pets as reservoirs of multi-drug-resistant pathogens that could
spread to owners and veterinary personnel in veterinary hospitals and home environments.
In conclusion, this type of study gives vision into the dynamics and the rate of bacteria
isolations in pets, offering a stimulus for further investigation into the update of zoonotic
bacteria associated with infectious diseases of small animals that, long since, fit within the
old One Health concept. Moreover, this topic still deserves considerable monitoring to
implement organized surveillance programs.
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