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ABSTRACT
Bark beetles are feared as pests in forestry but they also support a large number of
other taxa that exploit the beetles and their galleries. Among arthropods, mites are
the largest taxon associated with bark beetles. Many of these mites are phoretic
and often involved in complex interactions with the beetles and other organisms.
Within the oribatid mite family Scheloribatidae, only two of the three nominal
species of Paraleius have been frequently found in galleries of bark beetles and on the
beetles themselves. One of the species, P. leontonychus, has a wide distribution range
spanning over three ecozones of the world and is believed to be a host generalist,
reported from numerous bark beetle and tree species. In the present study,
phylogenetic analyses of one mitochondrial and two nuclear genes identified six
well supported, fairly divergent clades within P. leontonychus which we consider to
represent distinct species based on molecular species delimitation methods and
largely congruent clustering in mitochondrial and nuclear gene trees. These species
do not tend to be strictly host specific and might occur syntopically. Moreover,
mito-nuclear discordance indicates a case of past hybridization/introgression among
distinct Paraleius species, the first case of interspecific hybridization reported in
mites other than ticks.
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INTRODUCTION
Bark beetles (Scolytinae) are a species-rich subfamily of weevils (Curculionidae), that play
important ecological roles in structuring natural plant communities and large-scale biomes
(Raffa, Gregoire & Lindgren, 2015). Only a few outbreaking species are responsible for
the poor public image of bark beetles, as they can kill healthy trees by mass-attacks
inflicting serious damage to forestry and thus cause extensive ecological and economic
losses, also with regard to protected forests etc. In general, however, bark beetles are
important nutrient recyclers and consequently important components of and likely
beneficiary to these ecosystems (Cobb et al., 2010).

Bark beetles also support a large number of other taxa (e.g., nematode, fungi, bacteria)
that exploit the beetles and their galleries and have either a positive or a negative impact on
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the fitness of the beetles (Moser, 1975; Six, 2012). Among arthropods, mites are the largest
taxon associated with bark beetles. More than 100 mite species have been reported as
potential associates so far. These mites are typically phoretic and often involved in complex
interactions, for example, beetle-mite-fungus, suggesting that the mites’ phoresy on beetles
is not just a means of transport (Vitzthum, 1926; Hofstetter, Moser & Blomquist, 2014).
In most of these mites, the second nymphal stage (deutonymph) and adult females are
phoretic. The close phoretic relationship is often accompanied by special morphological
adaptations enabling mites to attach to the host; for example, phoretic uropodine
deutonymhs can form an anal pedicel, phoretic scutacarid females have enlarged tarsal
claws on leg I and many astigmatine hypopi possess a complex sucker plate posterior to
legs IV (Krantz, 2009). Among the many mite species known to be associated with bark
beetles, 17 belong to the species-rich (~10.000 described species) order Oribatida
(Hofstetter, Dinkins-Bookwalter & Klepzig, 2015). Very little is known about potential
interactions between Oribatida and bark beetles, that is, the role of these mites in the
communities in the beetles’ galleries. Although some oribatids have been repeatedly found
in these galleries or pheromone traps (Moser & Bogenschuütz, 1984; Norton, 1980;
Ahadiyat & Akrami, 2015), it is still unclear whether they should be regarded as part of a
real subcortical merocoenosis, or just migrate—for example, in search for food—from
the outer bark, which they usually inhabit, into the galleries (Kielczewski, Moser &
Wisniewski, 1981). Within the oribatid family Scheloribatidae only one genus, Paraleius
Travé, 1960, has been frequently found in galleries of bark beetles and on the beetles
themselves (Moser & Bogenschuütz, 1984; Pernek et al., 2012; Knee, 2017).

The genus Paraleius comprises three nominal species, Paraleius leahae Knee, 2017,
Paraleius strenzkei (Travé, 1960) and Paraleius leontonychus (Berlese, 1910). All three
can be easily identified based on diagnostic morphological characters. Paraleius leahae
occurs in Canada (Knee, 2017), P. strenzkei in France (Pyrenees; Weigmann (2006)) and
P. leontonychus is widespread with records in three ecozones of the world, Nearctic,
Neotropics and Palearctic (Ahadiyat & Akrami, 2015). Two of these species, P. leahae and
P. leontonychus are known to disperse phoretically on scolytine species. As morphological
adaptation, both phoretic species exhibit a strong hook-like claw on each tarsus, which
allows them to adhere to the host (Vitzthum, 1926; Knee, 2017). Whereas P. leahae has
been found to be associated with Hylastes porculus Erickson,1836 and Dendroctonus
valens LeConte, 1860 (Knee, 2017), P. leontonychus has been collected from at least
25 bark beetle species from various host trees (Ahadiyat & Akrami, 2015). In Europe,
P. leontonychus has been found associated with 14 beetle species. Unfortunately, older
literature contains only little to no information on both bark beetle species and respective
host tree. Nonetheless, the most frequent records of European P. leontonychus are with Ips
typographus (Linnaeus, 1758) found on Norway spruce (Picea abies (L.) Karst.) or in
pheromone traps (Moser & Bogenschuütz, 1984; Moser, Eidmann & Regnander, 1989;
Penttinen, Viiri & Moser, 2013). Moreover, it has been found in connection with bark
beetle infestations on silver fir (Abies alba Mill.; Pernek et al., 2008, 2012) or the maritime
pine (Pinus pinaster Alton, 1789; Fernández, Diez & Moraza, 2013).
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Recent phylogenetic studies on mites and metabarcoding studies based on
environmental DNA suggest that the number of mite species currently recognized is a
considerable underestimation of the true diversity, even for common taxa allegedly easy to
identify to species level (Navia et al., 2013; Young et al., 2019; Schäffer, Kerschbaumer &
Koblmüller, 2019). As P. leontonychus has been reported to be associated with a large
number of bark beetles, which themselves tend to show some preferences to particular
tree genera (Raffa, Gregoire & Lindgren, 2015), the question arises whether P. leontonychus
is a truly widespread species with no host preference at all or whether it is a complex of
cryptic species with specialization to particular hosts and trees as has been previously
documented for uropodoid mites phoretic on bark beetles (Knee et al., 2012).

Against this background, we used DNA sequences of the second half of the
mitochondrial COI region (COI-2) and two nuclear markers, the D3 region of the 28S
rRNA (D3-28S) and the 18S rRNA (18S), to (i) assess the diversity and genetic structure of
P. leontonychus originating from different bark beetle-infested tree species and, (ii) test
whether P. leontonychus is indeed a host generalist, or rather a complex of several (cryptic)
species with potential host specificity.

MATERIALS AND METHODS
Sampling
Bark of four tree species infested with different bark beetles and ethanol-preserved mite
specimens were collected between 2015 and 2017. Some samples were provided by local
colleagues: Alexandr A. Khaustov (Russia), Milan Pernek (Croatia) and Peter Stephen
(South Africa). Moreover, Heinrich Schatz provided verbal permission for the collection of
Italian samples and the Provincial Government of Styria (department 13; GZ: ABT13-
53W-50/2018-2) for all Styrian samples (Austria). Mite specimens were extracted from
these bark samples with Berlese-Tullgren-Funnels and immediately preserved in absolute
ethanol. Two individuals were found in propylene glycol-preserved sampling material
from pheromone traps in Germany (sampling: Peter Wilde) and Switzerland (sampling:
Joël Loop), attracting the European spruce bark beetle (I. typographus). We chose
representatives of two closely related genera, Dometorina plantivaga (Berlese, 1895)
(Dp) and Siculobata sicula (Berlese, 1892) (Ss), as outgroup taxa. Species were identified
based on character traits given inWeigmann (2006) and Knee (2017). Detailed information
and photographs on the included Paraleius individuals and their associated bark beetle
species found in the specific tree sample are given in Table 1, Fig. 1 and Fig. S1. Maps were
created in SimpleMappr online service (Shorthouse, 2010).

DNA extraction, PCR amplification and sequencing
Single individuals were used for the extraction of total genomic DNA applying the Chelex
protocol given in Schäffer et al. (2018). PCR amplification and sequencing followed
standard protocols (Schäffer et al., 2010, 2018). We obtained sequences of a 622 bp
fragment of COI-2, a 314-320 bp fragment of D3-28S and a 1,748–1,784 bp fragment of the
18S gene (primer pairs are same as in references before). All sequences were edited in
MEGA 6.0 (Tamura et al., 2013) and verified by comparisons with known oribatid mite
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sequences from GenBank. All sequences are available from GenBank with the accession
numbers given in Table 1.

Phylogenetic analyses
Sequences of COI-2 were aligned by eye in MEGA, those of the two nuclear markers were
aligned using the MAFFT v.7 web version (Katoh, Rozewicki & Yamada, 2017).
The D3-28S and 18S alignments had a final length of 320 and 1,784 bp, respectively.

Table 1 Information on sampling site, substrate, GenBank accession numbers of investigated genes and derived mitochondrial (mt) group for
each Paraleius specimen in the present study.

Sample ID Location Country Coordinates Substrate COI-2 D3-28S 18S mt Group

R8_10_2 Puch AUT 46.931075 15.764967 Norway spruce MT462281 MT396663 MT406359 G1

R8_20_2 Puch AUT 46.931075 15.764967 Norway spruce MT462282 MT396664 MT406360 G1

R36_1 Delnice HRV 45.420000 14.747217 Silver fir MT462275 MT396657 MT406353 G6

R36_2 Delnice HRV 45.420000 14.747217 Silver fir MT462276 MT396658 MT406354 G6

R45_1 Paldau AUT 46.939982 15.777055 Norway spruce MT462277 MT396659 MT406355 G1

R45_3 Paldau AUT 46.939982 15.777055 Norway spruce MT462278 MT396660 MT406356 G6

R45_4 Paldau AUT 46.939982 15.777055 Norway spruce MT462279 MT396661 MT406357 G6

R57_2 Oberstorcha AUT 46.962122 15.790404 Norway spruce MT462280 MT396662 MT406358 G6

Pop09B_06 Litorić HRV 45.412936 15.077517 Silver fir MT462256 MT396638 MT406334 G2

Pop09B_08 Litorić HRV 45.412936 15.077517 Silver fir MT462257 MT396639 MT406335 G2

Pop09B_14 Litorić HRV 45.412936 15.077517 Silver fir MT462258 MT396640 MT406336 G5

Pop09B_21 Litorić HRV 45.412936 15.077517 Silver fir MT462259 MT396641 MT406337 G3

Pop09B_28 Litorić HRV 45.412936 15.077517 Silver fir MT462260 MT396642 MT406338 G2

Pop10B_03 Krk HRV 45.020253 14.571320 Aleppo pine MT462261 MT396643 MT406339 G5

Pop10B_05 Krk HRV 45.020253 14.571320 Aleppo pine MT462262 MT396644 MT406340 G5

Pop10B_13 Krk HRV 45.020253 14.571320 Aleppo pine MT462263 MT396645 MT406341 G2

Pop32F_12 Friedersdorf DEU 51.03279 14.575399 Trap MT462264 MT396646 MT406342 G1

Pop39B_05 Pula HRV 44.852277 13.831892 Aleppo pine MT462265 MT396647 MT406343 G6

Pop39B_14 Pula HRV 44.852277 13.831892 Aleppo pine MT462266 MT396648 MT406344 G6

Pop39B_15 Pula HRV 44.852277 13.831892 Aleppo pine MT462267 MT396649 MT406345 G6

Pop46B_13 Karersee ITA 46.409973 11.577228 Norway spruce MT462268 MT396650 MT406346 G1

Pop46B_32 Karersee ITA 46.409973 11.577228 Norway spruce MT462269 MT396651 MT406347 G1

Pop55B_01 Sakhalinskaya Oblast RUS 46.784150 142.385500 Sakhalin spruce MT462270 MT396652 MT406348 G4

Pop55B_02 Sakhalinskaya Oblast RUS 46.784150 142.385500 Sakhalin spruce MT462271 MT396653 MT406349 G4

Pop55B_03 Sakhalinskaya Oblast RUS 46.784150 142.385500 Sakhalin spruce MT462272 MT396654 MT406350 G4

Pop55B_04 Sakhalinskaya Oblast RUS 46.784150 142.385500 Sakhalin spruce MT462273 MT396655 MT406351 G4

Pop62F_16 Flaach, Buch am Irchel CHE 47.540467 8.612300 Trap MT462274 MT396656 MT406352 G1

SsBl01 Pietermaritzburg ZAF −29.526278 30.505167 Lemon tree MT462283 MT396665 MT406361 outgroup

SsBl02 Pietermaritzburg ZAF −29.526278 30.505167 Lemon tree MT462284 MT396666 MT406362 outgroup

SsBl05 Pietermaritzburg ZAF −29.526278 30.505167 Lemon tree MT462285 MT396667 MT406363 outgroup

DpGU1 Hart bei Graz AUT 47.063022 15.505042 Apple tree MT462254 MT396636 MT406332 outgroup

DpGU2 Hart bei Graz AUT 47.063022 15.505042 Apple tree MT462255 MT396637 MT406333 outgroup
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All alignments are available in the Supplemental Material. Mean uncorrected pairwise
distances (p-distances) of pre-defined groups were calculated in MEGA. For visualization
of the barcoding gap in the three markers, we used the package “spider” (Brown et al.,
2012) in R (R Core Team, 2019). Introgressed individuals from Pop39 were excluded
(for details see “Results”).

To select the best-fitting model of molecular evolution for each gene, the Akaike
Information Criterion (AIC) in the “Smart Model Selection” (SMS; Lefort, Longueville &
Gascuel, 2017) implemented in the PhyML 3.0 online execution (Guindon et al., 2010;
http://www.atgc-montpellier.fr/phyml/) was applied. Phylogenetic inference of single gene
datasets was based on Maximum Likelihood (ML) and Bayesian inference (BI), conducted
in PhyML and MrBayes 3.2.4 (Ronquist et al., 2012), respectively, implementing the
models selected by SMS. ML analyses were performed under default parameter settings
and nodal support was assessed by means of bootstrapping (1,000 replicates). The Bayesian
Markov Chain Monte Carlo simulations were conducted in two independent runs with
four chains, each for 10 (COI-2)/15 (D3-28S, 18S) million generations sampled every
100th (18S)/1,000th (COI-2, D3-28S) generation. All parameter values were initially

Figure 1 Maps with sampling sites of Paraleius species for the present study. Full-size DOI: 10.7717/peerj.9710/fig-1
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assessed graphically in Tracer v1.7 (Rambaut et al., 2018; available at http://beast.
community/tracer) and different burn-ins were applied to allow likelihood values to reach
stationarity (standard deviation of split frequencies was <0.01).

PopArt (Leigh & Bryant, 2015) was used to infer haplotype networks based on statistical
parsimony.

Species delimitation analyses and species tree
Single-locus delimitation based on COI-2
Several methods were employed for species delimitation based on the COI-2 data. ABGD
(Puillandre et al., 2012) was used via a graphic web interface (https://bioinfo.mnhn.fr/abi/),
applying default parameters and uncorrected p-distances. Furthermore, two tree-based
approaches, the “Generalized Mixed Yule Coalescent” (GMYC; Fujisawa & Barraclough,
2013) model implemented in the “splits” package (Ezard, Fujisawa & Barraclough, 2017)
for R (R Core Team, 2019) and the “Poisson Tree Process” (PTP) model (Zhang et al., 2013;
Kapli et al., 2017) were applied. ML partition PTP (PTP–ML) was run on the bPTP
web-server (http://species.h-its.org/) using standard default settings and the Bayesian
MCC tree as input. As GMYC and the Bayesian version of GMYC (bGMYC) require
ultrametic tree(s) as input data, the respective guide tree(s) were obtained in BEAST2
(models and settings are given in Table S2). Convergence and stationarity of chains were
again checked in Tracer. The first 30% of sampled trees were excluded as burn-in and a
MCC tree was calculated from all remaining trees. Using this MCC tree, two GMYC
analyses with (i) the single (sGMYC) and (ii) the multiple (mGMYC) thresholds setting
were conducted. The benefit of the bGMYC approach is the use of many trees in order to
account for uncertainty in tree space (Reid & Carstens, 2012). Therefore, we resampled
the trees from the posterior distribution of the Beast runs at lower frequency in
LogCombiner part of the BEAST v2.4.2 package (Bouckaert et al., 2014). The resulting data
set finally comprised 344 trees which were used for bGMYC analysis conducted in R, using
the bGMYC package (Reid & Carstens, 2012).

Multi-locus delimitation
As multi-locus approach we used the Bayesian species delimitation method BP&P v3.1
implemented in bppX v1.2.2 (Yang & Rannala, 2010; Yang, 2015), which analyzes
multi-locus sequence data under the multispecies coalescent prior, accounting for gene
tree conflicts due to incomplete lineage sorting (Yang & Rannala, 2010). All three
markers were used as input data, running an unguided analysis (called “A11”), which
simultaneously performs species delimitation and species tree inference (Yang & Rannala,
2010, 2014; Yang, 2015). Based on their clustering in the single gene BI trees, individuals
were assigned into monophyletic groups. As bppX only merges different groups into
one species, never trying to split them into multiple ones (Yang, 2015), we tested two
different approaches: (UG1) following the results from the COI-2 analyses, individuals
were assigned to eight clusters (G1-G6, Dp, Ss); (UG2) individual assignment was identical
to UG1, with the sole difference that specimens of G6 were split into two groups, assuming
a putative seventh Paraleius species (G6A included the five individuals R36_1&2,
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R45_3&4 and R57_2, G6B all three individuals from Pop39B). UG 2 would therefore allow
for possible merging of groups/species, especially in the case of wrong a priori assignments.
Since prior distributions on population size (θ) and species divergence time (τ) can have
an impact on the posterior probabilities (PP) for models and no empirical data are
available for the study species, we followed the procedure in Lin, Stur & Ekrem (2018),
applying seven different combinations of priors: (i) θ ~ G(2,10), τ ~ G(2,20); (ii) θ ~ G
(2,10), τ ~ G(2,2000), (iii) θ ~ G(2,10), τ ~ G(2,500), (iv) θ ~ G(2,100), τ ~ G(2,200); (v) θ ~
G(2,100), τ ~ G(2,2000); (vi) θ ~ G(2,1000), τ ~ G(2,200); (vii) θ ~ G(2,1000), τ ~ G
(2,2000).

In addition, a multi-locus species tree based on all three genes was inferred using
StarBEAST2 (Ogilvie, Bouckaert & Drummond, 2017; implemented in the BEAST2
package). Species assignment followed a conservative approach, excluding introgressed
individuals from Pop39 (for details see “Results”). Models and settings are given in
Table S2. Resulting log-files were evaluated in TRACER and all treefiles were combined
using LogCombiner, after discarding an initial burn-in of 30% of trees and resampling
every 100th tree. DensiTree (Bouckaert, 2010) was used to visualize the species tree.

RESULTS
Maximum Likelihood and BI tree searches yielded highly similar tree topologies.
Therefore, only the BI trees are presented here (Figs. 2A, 2B and 2D). Phylogenetic
inference based on the COI-2 gene indicated, with good to high statistical support, six
distinct P. leontonychus clusters (G1-6), of which G3 was only represented by a single
individual (Fig. 2A). Though the exact branching order among the main clusters was
different, similar results were obtained from the 18S data, except for three individuals
originating from Pula (Pop39B), placed in cluster G6 based on the CO-2 data, that grouped
with all specimens from cluster G5 (Fig. 2B). All remaining G6 specimens from localities
R36, R45 and R57 grouped together. In contrast, the D3-28S dataset yielded a poorly
resolved phylogeny, supporting only some of the six mitochondrial Paraleius groups
(Fig. 2D). Regarding the mitochondrial groups G5 and G6, however, D3-28S revealed the
same result as the 18S dataset with the clustering of individuals from Pula (Pop39B) in
cluster G5, which here resulted as fairly divergent from cluster G6 (Fig. 2D).

Uncorrected p-distances between the six mitochondrial Paraleius groups ranged from
12.7% to 19.6% in the COI, from 0.1% to 0.7% in the 18S and from 0% to 2.2% in the
D3-28S gene. Within-group distances ranged from 0% to 4.7% in the COI gene and from
0% to 0.3% in the two nuclear genes (see Table S3). Thus, a distinct barcoding gap was only
evident in COI-2 (Figs. 2F–2H).

COI-2 haplotype diversity was very high in the present dataset, for example, out of
the 27 Paraleius specimens examined, a total of 20 haplotypes were identified. Groups G2,
G3 and G5 consisted solely of specimens with Croatian origin, and G5 contained
individuals from Russia. On three single tree trunks we found more than one Paraleius
group, namely two in samples R45 and Pop10B, and three in Pop09B (Figs. 2A, 2C
and 2E).
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Figure 2 Bayesian inference trees based on COI-2 (A), 18S (B) and D3-28S (D) gene of the
P. leontonychus species complex. Additionally, 18S (C) and D3-28S (E) haplotype networks are
provided. (F–H) Intra-and interspecific distances (uncorrected p-distances). Symbols at nodes
represent Bayesian posterior probability values (ppv) and bootstrap values (bv) for ML. Individual
sampling information (host beetle, country, tree species) is presented as matrix next to the COI-2 BI tree.
Different colors correspond to the six putative species. Full-size DOI: 10.7717/peerj.9710/fig-2
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Based on COI-2, single-locus delimitation based on COI-2 (sSDA) inferred 8–13
putative species, including outgroups: ABGD yielded 8, PTP-ML 11 and all other methods
12 or 13 putative species (Fig. 3A). In all analyses, G2, G3, G5 and both outgroup species
(except for mGMYC which split S. sicula in two clusters) formed separate clusters.
In all but one (ABGD) of the five sSDAs, G1, G4 and G6 were split into two, respectively,
three clusters. For G1, mGMYC and PTP-ML suggested two clusters, while sGMYC
indicated three. The apparent over-splitting of these groups is probably caused by a small

Figure 3 Species delimitation analyses (A) based on single and (B–D) multi locus data. (A) Ultrametric COI-2 tree and results of five different
SDAs are given. (B and C) BP&P graphs show the posterior probabilities for the number of putative species under different sets of priors. (D) Species
tree of six Paraleius species presented as cloudogram. The darker the lines the more likely the respective branch. Only posterior probabilities >0.5 are
shown. Colors of clades are same as in Fig. 1. Photo credit: M. Kerschbaumer. Full-size DOI: 10.7717/peerj.9710/fig-3
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overall sample size and comparatively large within-group distances, for example, up to
4.7% in G1 or 2.4% in G4 (Table S3).

Results of both multi-locus delimitation (mSDAs) favored the existence of 8 putative
species in our dataset (depending on the prior used with moderate to high support; Figs. 3B
and 3C), matching the result from the ABGD analysis. All UG1 and UG2 analyses,
under different prior settings, delimited Dp, Ss and Paraleius G1-4 as separate species with
high statistical support (PP= 0.96–1.0, Table 2). With regards to groups G5 and G6,
most UG1 analyses delimited them as two separate species, however, runs under the priors
small θ and deep τ suggested G5 and G6 rather as one than two species (Table 2). All seven
UG2 analyses recovered G6A as a single species (PP= 0.99997–1.0) and favored a
one-species scheme for G5 and G6B. Under the priors small population size and large
divergence time (θ ~ G(2, 1,000), τ ~ G(2, 200)), however, bppX delimited nine species
with moderate support for G5 and G6B being separate species (Table 2).

In the multi-locus species tree analysis of the six putative Paraleius species the exact
branching order of some species was statistically only weakly supported (Fig. 3D). Only the
sister group relationship of G5 and G6 was well supported with a PP = 1.0; a clade
comprising G2, G3 and G4 received moderate support (PP = 0.94).

Table 2 Delimited species and their posterior probabilities of the BP&P species delimitation analysis using different sets of priors for ancestral
population size (θ) and root age (τ). Two different approaches of individual assignments were tested (UG1, UG2).

Prior distributions Delimited species and their posterior probabilities—bppX-UG1

Paraleius S. sicula D. plantivaga

G1 G2 G3 G4 G5 G6 G5 & G6

θ ~ G(2, 10), τ ~ G(2, 20) 1.0 0.99991 0.99790 0.99799 0.93345 0.93345 0.06655 0.99999 0.99999

θ ~ G(2, 10), τ ~ G(2, 2,000) 0.99999 0.99212 0.97757 0.98159 0.17725 0.17725 0.82275 0.99855 0.99372

θ ~ G(2, 10), τ ~ G(2, 500) 1.0 0.99919 0.99632 0.99701 0.66184 0.66184 0.33816 0.99987 0.99939

θ ~ G(2, 100), τ ~ G(2, 200) 1.0 1.0 0.99999 0.99999 0.99688 0.99688 0.00312 1.0 1.0

θ ~ G(2, 100), τ ~ G(2, 2,000) 1.0 0.99790 0.98825 0.99121 0.51555 0.51554 0.48445 0.99958 0.99875

θ ~ G(2, 1000), τ ~ G(2, 200) 1.0 0.99998 0.99995 0.99997 0.99619 0.99619 0.00381 1.0 1.0

θ ~ G(2, 1,000), τ ~ G(2, 2,000) 1.0 0.99925 0.99606 0.99693 0.88828 0.88828 0.11172 0.99993 0.99987

Delimited species and their posterior probabilities—bppX-UG2

Paraleius S. sicula D. plantivaga

G1 G2 G3 G4 G5 G6A G6B G5 & G6B

θ ~ G(2, 10), τ ~ G(2, 20) 1.0 0.99973 0.99780 0.99801 0.06440 1.0 0.06440 0.93560 1.0 1.0

θ ~ G(2, 10), τ ~ G(2, 2,000) 0.99999 0.98658 0.96112 0.96636 0.08659 0.99992 0.08659 0.91338 0.99848 0.99342

θ ~ G(2, 10), τ ~ G(2, 500) 1.0 0.99891 0.99395 0.99519 0.07339 1.0 0.07339 0.92661 0.99983 0.99934

θ ~ G(2, 100), τ ~ G(2, 200) 1.0 0.99990 0.99924 0.99932 0.24308 1.0 0.24308 0.75692 1.0 1.0

θ ~ G(2, 100), τ ~ G(2, 2,000) 1.0 0.99712 0.98109 0.98485 0.14210 0.99997 0.14209 0.85787 0.99948 0.99833

θ ~ G(2, 1,000), τ ~ G(2, 200) 1.0 1.0 0.99997 0.99997 0.71971 1.0 0.71971 0.28029 1.0 1.0

θ ~ G(2, 1,000), τ ~ G(2, 2,000) 1.0 0.99900 0.99523 0.99640 0.41163 1.0 0.41163 0.58837 0.99993 0.99976
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DISCUSSION
Here, we provide the first phylogenetic analysis of the allegedly widespread scheloribatid
mite species, P. leontonychus. Based on phylogenetic analysis of one mitochondrial, two
nuclear markers and Species delimitation analyses (SDAs) we show that P. leontonychus is
not a single species, but rather a complex of several cryptic lineages. Specifically, our
analyses suggested the existence of at least six distinct groups within P. leontonychus
(G1-6). Some SDA algorithms split some of these groups even further. However, many
SDA methods are affected by the geographical and taxonomic scope of the sampling and
might be particularly sensitive to small intra-specific sample sizes (Lim, Balke & Meier,
2012). Given the limited overall sample size and low divergence within the six main
groups, as compared to inter-group divergences, we regard these additional groups as
artifacts. The fact that syntopically found specimens congruently clustered in the single
gene trees derived from COI-2 and 18S sequence data (and also the D3-28S data,
considering the poor resolution of this marker), additionally indicates that there is no
ongoing gene flow between the respective groups. Genetic distances, based on the
COI sequences, among these six main groups amounted to 12.7–19.6% (uncorrected
p-distances), which is well in line with previously reported species-level divergences in
other oribatid mites (Heethoff et al., 2007; Pfingstl, Baumann & Lienhard, 2019; Schäffer
et al., 2010; Schäffer, Kerschbaumer & Koblmüller, 2019) and suggests that this radiation is
not of recent origin. Despite intensive investigations, it was not possible to differentiate
these groups morphologically. Using the original description by Berlese (1910) in this
context is of no help, as it is very short and only general in scope (no details). Nonetheless,
all herein investigated specimens correspond well to the previous re-descriptions and/or
illustrations by various authors (Vitzthum, 1926; Travé, 1960; Wunderle, Beck & Woas,
1990, Mahunka, 1996; Weigmann, 2006; Ahadiyat & Akrami, 2015), showing no
conspicuous differences. Contrary to P. leahae and P. strenzkei, our individuals possess
hetero-tridactylous tarsi with one median, hook-like claw and two thin and fine lateral
claws, a diagnostic character for P. leontonychus. The exterior of Paraleius is quite
inconspicuous, consisting of a very limited set of character traits that might be useful for
species delimitation. Moreover, there are no hints from literature (due to for example,
morphological peculiarities) that P. leontonychus might be a complex of more than one
species. Though, if there are morphological differences between the Paraleius groups these
will be only minor. An additional method to differentiate the groups would be (geo-)
morphometric analyses. In our case, however, this application is impossible, as all
specimens were crushed at the beginning of the DNA extraction as we did not expect
this high cryptic diversity, with distinct species occurring syntopically on single tree trunks
(see Pop09B, Pop10B and R45). Apart from these morphological aspects, the genetic data
clearly support the acceptance of groups G1-6 as true biological species. We, therefore,
designate them as Paraleius species1-6 (=Paraleius sp1-6; see Fig. 3D) in the following.

The locus typicus for P. leontonychus is Filettino on Monte Viglio, east of Rome,
Italy. As none of the herein studied individuals originates from or close to the locus typicus
and since the original description of the species provides no details on host tree and beetle,
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it remains unclear, which of the six species represents the true P. leontonychus and whether
the species was included at all in our dataset.

Assessing the taxonomic diversity in cryptic lineages with little or no ecological and/or
morphological divergence is still one of the major challenges in systematic biology
(Fišer, Robinson & Malard, 2018), but necessary, as informed estimates on the true
diversity of taxa are an important prerequisite for our understanding of their evolutionary
significance and role in ecosystems. Recent studies have shown that inconspicuous and/or
small taxa, often with a reclusive life style, show particularly high levels of cryptic diversity
(Von Saltzwedel, Scheu & Schaefer, 2017; Wagner et al., 2019). Mites are no exception,
and indeed, their actual diversity seems to be vastly underestimated, even in common
and easily recognizable taxa (Navia et al., 2013; Young et al., 2019; Schäffer,
Kerschbaumer & Koblmüller, 2019).

Even though the branching order among the main Paraleius groups differed among
the three gene trees (phylogenetic relationships were generally poorly resolved in the
D3-28S tree) and thus received only moderate support in the species tree, the individual
samples by and large resulted in the same main clusters in the mitochondrial and nuclear
trees. The only exceptions were three individuals of mitochondrial G6 that grouped
with the samples of mitochondrial G5 in the nuclear gene trees, a pattern generally
suggestive for either introgression or incomplete lineage sorting (ILS). Distinguishing
between these two potential causes of mito-nuclear discordance is not trivial. However,
discordance as result of ILS is expected to have no predictable biogeographic patterns
(Funk & Omland, 2003; Toews & Brelsford, 2012). As the incongruence concerns a single
locality and since the phylogenetic placement of the questionable samples was concordant
in the two nuclear gene trees, we assume that introgression, rather than ILS, is the
underlying cause for the detected discordance. Among mites, hybridization has hitherto
been only reported for ticks (Ixodidae) (Rees, Dioli & Kirkendall, 2003; Kovalev, Golovljova
& Mukhacheva, 2016; Patterson et al., 2017) and our data thus provide the first indication
that hybridization/introgression might occur also in other mite taxa. In theory, sex-biased
dispersal can also cause mito-nuclear discordances. In Paraleius, however, contrary to
most other phoretic mites, both males and females seem to be phoretic (Pernek et al., 2012;
Knee, 2017). Hence, we do not consider sex-biased dispersal as potential cause of the
observed mito-nuclear discordance.

Paraleius leontonychus is regarded as a broad host generalist, reported from quite a
few scolytine beetle species (Knee, 2017). Most of the mite specimens included in the
present study were found together with beetle species already known to be associated
with P. leontonychus. Additionally, for the first time, we found Paraleius associated with
Tomicus destruens (Wollaston, 1865) on Aleppo pine (Pinus halepensis Mill.).

Despite the limited sample size, our analyses indicate that Paraleius species do not tend
to be strictly host specific, that is, associated with only a single bark beetle and/or tree
species. With the exception of P. sp. 1, species for which more than one locality was
sampled were found together with more than one beetle species, which themselves were,
based on our limited sample size, strictly associated with particular tree species (Fig. 2A).
In addition, single beetle and tree species are hosts for several Paraleius species. Thus, P. sp.
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2, 3, 5 and 6 were found together with Pityokteines sp. on A. alba and P. sp. 2, 5 and 6
with T. destruens, and P. sp. 1 and 6 were found to be associated with I. typographus on
P. abies. Four of the six Paraleius species were collected in Croatia, indicating that
Paraleius diversity might be high in the Balkans, likely driven by complex patterns of
range reductions and expansion of host beetle and tree species in the course of recurrent
glacial cycles during the Quaternary (Horn et al., 2009; Litkowiec, Lewandowski & Rączka,
2016). However, we expect that species diversity is higher than previously assumed also
in other refugial areas of the host trees, particularly in areas (forests) with several different
host tree species.

Unlike the other European species, P. sp. 1 was not found in Croatia but only in Central
Europe, possibly due to a strong preference for Norway spruce, which is the dominant
forest tree in this region. Interestingly, P. sp. 2, which was collected in far eastern Russia
on Sakhalin spruce (Picea glehnii (F. Schmidt) Mast.) together with I. typographus f.
japonicusNiijima, 1909, neither constitutes a distinctly divergent lineage (if geography was
the main driver of Paraleius diversification) nor the sister species of P. sp. 1 (if host beetle
species relationships were the main determinant of their diversification), but rather
represents one of six roughly equally divergent Paraleius species. In general, even if they
might prefer certain tree species, most bark beetles are not specific to single host tree species,
but do colonize a number of—mostly phylogenetically related—species (Bertheau et al.,
2009). Considering the complex Quaternary population dynamics of both bark beetles and
host trees, the relaxed host specificity of bark beetles and the large number of bark beetle
species associated with Paraleius, single Paraleius species might get easily distributed across a
range of tree species. As a consequence, previously allopatric Paraleius species may have
been brought into sympatry, facilitating occasional hybridization/introgression.

CONCLUSIONS
Paraleius leontonychus has been known as a widespread species associated with a large
number of bark beetle hosts. We find, however, that P. leontonychus is not a single
widespread host generalist mite species, but rather a complex of several morphologically
cryptic species. These species are probably no strict host specialists and occur at least in
part in sympatry (and even syntopy). Our data already point to a stunning diversity
and call for large scale phylogeographic sampling, ideally combined with multi-locus
or genomic data to fully resolve the complex evolutionary history and patterns of
potential host specificity in this species complex. Although our study only covers a part
of the total distribution range and the potential hosts of P. leontonychus, we already
demonstrate that there are more than one Paraleius species phoretic on European bark
beetles. To ensure that future studies in both basic and applied research are aware of this
situation, it is very important to present these first insights on the unexpected genetic
diversity of the allegedly widespread Palearctic P. leontonychus.
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