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Persistent infection with high-risk human papilloma viruses (HPV) is the worldwide cause
of many cancers, including cervical, anal, vulval, vaginal, penile, and oropharyngeal. Since
T cells naturally eliminate the majority of chronic HPV infections by recognizing epitopes
displayed on virally altered epithelium, we exploited Poisson detection mass spectrometry
(MS3) to identify those epitopes and inform futureT cell-based vaccine design. Nine cervi-
cal cancer biopsies from HPV-16 positive HLA-A∗02 patients were obtained, histopathology
determined, and E7 oncogene PCR-amplified from tumor DNA and sequenced. Conserva-
tion of E7 oncogene coding segments was found in all tumors. MS3 analysis of HLA-A∗02
immunoprecipitates detected E711–19 peptide (YMLDLQPET) in seven of the nine tumor
biopsies.The remaining two samples were E711–19 negative and lacked the HLA-A∗02 bind-
ing GILT thioreductase peptide despite possessing binding-competent HLA-A∗02 alleles.
Thus, the conserved E711–19 peptide is a dominant HLA-A∗02 binding tumor antigen in
HPV-16 transformed cervical squamous and adenocarcinomas. Findings that a minority of
HLA-A∗02:01 tumors lack expression of both E711–19 and a peptide from a thioreductase
important in processing of cysteine-rich proteins like E7 underscore the value of physical
detection, define a potential additional tumor escape mechanism and have implications for
therapeutic cancer vaccine development.
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INTRODUCTION
Human papilloma viruses (HPV) are double-stranded DNA
viruses that infect epithelial cells of the skin and mucosa (zur
Hausen, 2002). Of the more than 200 known HPV types, 30–40
are transmitted through sexual contact, infecting the anogenital
region and oropharynx. Among these, approximately 15 are desig-
nated “high-risk” (i.e., oncogenic) and have been linked to cervical
cancer as well as anal, vulva, vaginal, penile, and oropharyngeal
cancers (de Villiers et al., 2004). Worldwide, >5% of all new can-
cers are attributable to high-risk HPV infections (Parkin, 2006).
HPV is the cause of virtually all cases of cervical cancer, the sec-
ond most common female cancer globally (Alani and Munger,
1998; Walboomers et al., 1999). Furthermore, in the developing
world where HPV disease burden is greatest, cervical carcinoma is
the leading cause of cancer mortality among women. The HPV-
16 subtype alone is responsible for 50% of cervical cancers and
high-grade cervical intraepithelial lesions (Stone et al., 2002).

Human papilloma viruses is linked to malignant transfor-
mation following persistent infection with one or more of the
high-risk HPV types (including -16, -18, -31, -33, -35, -39, -45,
-51, -52, -56, -58, and -59; Munoz et al., 2003). The viral E6 and E7
encoded proteins have transforming activities through functional

inactivation of the p53 and retinoblastoma (Rb) tumor suppres-
sor proteins, respectively (Munger et al., 1989a,b, 1992; Scheffner
et al., 1990). Not surprisingly, therefore, abrogation of activities
of E6 and/or E7 experimentally terminates the malignant state of
HPV-transformed cells in vitro (Desaintes et al., 1997).

A key advance in combating HPV infection and its causally
related diseases has been based on virus-like particle prophylactic
vaccine development (Kirnbauer et al., 1993). This vaccine con-
sists of recombinant HPV L1 capsid protein that self-assembles
to create virus-like particles against which protective, high-titered
anti-L1 neutralizing antibodies are elicited in vivo (Kirnbauer et al.,
1992, 1993). In both females and males, such vaccines comprising
two high-risk capsids effectively prevent development of anogeni-
tal diseases (Frazer et al., 2010). However, capsid-based therapeutic
HPV vaccine strategies cannot be employed once infection/disease
is established for at least two reasons. First, humoral protection is
associated with antibody binding to the capsid L1 protein thereby
blocking virion entry into the cell. The L1 protein is exclusively
expressed late in the HPV replication cycle and only in differen-
tiated keratinocytes within the upper layers of the epithelium to
create infectious virions. Persistent infection in the host is main-
tained by low copy numbers of unencapsulated virus in basal
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stem cells (Stanley et al., 2007). As humoral immune responses
against capsid proteins do not affect persistently infected basal
cells, they are consequently unable to clear infection (Stoler et al.,
1990; Frazer et al., 2010). Second, high-risk HPV-associated can-
cers arise with genomic integration of E6 and E7 viral oncogenes.
Although L1 and L2 genes may also be integrated and capsid pro-
teins expressed (Bellone et al., 2009) these are intracellular and
hence, antibody inaccessible.

During natural infection, HPV is cleared by the immune system
in the vast majority of subjects. A few percent of persistent infec-
tions evolve into neoplasias that may progress to malignancy with
high-risk HPV types (Bhat et al., 2011). Although immune sup-
pression is associated with chronic infection, most patients with
persistent HPV infections do not show immune deficiencies in
response to other pathogens (Frazer, 2004). Persistent infection
with malignant or premalignant lesions, is often associated with
HPV-specific T cells whose significance for antitumor immunity
is not always clear. For example, one study that detected HPV-
responding T cells in peripheral blood of patients with high-grade
cervical intraepithelial neoplasia (CIN2/3) was unable to corre-
late IFN-γ levels or antigen specificity of T cell response with
the 26% of the patients that showed spontaneous lesion regres-
sion (Trimble et al., 2011). In another cervical cancer study, a
third of the patients exhibited HPV-specific proliferative T cell
responses prior to surgery, but long-term survival after surgery
was not associated with T cell response (Heusinkveld et al., 2011).
Whereas the presence of circulating HPV-specific CD8+ cytotoxic
T lymphocytes (CTL) did not correlate with disease prognosis in
early stage cervical cancer, the degree of CD8+ tumor infiltration
and balance (ratio) of CD8+ T cells to regulatory T cells were
correlated (Piersma et al., 2007; Jordanova et al., 2008). Consis-
tent with a critical role of inflammatory signals in inducing T
cell responses, vulval intraepithelial lesions treated with the toll-
like receptor (TLR) 7 activator Imiquimod showed regression and
viral clearance in association with circulating HPV-specific T cells
(van Seters et al., 2008; Terlou et al., 2010). Recently, vaccination
with synthetic long-peptides covering the E6 and E7 oncoproteins
plus conventional adjuvant was reported to clear HPV-16 induced
high-grade vulva intraepithelial neoplastic lesions in ∼50% of
patients (Kenter et al., 2009).

While it is widely acknowledged that antitumor cellular immu-
nity is influenced by regulatory mechanisms, tumor microenvi-
ronment, and tumor escape mechanisms (Finn, 2008), the nature
of T cell antigen specificity is less defined despite its critical role.
Ex vivo T cell assays that mark HPV-specificity identify a broad
priming display by professional antigen presenting cells (pAPCs)
but do not interrogate antitumor CTL activity nor do they iden-
tify the breadth of HPV-specific major histocompatibility complex
(MHC) I display of the tumor per se (de Vos van Steenwijk et al.,
2010). Pointedly, in the context of a narrow tumor display, antitu-
mor vaccines that prime a broad T cell response generate a small
fraction of tumor lytic CD8+ T cells, resulting in low densities of
useful tumor infiltrating T cells.

In order to focus the cytotoxic T cell response on E7 and/or
E6 targets with precision, it is first critical to define the peptide
epitopes presented on the human leukocyte antigen (HLA) mole-
cules of human tumor cells in vivo. These are the targets for CD8+

CTL, after all. Because of the pitfalls of indirect functional iden-
tification of presumptive tumor antigens (Reinherz and Acuto,
2011), a definitive physical identification of tumor antigens by
mass spectrometry is important. This can be very challenging,
given a limited number of tumor cells available from clinical biopsy
samples and potential downregulation of HLA by tumor escape
mechanisms (Campo et al., 2010). To this end, we have devel-
oped MS3 Poisson detection mass spectrometry and exploited it
here to identify an E711–19 9-mer peptide as a dominant T cell
epitope presented by HLA-A∗02:01 on the majority of HPV-16 cer-
vical squamous and adenocarcinomas before and post-adjuvant
chemotherapy. Detailed analysis of viral E7 gene sequences, high
resolution HLA typing and definition of peptide presentation on
tumor cells permit rational assessment of a cancer’s vulnerability
to immunotherapy.

MATERIALS AND METHODS
SAMPLES
Nine HPV-16+ cervical cancer biopsies were obtained from CHA
Bundang Medical Center, CHA University in Korea. Patients con-
sented to donate part of the surgical tumor biopsy material and
RNA for research under IRB approved protocol.

HLA TYPING
Patients’ peripheral blood mononuclear cells (PBMC) were
screened for BB7.2 antibody reactivity by flow cytometry to iden-
tify patients expressing HLA-A∗02 alleles. RNA was extracted from
PBMC to obtain detailed molecular HLA typing data for HLA-A,
HLA-B, and HLA-C alleles by 454 sequencing methods.

RNA EXTRACTION
Total peripheral blood mononuclear cells (PBMC) were isolated
from whole blood using ficoll/paque density centrifugation. RNA
was isolated from PBMC using Qiagen RNAeasy kits.

454 HLA-AMPLICON SEQUENCING
Clonal HLA-amplicon pyrosequencing was performed as
previously described (Lank et al., 2010), with additional
novel PCR amplicon binding sites to allow higher reso-
lution genotyping. Briefly, patient RNA was reverse tran-
scribed to cDNA using the Superscript III First-Strand Syn-
thesis System with oligo(d)T primer (Invitrogen, Carlsbad,
CA, USA). For each sample, universally conserved HLA class
I primers were used to generate a 581-bp amplicon (For-
ward primer: 5′-GTGGGCTACGTGGACGAC-3′; Reverse primer:
5′-TGCCAGGTCAGTGTGATCTC-3′) and a 1021-bp amplicon
(Forward primer: 5′-TGGCCCTGACCSAGACCTG-3′; Reverse
primer: 5′-CAGAGCCCTGGGCACTGT-3′), which together com-
pletely cover exons 2, 3, 4, 5, and 6, as well as parts of exons 1 and
7. The amplification oligos were fusion primers containing these
sequences as well as standard Roche/454 “A” and “B” sequencing
adapters and unique multiplex identifier DNA barcodes (MIDs).
PCR products were purified using Amplure-XP SPRI beads (Beck-
man Coulter Genomics, Danvers, MA, USA) and subsequently
pooled to create a multiplexed sequencing library. This library
was sequenced on a GS-Jr pyrosequencer with Titanium series
reagents using the standard bi-directional amplicon sequencing
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protocol and base calling (454 Life Sciences, Branford, CT, USA).
Sequence reads were parsed by MID, quality filtered, then forward,
and reverse reads were aligned to the library of known HLA class
I alleles (IMGT database, version 3.3) using BLAT. The pattern of
perfectly matched alleles for each amplicon and direction was used
to determine comprehensive, high resolution class I genotype for
each class I locus.

TUMOR PROTEIN EXTRACTION AND IMMUNOPRECIPITATION
Bulk tumor tissue was resuspended in 2 ml of protein lysis buffer
containing 20 mM Tris (pH 8.0), 1 mM EDTA, 100 mM NaCl, 1%
Triton X-100, 60 mM n-octylglucoside, phenylmethylsulfonyl flu-
oride (all from Sigma-Aldrich), and protease inhibitors (Complete
protease inhibitor cocktail tablets, Roche). Tumor tissue was dis-
rupted using a Tissueraptor (Qiagen). Each lysate was pre-cleared
using centrifugation and the pellet containing insoluble mem-
brane and nuclear fractions was frozen for further processing and
DNA extraction. Soluble lysates were co-incubated with 20 μl of
GammaBind Plus Sepharose beads (GE Lifesciences, Piscataway,
NJ, USA) non-covalently linked to BB7.2 (BD biosciences, San
Diego, CA, USA) antibody for 3 h. Beads were washed and pre-
pared for MS analysis as described previously (Reinhold et al.,
2010; Riemer et al., 2010).

MS3 DETECTION OF TUMOR-DERIVED E7 PEPTIDES ISOLATED BY
ANTI-HLA IMMUNOPRECIPITATION
Bound peptides, released from peptide–HLA-A∗02 complexes by
acid wash of the GammaBind Plus Sepharose beads, were trapped
on a C18 tip and eluted into a needle for nanospray ionization
and mass analyses. Typically, the sample needle was mounted on a
Sciex Elite quadrupole–TOF for high resolution mass spectra and
then transferred to a QTrap 4000 quadrupole–LIT for MS3 ion
fragmentation analyses. MS3 data are generated from two succes-
sive stages of ion isolation and fragmentation. The second stage
fragmentation data are analyzed for molecular targets by a detec-
tion algorithm based on sampling a stochastic Poisson process.
Briefly, one calculates an amplitude at which the MS3 spectrum
of the target peptide can be embedded in the MS3 spectrum of
the peptide mixture at a fixed probability. The detection is scored
based on comparing the embedding of the target spectrum to
a set of trial spectra generated by translating the target spec-
trum. Plotting the embedding amplitude as a function of m/z
translation, a graph is created that marks high detection signif-
icance with a prominent 0-translation peak. For detecting the
E711–19 peptide YMLDLQPET the primary MS3 reference pattern
used for detection is generated by first dissociating the doubly
changed molecular ions at m/z 555.3 and then dissociating the
product ions in the window at m/z 764.4 (corresponding to the
b6 ion fragment YMLDLQ-). The MS3 555.3/764.4 data of pep-
tides from the tumor samples is Poisson measured against the
dissociation spectrum of the b6 ion fragment of the YMLDLQPET
peptide. The less intense b8 fragment YMLDLQPE- can also be
used for detection by Poisson analysis of MS3 555.3/990.5 data.
MS3 Poisson detection does not require chromatographic sepa-
ration of the recovered peptides, allowing targeted analyses for
samples on smaller scales (Reinhold et al., 2010; Riemer et al.,
2010).

E7–PCR AND SEQUENCING
Nuclear cell pellets remaining after protein immunoprecipita-
tion were utilized for DNA extraction. The pellets were fur-
ther solubilized and digested using Proteinase K-supplemented
nuclear lysis buffer. Total tumor genomic DNA was extracted
utilizing the Wizard SV genomic DNA extraction system
(Promega, Madison, WI, USA). The integrated HPV-16 E7
gene was amplified from total DNA using the E7-specific
primers 5′-TGTCAAAAGCCACTGTGTCC-3′ (forward) and 5′-
AGTGGACTACCAAATACTTTCGTT-3′ (reverse). PCR products
were purified using the Wizard PCR cleanup kit (Promega, Madi-
son, WI, USA). The E7 gene of each sample was sequenced at
the Dana-Farber Cancer Center DNA sequencing core facilities.
The resulting sequences were translated to protein sequences via
the ExPASy proteomics server – Translate tool1. Protein sequences
were aligned using online MAFFT multiple alignment software2.

35-mer E7 HPV PEPTIDE SYNTHESIS, DENDRITIC AND B LYMPHOCYTE
LOADING, AND PRESENTATION ANALYSIS
The E71–35 peptide (MHGDTPTLHEYMLDLQPETTDLYCYE-
QLNDSSEEE), identical to a previously published sequence (Ken-
ter et al., 2009), was synthesized (RS Synthesis, Louisville, KY, USA)
and HPLC purified to greater than 95% and stored in DMSO prior
to use in presentation studies. Adherent monocytes were purified
from HLA-A02 donor PBMC’s and differentiated using 50 ng/ml
GM-CSF and 50 ng/ml IL-4 (Peprotech, NJ, USA) for 7 days. Den-
dritic cells (DCs) were induced to mature using 1 μg/ml LPS and
loaded with 100 μg/ml E71–35 peptide simultaneously overnight.
B cells were stained with CD19 and sterile-sorted from HLA-A02
donor PBMCs using a FACS Aria. B cells were activated using
1 μg/ml LPS and simultaneously loaded with 100 μg/ml E71–35

peptide overnight. MHC peptide complexes were immunopre-
cipitated from 2 to 2.5 × 106 DC or B lymphocytes and peptide
presentation was analyzed by MS3.

SUPPRESSION OF γ-INTERFERON-INDUCIBLE LYSOSOMAL THIOL
REDUCTASE (GILT) PROTEIN EXPRESSION UTILIZING siRNA
Lentiviral siRNA silencers and siRNA oligomers targeted for GILT
suppression as well as vector controls were purchased from Santa
Cruz Biotechnology. GILT siRNA lentiviral particles and control
lentiviral particles were used to infect CaSki cells in the presence
of 5 μg/ml polybrene. Cells with stable lentiviral integration were
selected in vitro using 2 μg/ml puromycin. In parallel, CaSki cells
were also transfected with GILT siRNA oligomers or FITC-labeled
control siRNA using Lipofectamine 2000. Transfected cells were
cultured for three additional days. MHC peptide complexes were
isolated from 2 × 107 cells from each treatment group by immuno-
precipitation and peptide presentation was analyzed by MS3 (see
Appendix for additional details).

RESULTS
PATIENT POPULATION AND OVERALL ASSESSMENT STRATEGY
Biopsies of HPV-16 positive cervical cancer were obtained from
HLA-A∗02 positive patients either prior to or following neoadju-
vant chemotherapy with cisplatin and etoposide (Bae et al., 2008),

1http://ca.expasy.org/tools/dna.html
2http://mafft.cbrc.jp/alignment/software/.
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defining the type and extent of tumor pathology. The HPV-16 sta-
tus of the tumors and patients was determined by HPV-specific
gene array analysis (An et al., 2003). A frozen tumor biopsy was
provided for DNA extraction and E7 sequencing and for MS analy-
sis of HLA-associated peptide epitopes. In addition, PBMC were
isolated and RNA extracted for high resolution HLA typing by 454
sequencing. Korea was selected as a geographical locale in view of
the significant prevalence of HPV-16 positive cervical cancer and
availability of modern medical practices.

The tripartite approach using genomics, proteomics (MS3) and
immunomics (HLA typing and epitope binding prediction) illus-
trated in Figure 1, offers a general strategy for identifying CD8+
CTL target antigens on tumors or infected tissues. DNA sequenc-
ing provides viral strain-specific information, permitting protein
sequence and epitope predictions in conjunction with bioinfor-
matics. Poisson detection MS3 proteomics identifies those pep-
tides among many possibilities that are physically displayed on the
surface of cells. High resolution HLA typing defines the specific
alleles born by a given patient to which peptides can be predicted
to bind and then verified by MS3. Note, for example, that among
13 distinct predicted HLA-A∗0201 binding E7 peptides, only one,
E711–19 (YMLDLQPET), was found to be naturally processed and
displayed on HPV-16 transformed HLA-A∗0201 expressing cell
lines in vitro (Riemer et al., 2010).

Clinical characteristics are reviewed in Table 1. All patients
were pre-selected for PBMC BB7.2 antibody reactivity and hence

were HLA-A∗02 positive, limiting the potential complexity of
tumor antigens. Notwithstanding, there are more than 280 differ-
ent HLA-A∗02 alleles that form the HLA-A2 supertype (Robinson
et al., 2011), exhibiting overlapping yet differential peptide binding
repertoires (Sudo et al., 1995). Hence, it was essential to precisely
HLA type samples. Four digit molecular typing was possible for
all HLA-A, -B, and -C alleles (Lank et al., 2010) aside from several
ambiguities in HLA-A and -C in KTS1 and HLA-A in KTS9.

HISTOPATHOLOGY OF CERVICAL TUMOR SAMPLES
Nine HPV-16+ cervical cancer tumor biopsies representing a vari-
ety of pathologies were used in the present study. Tumor staging
(FIGO) ranged from 1b1 to 4a. Biopsies were obtained either at the
time of initial diagnosis (samples KTS2, 3, 5, 6, 8, 9) or at the time of
radical operation after three cycles of neoadjuvant chemotherapy
(samples KTS1, 4, and 7). H&E sections of representative tumors
are presented in Figure 2. Seven of nine were defined as squamous
cell carcinomas, in agreement with studies showing that HPV-16
infection is most commonly associated with squamous cell carci-
nomas while HPV-18 is strongly associated with adenocarcinomas
(Wilczynski et al., 1988).

HPV-16 E7 SEQUENCING
DNA was extracted from each tumor mass and its HPV-16 E7
oncogene was amplified by gene specific primers to analyze the
sequence of the HPV-16 E7 genomic integrant. As shown in

FIGURE 1 | Strategy for the detection of tumor antigens from clinical

biopsy samples. Cervical cancer biopsy material and blood were obtained
from patients and processed in three ways: (1) Tumor DNA was extracted and
the E7 oncogene sequenced to determine its conservation; (2) The protein
fraction from the tumor was used to extract peptide–HLA complexes for MS3

analysis; and (3) RNA was isolated from patient PBMCs and used to obtain
high resolution HLA typing via 454 sequencing. Collectively, the technologies
allow DNA sequencing and T cell epitope predictions within conserved
segments of tumor antigens bound to genotypically defined HLA molecules
to be verified by MS3 analysis.

Frontiers in Immunology | T Cell Biology December 2011 | Volume 2 | Article 75 | 4

http://www.frontiersin.org/Immunology
http://www.frontiersin.org/T_Cell_Biology
http://www.frontiersin.org/T_Cell_Biology/archive


Keskin et al. Specificity of tumor antigen display

Table 1 | Human papilloma viruses-16+ cervical tumor samples from HLA-A∗02+ patients.

Case Age Stage (FIGO) Tumor histology Pre-adjuvant chemotherapy Outcome HLA

1 35 2b scc + NED A*02, A*24

B*15:07, B*40

C*03, C*15

2 67 2b scc − NED A*02:01, A*02:06

B*48:01, B*51:01

C*03:04, C*08:22

3 74 1b1 scc − NED A*02:01, A*31:01

B*51:02, B*54:01

C*01:02, C*15:02

4 48 4a scc + Persistent/progressive A*02:01, A*26:01

B*46:01, B*51:01

C*01:02, C*15:02

5 57 1b2 sqadeno − NED A*02:01, A*11:01

B*15:18, B*40:01

C*04 (New Allele)

C*07:04 or C*07:11

6 56 2b scc − NED A*02:01, A*32:01

B*44:02, B*54:01

C*01:02, C*05:01

7 37 2a scc + NED A*02:01, A*02:06

B*48:01, B*51:01

C*03:03, C*03:04

8§ 61 2b adeno − Pending A*02:01 homozygous

B*67:01, B*15:11

C*03:03, C*07:02

9§ 42 2b scc − Pending A*02 Novel 3′ UTR

B*51:01, B*59:01

C*01:02, C*14:02

Shown is the key information on each of nine cervical cancer patients (KTS1–KTS9). Age, stage, and tumor histology (scc, squamous cell carcinoma; sqadeno, mixed

squamous and adenocarconima features; adeno, adenocarcinoma). In addition, use of pre-adjuvant chemotherapy prior to biopsy is denoted with a “+.” Outcome

is indicated (NED, no evidence of disease; pending, short follow-up). HLA genotyping results were obtained by 454 cDNA sequencing using RNA obtained from

PBMC. Four digit molecular typing was possible for all HLA-A, -B, and -C alleles aside from several ambiguities in HLA-A and -C in KTS1 and HLA-A in KTS9. Also, we

identified two novel HLA-C sequences in blood from KTS2 and KTS5 and a novel HLA-A∗02 5 ′ UTR sequence from that of KTS9 (Figure A1 in Appendix).
§Indicates individual tumors where no E711–19 was detected.

Figure 3, we determined that the sequence for the dominant
E711–19 epitope YMLDLQPET was conserved in all of the tumors
samples. Two HPV E7 sequence variants are observed: Asn is found
at position 29 (N29) in KTS2, KTS3, and KTS6 whereas Ser (S29)
is present in the remaining samples. Sequence comparison with
known HPV-16 virus sequences in the NIH GenBank suggests that
the N29 variant belongs to an HPV-16 strain that has spread world-
wide (Seedorf et al., 1985). In contrast, the S29 variant belongs to
an HPV-16 strain common in Asia and East Asia (Figure A2 in
Appendix). Other than amino acid position 29, the remainder of
the protein sequence was conserved and identical to our reference
sequence E7 KTS7.

POISSON MS3 DETECTION OF THE HPV-16 E711–19 PEPTIDE YMLDLQPET
The amount of available tumor biopsy material for the MS3

samples varied from 7.9 to 19 mg. Samples were immunopre-
cipitated with BB7.2 mAb to isolate peptide–HLA-A∗02 com-
plexes and peptides eluted and analyzed by MS3 for presence

of the E711–19 YMLDLQPET. Figure 4 shows Poisson detection
plots for the nine tumor samples (KTS1–KTS9) and control
HLA-A∗02:01 peptides from an HPV negative T cell hybridoma
(Figure 4J). Detection is based on a probabilistic Poisson process,
gaging the likelihood that the sample contains a natural target
peptide whose MS3 fragmentation pattern was previously deter-
mined using a synthetic peptide (see Materials and Methods).
In the Poisson plots of Figure 4, this significance corresponds
to the amplitude of the 0-offset peak relative to the peaks in
the m/z offset range from −50 to 50. Setting the detection
threshold at 4× the average of the offset amplitudes (shaded
regions, Figure 4), tumor samples KTS1–KTS7 (Figures 4A–G)
were positive for E711–19 while samples KTS8, KTS9, and con-
trol (Figures 4H–J, respectively) have 0-amplitudes below this
level and were negative (Figures A3–A5 in Appendix). Sam-
ples KTS1–KTS4 were also examined by MS3 555.3/990.5 and
were positive for the b8 fragment as expected (Figures A3–A4
in Appendix).
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POISSON MS3 ANALYSIS DOES NOT DETECT THE HPV-16 E711–20

PEPTIDE YMLDLQPETT ON PATIENTS’ TUMORS
The E711–19 peptide was previously detected in all HPV-16 E7
expressing cell lines examined, whereas the E711–20 peptide was
absent (Riemer et al., 2010). This difference does not reflect a tech-
nical limitation,as it was previously shown that MS3 Poisson detec-
tion for the HLA-A∗02 binding E711–20 peptide YMLDLQPETT is
as sensitive as that of E711–19 (Reinhold et al., 2010; Riemer et al.,
2010). Tumor samples KTS1–2, KTS4, and KTS8 were also exam-
ined by MS3 Poisson detection for the longer E711–20 peptide. The
E711–20 peptide was not detected in any patient tumors (Figures A6

FIGURE 2 | Human papilloma viruses-16+ cervical cancer tumor

samples display a variety of pathologies. Histopathology of tumor
samples stained with hematoxylin and eosin. (A,B) are representatives of
squamous cell carcinoma samples. The tumor sample shown in (A) (KTS2)
is an invasive, moderate to poorly differentiated squamous cell carcinoma
(200×). The tumor sample in (B) (KTS9) represents an invasive, moderately
differentiated squamous cell carcinoma but with focal keratinization (right;
100×). The remaining two samples shown are adenocarcinomas with or
without squamous features [(C,D), respectively, 200×]. (C) Shows an
adeno-squamous carcinoma (KTS5), demonstrating glandular differentiation
with a squamous component and exhibiting the sheet growth
characteristics of squamous epithelium. (D) Shows a mucin producing,
invasive adenocarcinoma (KTS8). Results are from pathology slides
prepared from nine different tumors.

and A7 in Appendix). In contrast, pAPCs like human monocyte-
derived dendritic cells as well as B cells process a synthetic long
peptide, E71–35, to cross-present both E711–20 and E711–19 pep-
tide bound to HLA-A∗02. In fact, cross-presented E711–20 is more
abundant than E711–19 (Figure A8 in Appendix).

FAILURE TO DETECT γ-INTERFERON-INDUCIBLE LYSOSOMAL THIOL
REDUCTASE (GILT) SIGNAL PEPTIDES IN E711–19 NEGATIVE TUMOR
SAMPLES
The negative detection of E711–19 in samples KTS8 and KTS9
(Figures 4H,I) was not associated with lower overall peptide recov-
ery (Figures A9 and A10 in Appendix). Unexpectedly, these two
samples were additionally negative for the HLA-A∗02 binding
peptides LLDVPTAAV and LLLDVPTAAVQA derived from the
signal peptide of GILT, also termed Ifi30 or IP30. This enzyme
is involved in antigen presentation and hence its downregulation
may have significant consequences for immune responses against
tumors (O’Donnell et al., 2004; Rausch et al., 2010; Srinivasan
and Maric, 2011). Six of the seven E711–19 positive samples were
checked for one or both of the two GILT-associated peptides which
were each abundant and could be trivially detected by MS2 analysis
(Figures A11–A13 in Appendix). The lack of GILT signal peptide
was noticed initially in analyzing incidentally collected MS2 data
from KTS8 (Figure A11D in Appendix) and characterized as neg-
ative, in contrast with abundant peptide amounts observed in all
E711–19 positive samples. A subsequent E711–19 negative sample,
KTS9. was examined by MS3 analysis for LLDVPTAAV and here
the negative result extends to the very highest sensitivity (Figure 5).

Although loss of transporter associated with antigen processing
(TAP)-1 or -2 gene function is associated with very high relative
levels of GILT signal peptides on HLA-A2 molecules (Hender-
son et al., 1992; Wei and Cresswell, 1992),TAP expression does
not account for the observed differential display of GILT sig-
nal peptides in tumor samples KTS1–7 vs. KTS8–9. The pool of
peptides associated with A2 molecules from TAP-deficient cells
is a low complexity set dominated by a few signal peptides. On
the other hand, those from TAP-sufficient cells are of very high
complexity, a feature which is immediately apparent in the mass
spectrum (Figure A14 in Appendix) and clearly characterizes pep-
tide recovery from both the GILT positive and GILT negative
tumor samples (Figure A10 in Appendix). Furthermore, lentivi-
ral siRNA silencing of GILT in the HPV-16 transformed CaSki

FIGURE 3 | Multiple alignment of HPV-16 E7 protein sequences

determined from tumor DNA sequencing. HPV-16 E7 DNA sequences
were PCR-amplified from total tumor DNA and sequenced. DNA
sequences were translated to and protein sequences aligned for
comparison. Two HPV-16 E7 sequence variants are present in the analyzed

tumor samples: N29 in KTS2, KTS3, and KTS6 marked as red, and S29 in the
remaining samples. The E7 11–19 YMLDLQPET T-cell epitope highlighted as
yellow was conserved in all samples. Results are representative of two
independent sequencing reactions performed on nine different tumor DNA
samples.
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FIGURE 4 | Poisson detection for the E711–19 ion fragmentYMLDLQ- in

MS3 555.3/764.4 spectra of HLA-A∗02 bound peptides from biopsied

tumor samples. Shaded regions mark a significance boundary set at 4
times the average amplitude excluding the 0-peak. Poisson fits to the
unshifted reference spectrum (the 0-peak on the x -axis) that remain within
the shaded region do not represent significantly ion events in the MS3

spectra of the samples. KTS1–KTS9 (A–I), respectively. Biopsied cervical
tumors with the (A–G) representing tumors samples KTS1–7 indicating
positive detection. (H,I) Represent negative detection on tumors samples
KTS8 and 9. (J) Illustrates peptides from a non-HPV-transformed T cell line,
as a negative control. Results are from single immunoprecipitation
experiments repeated on nine different tumor samples.

cell line (Figure 6) resulted in 80% specific suppression of GILT
peptide expression and concomitant E711–19 reduction, consistent
with the correlation between loss of HLA-associated GILT peptide
and absent E711–19 in patient tumor samples. Since GILT expres-
sion could not be extinguished in the CaSki cell line, we cannot
prove that the association is causal (that is, the link between lack
of GILT and E711–19 in patient tumors). Other factors that might
account for lack of E711–19 expression on KTS8–9 remain to be
investigated.

DISCUSSION
Almost all currently licensed vaccines against infectious pathogens
stimulate generation of antibody production (Bambini and
Rappuoli, 2009). However, because of recent advances in

FIGURE 5 | Identifying the HLA-A∗02 bound peptide LLDVPTAAV from

the signal sequence of γ-interferon-inducible lysosomal thiol

reductase (GILT). (A) MS3 449.76/781.4 spectrum from a tumor sample
that is positive for E711–19 identifies abundant GILT signal peptide; the inset
shows the MS3 449.76/781.4 spectrum of a synthetic LLDVPTAAV. (B) MS3

449.76/781.4 spectrum from tumor sample KTS9 (negative for E711–19) does
not identify the GILT signal peptide even with the high sensitivity analysis
employed. Results are from single immunoprecipitation experiments
repeated on two different tumor samples.

immunobiology, T cell-based vaccines will soon evolve (Rein-
herz and Acuto, 2011). Engagement of this limb of the immune
response is important since CTL target virally transformed cells
such as HPV-16 induced tumor cells, whereas antibodies cannot
readily do so. In addition, T cells recognize internal viral proteins
that are much less variable than envelope proteins, the targets of
neutralizing antibodies. Influenza A is a prime example of a RNA
virus where such a T cell approach has the potential to lead to
a universal vaccine with coverage of seasonal variants as well as
pandemic threats (Reinherz and Acuto, 2011).

T cell recognition is referred to as MHC-restricted. The T cell
receptor on a given T cell interacts with a specific peptide in com-
plex with an MHC molecule (pMHC) being expressed on the
surface of infected targets, tumors, or antigen presenting cells.
During viral infection, proteolytic cleavage in the cytosol leads to
the generation of peptides, i.e., so-called “processing.” These pep-
tides traffic into the endoplasmic reticulum and are loaded onto
HLA molecules in the human, followed by expression of the com-
plex on the cell surface. CTL recognition is of peptide epitopes
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FIGURE 6 | siRNA suppression of GILT in CaSki cells shows that the

abundance of GILT correlates with the abundance of the E711–19

peptide. siRNA suppression of GILT protein is correlated with a
reduction in the amount of E711–19 peptide associated with HLA-A∗02 in
CaSki cells. The suppression of GILT is monitored by its signal peptide
LLDVPTAAV and both the GILT and E711–19 peptides are characterized

relative to the overall peptides recovered. (A–C) Show the MS2 and MS3

spectra that identify the MS3 510.79/889.5 spectrum as a good ion flux
calibrant (see Appendix for further details). (D) Shows the percentage
reduction in the GILT and E711–19 peptides relative to the overall HLA-A∗02
associated peptide signal as a function of lentiviral siRNA silencing of
GILT protein expression.

generally 9–10 amino acids in length bound to HLA molecules
(H-2 in the mouse), flagging a target for destruction. Each human
expresses on his (her) nucleated cells, three to six of these HLA-
A, -B, and -C molecules (number dependent on zygosity at each
locus) with ∼5000 HLA class I allelic variants identified globally.
Peptide binding differs for distinct alleles while subtle differences
are observed for peptide repertoires binding to similar HLA alle-
les. An additional complexity is that as many as 100,000 distinct
pMHC complexes may be arrayed on the surface of each target
cells, with the T cell having the capacity to detect fewer than a
dozen of the relevant peptides among a sea of related yet distinct,
irrelevant pMHC complexes. As T cell recognition is exquisitely
sensitive and precise it follows that detailed information must be
acquired on the exact viral peptide epitope (or tumor antigen) that
is expressed on infected/transformed cells being targeted for CTL
destruction.

This study utilizes a new approach to directly identify tumor
antigens in clinical biopsy samples of women with HPV-16
induced cervical cancers obtained either prior to or following
adjuvant chemotherapy. A nanospray MS3 method is deployed on
a quadrupole linear ion trap hybrid, detecting targeted peptides
with high dynamic range and sensitivity from complex cellular
peptide mixtures without prior separation requirements (Rein-
hold et al., 2010). This technique represents a major advance in

translational medicine compared with prior attempts at detection
of tumor antigens from bulk surgical resection or cultured tumor
cells. Peptides bound to HLA-A∗02 family could be recovered
and identified from as little as ≤8 mg of tissue, offering an
approximately 1000-fold improvement in sensitivity compared
to previous studies (Kawahara et al., 2006; Hawkins et al., 2008;
Weinzierl et al., 2008). In seven of nine HLA-A∗02 patient
tumors, the E711–19 9-mer bound to HLA-A∗02 alleles was readily
detected. The remaining two patients’ samples (KTS8 and KTS9)
lacked E711–19 as well as the GILT HLA-A∗02 binding 9-mer
and 11-mer signal peptides, LLDVPTAAV and LLDVPTAAVQA,
respectively.

The current findings underscore the heterogeneity of HPV-16
induced tumor antigen presentation while highlighting the value
of direct detection in individual tumor samples. Furthermore, the
data imply that inhibition of GILT protein expression in these
tumors, as manifested by absent GILT peptide derivatives, may be
a mechanism of tumor escape since this enzyme impacts antigen
display (vide infra). The frequency of cysteine residues in mam-
malian proteins is around 2.26% of the amino acids (Miseta and
Csutora, 2000). The cysteine content of HPV-16 E6 and E7 are
8.86 and 7.14% respectively. Given that E6 and E7 are extremely
cysteine-rich proteins, proteolysis, and therefore presentation of
E6 and E7 related peptides may be significantly impaired in the
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absence of GILT (Yee et al., 1985; Cresswell et al., 1999). Of note,
overall peptide expression on KTS8 and KTS9 was not reduced in
complexity or amount relative to that of the other samples. Cur-
rently, in the mouse GILT is known to be targeted to lysosomal
and phagosomal compartments involved in impacting MHC class
II molecules and cross-presentation of class I molecules (orthologs
of HLA molecules; Maric et al., 2001; Singh and Cresswell, 2010).
Our studies in the human suggest that GILT may also contribute to
class I presentation in the setting of HPV transformation. Notwith-
standing this, the loss of GILT is not the key basis of tumor escape
in view of the fact that the majority of patients retain GILT and
E711–19 peptide–HLA-associated display.

We sequenced the HPV-16 genomic DNA to determine the
translated E7 amino acid sequence and found that the E711–19 epi-
tope is conserved in all HPV-16 patient isolates. MS3 on tumor
biopsies identified the presence of the 9-mer but not a 10-mer,
E711–20. We postulate that prior failure of an E711–20 peptide vac-
cine to elicit a positive clinical outcome was due to the lack of
display of the 10-mer on tumor samples (van Driel et al., 1999).
Furthermore, T cells elicited against the 9-mer show specificity
against the 9-mer but have little, if any, crossreactivity with the 10-
mer. This 9-mer serves to direct cytolysis by T cell lines, whereas
the related 10-mer (E711–20) was neither detected by MS3 on
HPV-transformed tumor cells nor effectively recognized by 9-mer
specific CTL (Riemer et al., 2010). That study also showed that
the direct tumor analysis of pMHC complexes is required for anti-
gen identification since most conserved HPV E7 and E6 epitopes
predicted and experimentally shown to bind HLA-A∗02 are not
naturally processed and presented.

We predicted E7-derived peptide binding to 88 distinct HLA-
A2 supertype alleles (Zhang et al., 2010). E711–19 was predicted
to bind with high affinity to 64 HLA-A2 alleles (72.7%). Of these
binders, HLA-A∗02:01 and HLA-A∗02:06 comprise 85% of the
Korean A2 population. While failure to express a binding allele
could be a basis for absent E711–19 display on 15% of patients,
high resolution HLA typing excluded this possibility among our
patients, instead defining a conjoint loss of E711–19 and GILT signal
peptide display.

The above constellation of data can foster a personalized med-
icine approach for vaccine design based on genomics, proteomics,
and HLA typing considerations. In addition, universal vaccine
approaches are also tractable given the advancing knowledge on
HLA class I supertypes. Nine HLA class I supertypes (A1, A2, A3,
A24, B7, B27, B44, B58, and B62) have been identified (Sidney
et al., 1996). A combination of the four major HLA class I super-
types (A2, A3, B7, and B44) affords general population coverage
>90%, regardless of ethnicity (Reche and Reinherz, 2005; Zhang
et al., 2010).

Our approach combines the speed and breadth of coverage
afforded by computational predictions with the depth and pre-
cision of MS3. Detection of the subset of predicted peptides
actually displayed on infected/tumor cells by evolving MS meth-
ods allows for precise epitope targeting, excluding those pAPC
“cross-presented only” epitopes or irrelevant crossreactivities. For-
mulations that incorporate CTL epitopes with the universal CD4
helper stimulator and TLR or other molecules are practical. The
alternative approach already showing promise in HPV-16 induced

vulva intraepithelial neoplasms utilizes vaccines with synthetic
long-peptides derived from E6 and E7 (Kenter et al., 2009). How-
ever, in the absence of directed epitope selectivity, it is difficult
to prevent irrelevant cross-presentation and attendant inflamma-
tion directed to non-protective epitopes (Figure A8 in Appendix).
Such non-tumor targeting CTL could dilute the effective immune
response. Furthermore, while this long peptide approach is an
important advance, only a subset of patients responds to such
therapy (Kenter et al., 2009). This variability in outcome is pre-
sumably a consequence of HLA differences among patients with
differential epitope presentation capacity, display heterogeneity as
noted here for GILT and tumor microenvironmental differences
(Welters et al., 2010). Our approach is a first step to rational tumor
vaccine design. It should foster clinical success in conjunction with
blockade of intrinsic and extrinsic tumor escape mechanisms.

In addition to the high-risk HPVs, human cancer viruses
include Epstein–Barr virus, hepatitis B virus, hepatitis C virus,
human T cell lymphotropic virus type 1, Kaposi’s sarcoma-
associated herpes virus and Merkel cell polyoma virus (reviewed
in Sarid and Gao, 2011). It has been suggested that viral infections
contribute to upward of 15–20% of all human cancers world-
wide (Sarid and Gao, 2011). As screening and molecular detection
methods improve, the number of viruses associated with human
tumors is likely to increase even further. Our approach represents
a means to identify key tumor target antigens for therapeutic vac-
cine development. Rules established through this approach may
also serve to guide vaccine development for tumors of non-viral
etiology.

CONCLUSION
Characterization by Poisson detection MS3 of tumor biopsy sam-
ples from HPV-16 induced cervical cancers in HLA-A∗02:01
patients studied herein in conjunction with earlier analysis of
HPV-16 transformed HLA-A∗02 epithelial cell lines (Riemer et al.,
2010) provides considerable collective insight into HLA-associated
E7 peptide display on human cancer cells. Only one epitope among
13 in silico-based bioinformatic predictions was observed using
an exquisitely sensitive physical detection method. Thus, bioin-
formatic prediction should be viewed as offering an inclusion list
of potential epitopes for physical detection, the vast majority of
which are absent on tumor cell targets. These conclusions are in
stark contrast to prevailing notions derived from in silico epitope
landscape predictions in breast and colon cancer, suggesting that
missense mutations are sufficiently common to give rise to multi-
ple immunogenic T cell epitopes in each tumor without need for
knowledge about the target antigens (Segal et al., 2008). Instead,
we suggest that precise detailing of T cell epitopes and their MHC
restriction elements are required to focus CTL for useful T cell
vaccine development.
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APPENDIX
DETECTION OF YMLDLQPET IN CERVICAL TUMOR SAMPLES BY MS3

POISSON DETECTION OF b8 FRAGMENT
Collisional dissociation of the doubly charged E711–19 peptide at
m/z 555.263 produces a series of b-ions at m/z 636, 764, and
990 that can be selected for MS3 Poisson detection (Figure A3).
The major b6 fragment at m/z 764 is optimal but the lower
intensity m/z 636 or 990 fragments can provide additional evi-
dence. However, this evidence is available only at a substan-
tially reduced sensitivity. The two low mass y-ions at m/z 346
and 474 are less effective as MS3 targets for Poisson detec-
tion in complex peptide mixtures since the lower m/z range
has a higher ion background and the reference dissociation pat-
terns of smaller ion fragments provide fewer peaks for pattern
discrimination.

Tumor samples KTS1, KTS2, KTS4, and KTS7 were analyzed by
Poisson MS3 detection for additional evidence of YMLDLQPET
using MS3 555.3/990.5 spectra (Figure A4). No other tumor
samples were analyzed using MS3 555.3/990.5 data acquisition.
Tumor samples KTS1,KTS2,and KTS4 were positive,but detection
significance in KTS7 was below threshold.

MS ANALYSIS OF TUMOR SAMPLE KTS6 WAS COMPROMISED
A stubborn technical problem in the nano affinity purification
with nanospray MS analyses is the occasional appearance of higher
molecular weight fragments that elute from the C18 tip in the
organic phase along with the MHC peptides. This ion signature
has been associated with a highly variable loss of sensitivity for
the lower m/z peptides. KTS6 showed a relatively low signifi-
cance in MS3 Poisson detection of the E711–19 peptide compared
with the other E711–19 positive samples (KTS1–5 and KTS7).
However, KTS6 also distinguished itself with a substantial ion
background of high molecular weight fragments (Figure A5) and
this may account for the low detection significance. For contrast,
Figure A10 shows more typical MS spectra of HLA-A2 peptides
from other tumor samples that do not present a high molecular
weight ion background.

E711–20 PEPTIDE YMLDLQPETT WAS NOT DETECTED IN ANY OF THE
TUMOR SAMPLES
MS2 m/z 605.787 of synthetic peptide YMLDLQPETT shows the
b6 ion fragment YMLDLQ- is generated in high abundance by
collision activated dissociation, similar to MS2 m/z 555.263 of
YMLDLQPET. The reverse phase trapping and ionization of the
two peptides are also similar as measured with the synthetic stan-
dards. As m/z 605.787 is in the upper wing of the m/z distribution
of peptide molecular ions recovered from HLA-A∗02 complexes,
there is less co-selected ion background, and one would expect
detection of YMLDLQPETT in tumor extracts by MS3 Poisson
analysis should be at least as sensitive as detecting YMLDLQPET,
if not more so.

The tumor samples KTS1, KTS2, KTS4, and KTS8 were checked
my MS3 605.8/764.4 Poisson detection for the E711–20 peptide
YMLDLQPETT. Figure A7 shows the E711–20 Poisson detection
plots for these tumor samples in Figures A7A–D. No tumor sample
gave a positive detection signature for E711–20.

NEGATIVE DETECTION OF E711–19 IN TUMOR SAMPLES KT8 AND KTS9 IS
NOT DUE TO POOR PEPTIDE RECOVERY
A quadrupole–oTOF mass spectrum of HLA-A2 bound peptides
from each tumor sample is taken after the nanospray needle is
loaded with the peptide sample. The same needle is then trans-
ferred to the quadrupole–LIT for MS3 data acquisition. For the
quadrupole–oTOF mass spectrum, ion peak amplitudes (y-axis)
are in units of counts per second. The ion counts depend on ana-
lyte concentration but they also depend on the nanospray needle’s
position, the tip’s aperture, the charged aerosol’s plume geometry
and the electrodynamic flow induced by the ionization voltage.
These are not generally reproducible, making the overall ion flux
an unreliable metric of peptide recovery. A more consistent sig-
nature of peptide recovery is to use an internal ion metric, in
particular, to compare the m/z signature of doubly charged pep-
tide ions to the singly charged ions of the solvent background. A
sample showing good peptide recovery produces an ion signature
which has a pair of roughly equivalent peaks per m/z unit in the
m/z range of 450–550 (inset, Figure A9) whereas the ion chemi-
cal or solvent noise produces only singly charged ions or a single
peak per m/z unit. The doubled density of peaks over m/z 450–
550 defines a hump that is easily observed in the mass spectrum
of samples with good MHC I peptide recovery (Figures A9 and
A10).

Figure A10 shows quadrupole–oTOF MS spectra of peptides
recovered from four tumor samples. In each spectrum the MHC I
peptide hump stands out against the chemical noise background.
This indicates the peptide recoveries for the E711–19 negative
tumor samples KTS8 and KTS9 (Figures A10C,D) are compa-
rable with the E711–19 positive tumor samples KTS5 and KTS7
(Figures A10A,B). The lack of MS3 E711–19 ion events in KTS8
and KTS9 is not correlated with a lack of peptide molecular ions.

ABUNDANT γ-INTERFERON-INDUCIBLE LYSOSOMAL THIOL
REDUCTASE (GILT) SIGNAL PEPTIDES OF GILT ARE IDENTIFIED BY MS2

SPECTRA ONLY IN THE E711–19 POSITIVE TUMOR SAMPLES
The association of the GILT signal peptides LLDVPTAAV and
LLLDVPTAAVQA with the Poisson detection of E711–19 was not
anticipated at the outset of this study. During the collection of
mass spectral data for tumor KTS8 only the lack of the GILT sig-
nal peptides was immediately noted. The calculations for Poisson
detection are post-acquisition, but the MS2 449.75 spectrum of
LLDVPTAAV is often monitored in optimizing needle alignment
and ionization voltage since the fragmentation of LLDVPTAAV
in HLA-A2+ samples is almost universally observed as a strong
signal that can be immediately recognized (Figure A11).

In tumor samples that were run before recognizing that the
GILT signal peptide might be absent, the MS2 449.75 spectrum
was not always collected, even if it was monitored in optimizing
ion signal prior to MS3 analysis on the quadrupole–LIT instru-
ment. In a number of the tumor samples MS2 605.787 spectra
were collected as part of monitoring for the E711–20 peptide
YMLDLQPETT. Selecting the 605.787 m/z window also transmits
the doubly charged GILT signal peptide LLLDVPTAAVQA at m/z
605.856 and since this peptide is again a dominant component,
the dissociation signature of the synthetic peptide (Figure A12)
can be immediately recognized against the ion background. The
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combination of MS2 449.75, MS2 605.787, and MS3 449.75/781.4
experiments then identifies tumor samples KTS1, KTS2, KTS4–7
as GILT positive and KTS8, KTS9 as GILT negative. The MS2 data
is shown in Figure A13. Only tumor sample KTS3 was not checked
for GILT either directly or incidentally as the nanospray needle tip
failed early in the analysis.

PEPTIDES RECOVERED FROM HLA-A2 COMPLEXES ISOLATED FROM
TAP-NEGATIVE CELLS COMPRISE A SET OF RELATIVELY LOW
COMPLEXITY COMPARED WITH TAP-POSITIVE CELLS
Loss of transporter associated with antigen processing (TAP) stops
the flow of proteasome-generated peptides from the cytosol into
the ER, leaving only ER-resident signal peptides to associate with
HLA-A2 molecules. This results in a dramatically simplified pool
of peptides recovered from BB7.2 (anti-HLA-A2) affinity purified
peptide–HLA complexes when comparing TAP-deficient to TAP-
sufficient cells. The difference in complexity translates into a very
distinct mass spectral signature in which a few dominant signal
peptides is replaced by a hump of overlapped doubly charged pep-
tides (Figure A14). This signature is also evident in Figure A10,
indicating TAP-sufficiency in these tumor samples. None of the
tumor samples examined produced a signature characteristic of
TAP-deficiency.

siRNA SUPPRESSION OF GILT IN CaSki CELLS SHOWS THE
ABUNDANCE OF GILT IS CORRELATED WITH THE ABUNDANCE OF THE
E711–19 PEPTIDE
To causally connect the correlation between GILT signal peptide
and E711–19 observed in tumor samples, GILT protein expression
in CaSki cells was suppressed by siRNA techniques (see Mate-
rials and Methods) and the impact on E711–19 presentation was
examined. The suppression of GILT was monitored through the
GILT signal peptide LLDVPTAAV, which is a very abundant HLA-
A∗02 associated peptide in CaSki cells. Both LLDVPTAAV and
the E711–19 peptide were measured by MS3 and Poisson fitting
against the background of all HLA-A∗02 bound peptides affin-
ity purified from CaSki. Poisson fitting returns event numbers
that depend on collection period, sample recovery and ion beam
luminosity. Instead of compensating for these factors in order to
translate the Poisson fit events into moles, we focused on siRNA-
induced changes in relative abundance, since this can be directly
measured. Essentially, the ion current that can be identified as
LLDVPTAAV and E711–19 is determined by Poisson fitting, and
these event numbers are scaled or normalized by a measure of
the overall peptide ion flux. The scaled LLDVPTAAV and E711–19

events are then assessed in GILT suppressed CaSki cells and control
CaSki cells to determine if downregulation of GILT is associated
with downregulation of E711–19. Although different measures of

ion flux are possible, normalization using an MS3 spectrum has
advantages. MS3 spectra are less impacted by background solvent
ion noise and can be collected under the same ion optical condi-
tions (long accumulation periods, ion trapping in the Q0 focusing
rods) as the target MS3 spectra. Not all MS3 spectra are equiv-
alent for monitoring ion flux. Ideally, the normalization would
employ MS3 spectra that have many events and represent a large
set of endogenous peptides, as this limits the impact on overall flux
due to changes in a few abundant peptides that may vary with the
probe and control status. Figure 6 shows the MS2 510.79 spectrum
of HLA-A∗02 peptides recovered from CaSki cells. The precursor
ion peak at m/z 510.79 is near the center of the molecular ion
“hump” that is characteristic of affinity purified HLA-A∗02 pep-
tides (see, for example, Figure A10) and is more likely to contain
multiple peptides. The two most abundant fragment ion peaks in
the MS2 510.79 spectrum are observed at m/z 889.5 and 836.4.
The MS3 510.79/889.5 and 510.79/836.4 spectra (Figures 6B,C)
show markedly different degrees of peak complexity; the ion com-
position of the 510.79/836.4 peak is relatively simple, while that of
510.79/889.5 is substantially more complex. As the loss of leucine
or isoleucine from the carboxy terminus would generate the m/z
889.5 fragment from the doubly charged 510.79 ion peak, and
these are common terminal residues, it is of little surprise to find
a large set of peptides at m/z 510.79 generating a m/z 889.5 b-
ion. In this study MS3 510.79/889.5 spectra are used for ion flux
normalization.

Temporal variation in the ion beam luminosity is often
observed during the long period over which nanospray MS3

spectra are collected. To correct for this the target spectra (here
LLDVPTAAV and E711–19) are collected in series with the MS3

spectra used for flux normalization. That is, an MS3 spectrum for
LLDVPTAAV is collected, then a spectrum for E711–19 and then
the spectrum for ion flux. This cycle is repeated to collect adequate
ion statistics.

Figure 6D shows the change in the ratio of LLDVPTAAV and
E711–19 events to ion counts in the MS3 510.79/889.5 flux nor-
malization spectrum for lentiviral siRNA suppression of GILT. If
the control lentiviral infection of CaSki cells define 100% values,
lentiviral siRNA suppression of GILT reduces the relative amount
of GILT signal peptide to 20% and the relative amount of E711–19

to 43%. For Lipofectamine 2000 transfection, a reduction in GILT
signal peptide to 29% was observed while the relative amount
of E711–19 was reduced to 55% of the Lipofectamine 2000 con-
trol (scrambled siRNA). Although these results are consistent with
a mechanistic correlation between GILT and the processing of
E711–19, siRNA suppression was unable to reduce the GILT sig-
nal peptide to the undetectable levels observed in tumor samples
KTS8 and KTS9.
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FIGURE A1 | Novel HLA sequences identified from patients KTS2

and KTS5. HLA RNA pyrosequencing identified two novel HLA-C
sequences in the patient cohort. KTS2 presented a novel C∗08:22-like
allele with a T587C mutation, resulting in a leucine to proline substitution.
KTS5 presented a putative 9 bp insertion at position 974 in a

C∗04:01:01-like allele, resulting in a three amino acid insertion toward the
3′ end of the class I open reading frame. Due to the positioning of this
insertion within a palindromatic sequence motif we cannot presently rule
out the possibility that it is a sequencing artifact of the Roche/454
pyrosequencing process.
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FIGURE A2 | Multiple alignment of Raw E7 DNA sequences. Multiple
sequence alignments of HPV E7 sequences from tumor biopsies KTS1–9
are shown. The reference sequence is E7 from KTS6, identical to
worldwide strain that has 100% identity to more than 50 reported
sequences (representative sequence: GenBank K02718; Seedorf et al.,
1985). E7 KTS1 is a novel sequence showing a single nt difference to East
Asian (AF534061) and Thai (FJ610150) strains. KTS2 represents another
worldwide strain (AY686582). E7 KTS3 is a novel sequence showing a
single nt difference to the worldwide strain (AY686582). E7 KTS4, KTS5,
and KTS8 sequences represent Asian strains (AF534061). E7 KTS7
sequence represents East Asian strain (AF486333). E7 KTS9 sequence
represents East Asian strain (AF486332). Positions 31–57 encode HLA-A02
T cell epitope YMLDLQPET. Codon 85–87 encodes amino acid variability (N
or S), while all other variable positions, shown as shaded, represent silent
mutations. Unresolved nucleotides in KTS1 and KTS4 are represented by
ambiguity code “n”. In summary, the HPV E7 sequence variability in the
cohort is relatively high, representing multiple HPV-16 species. At the
protein level, on the contrary, the sequence is extremely well conserved
indicating high stability of the protein product.

FIGURE A3 | MS2 555.3 spectrum by collisional activation of the doubly

charged molecular ion from synthetic peptideYMLDLQPET.
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FIGURE A4 | Lower sensitivity MS3 555.3/990.5 Poisson plots for detectingYMLDLQPET in HLA-A2 bound peptides from tumor samples. (A) Tumor
sample #1; (B) sample #2; (C) sample #4; (D) sample #7. YMLDLQPET detection in samples 1, 2, and 4 are confirmed, but the detection significance in sample
7 is below threshold.

FIGURE A5 |The nanospray MS spectrum of peptides recovered from KTS6 taken with a quadrupole–oTOF instrument shows a substantial

background of ion masses around 6 kDa (inset showing isotope peaks in the sixth charge state).
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FIGURE A6 | MS2 605.8 of synthetic peptideYMLDLQPETT generates a

prominent b6 ion fragmentYMLDLQ- which is used for MS3

605.8/764.4 Poisson detection.
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FIGURE A7 | In all tumor samples where E711–20 was checked, it was not detected. MS3 Poisson detection plots for E711–20 are negative for both the E711–19

positive samples KTS1, KTS2, and KTS4 (A–C) and the E711–19 negative sample KTS8 (D).
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FIGURE A8 | Monocyte-derived DCs (moDCs) and B cells from human

blood take up and process a long peptide consisting of the first 35

amino acids of the E7 oncoprotein, MHGDTPTLHEYMLDLQPETTDLY

CYEQLNDSSEEE. Both the E711–19 and E711–20 peptides are cross-presented
as surface HLA-A∗02 complexes with the E711–20 peptide more abundant.
(A) Poisson detection plot of the MS3 555.3/764.4 spectrum (for E711–19) of
peptides recovered from moDCs loaded with 35-mer; (B) Poisson detection

plot of the MS3 605.8/764.4 spectrum (for E711–20) of peptides recovered from
moDCs. The A, B pair were collected as averages over the sequence A, B, A,
B,. . . so their intensities can be directly compared. (C) Poisson detection of
the MS3 555.3/764.4 spectrum (for E711–19) of peptides recovered from B cells;
(D) Poisson detection of the MS3 605.8/764.4 spectrum (for E711–20) of
peptides recovered from B cells. The C, D pair can also be directly
compared.
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FIGURE A9 |The mass spectrum of HLA-A2 bound peptides from tumor sample KTS5. Doubly charged peptides from m/z 450 to 600 (inset) provide a
“hump” that roughly characterizes the overall recovery.
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FIGURE A10 | Overall HLA-A2 peptide recovery is marked by a

“hump” in the m/z range from 450 to 550 due to doubly

charged peptide molecular ions relative to singly charged

background ions (see Figure A9 and related discussion). This

figure illustrates good MHC I peptide recovery in all four samples
shown. (A) E711–19 positive sample KTS5; (B) E711–19 positive sample
KTS7; (C) E711–19 negative sample KTS8; (D) E711–19 negative sample
KTS9.
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FIGURE A11 | MS2 449.75 of HLA-A2 bound peptides is almost universally

dominated by the fragmentation of LLDVPTAAV from the GILT signal

peptide. The lack of this signature in tumor sample KTS8 was exceptional and
immediately noted. (A) MS2 449.75 of synthetic peptide LLDVPTAAV; (B)

MS2 449.75 of CaSki, an HLA-A∗0201 positive HPV-16 transformed cell line;
(C) MS2 449.75 of an HLA-A∗0201 positive respiratory epithelial cell line
BEAS; (D) MS2 449.75 of tumor sample KTS8. Note in particular the lack of
the major m/z 458 fragment in (D).
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FIGURE A12 | MS2 605.8 spectrum of synthetic peptide

LLLDVPTAAVQA.
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FIGURE A13 | Continued
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FIGURE A13 | (A) MS2 605.8 of sample KTS1; (B) MS2 449.8 of sample
KTS2; (C) MS2 605.8 of sample KTS4; (D) MS2 449.8 of sample KTS5; (E)

MS2 449.8 of sample KTS6; (F) MS2 449.8 of sample KTS7; (G) MS2

605.8 of sample KTS8; (H) MS2 449.8 of sample KTS9. Only in the MS2
spectra of (G,H) can one not recognize the dissociation spectrum of a
GILT signal peptide.
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FIGURE A14 | (A) BB7.2 pulldown and acid extracted peptide pool
from TAP-deficient T2 cells showing prominent GILT signal peptides
at m/z 449.78 (LLDVPTAAV2H+), m/z 460.77 (LLDVPTAAVNa+H+), and
m/z 605.88 (LLLDVPTAAVQA2H+). (B) BB7.2 pulldown and acid

extracted peptide pool from TAP-sufficient T1 cells. The m/z 449.78
peak is still primarily the GILT signal peptide LLDVPTAAV2H+ but a
complex set of other doubly charged peptides cover the m/z range
420–620.
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