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1 | INTRODUCTION

As the third most common malighancy worldwide, colorectal
cancer (CRC) refers to the malignant transformation of colorec-
tal cells. The global incidence of CRC has increased in recent
decades.! The mortality rate of CRC ranks second next to lung
cancer. When diagnosed, approximately one-quarter of patients
present with metastatic disease.? Thus, a cure for cancer based
on the mechanism of tumor formation is necessary. Complex
networked systems are involved in tumor cell proliferation, sur-
vival, angiogenesis, invasion, and metastasis. Given that malignant
tumor cells need nutrients, including oxygen and growth factors,
to support their growth, they require sufficient blood circulation
around them. Tumor vessel formation is an important promoter
of tumor growth and metastasis. Folkman proposed that tumor
angiogenesis is the beginning of tumor development.3 However,
tumor-promoting angiogenesis was not demonstrated until vas-
cular endothelial growth factor (VEGF)-A was identified and its
monoclonal antibody was manufactured, which ultimately clari-
fied the preliminary mechanism between neovascularization and
tumorigenesis.3 Angiogenesis indicates that neonatal blood ves-
sels take shape from existing blood vessels. This process is related
to the proliferation, migration, and differentiation of endothelial
cells (ECs), and multiple procedures during its process are rigor-
ously regulated.* In addition, angiogenesis is primarily regulated
by growth factors, cytokines, oncogenes, and other modulators.®
Considering its key role in tumor formation and development, it
might be a promising target in tumor treatment.® Although various
successful studies have been conducted, its mechanism remains
unclear, and the effects of targeted therapy are also controversial.

These issues will be briefly discussed below.

2 | ANGIOGENESIS IN TUMORS

Angiogenesis is rather prominent in various aspects under normal
physiological conditions, including tissue growth, wound healing,
menstrual cycle, and placental implantation.” Regular occurrence of
angiogenesis heavily depends on the dynamic equilibrium between
the promoting and inhibiting function systems.8 Angiogenesis is the
process of new blood vessel formation. This process plays a key role
in the progression of all types of cancers. Tumor masses have high
nutritional requirements to support their need for growth; thus,
new blood vessels are gradually formed around them to persistently
supply oxygen and glucose.f”’10 In malignant tumors, angiogenic pro-
cesses are sustainably maintained in a pro-angiogenic milieu,** simi-

lar to a wound that never heals.
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2.1 | Characteristics of tumor vasculature

Tumor blood vessels are structurally and functionally abnormal
compared with normal blood vessels. Besides being heterogene-
ous, the diameters of most tumor blood vessels are wide and their
shapes are curved in different sizes, with few pericytes and defec-
tive basement membranes (BMS).12 Tumor blood vessels are also
hyp erpermeable, partly because of the overproduction of VEGF.
The loose intercellular junction of tumor endothelial cells (TECs),
lack of pericytes, and smooth muscle cells lead to extravasation of
plasma fluid and proteins.® TECs with altered phenotypic release
factors promote tumor progression and downregulate suppressing
factors, finally promoting tumor formation adjacent to tumor cells
in space.}* Furthermore, tumor blood vessels are molecularly dif-
ferent because of their responses to environmental cues through
transcriptional regulation.® In adenoma with dysplasia, pre-
malignant lesions of the colon, VEGF (p <0.0005), and microves-
sel density (p <0.0005) significantly increase.'® Thus, tumor blood
vessels have different characteristics compared with normal blood

vessels (Figure 1).

2.2 | Types of vascular formation

Tumor blood vessels are formed in various patterns, such as vas-
culogenesis, sprouting angiogenesis, intussusceptive angiogenesis,
and vascular mimicry. Vasculogenesis and angiogenesis are the two
main types of vascular formation. In addition, tumor angiogenesis
is the most extensively studied pattern of new vessel generation,17
Vasculogenesis is the process in which endothelial and hematopoi-
etic progenitor cells in the blood cycle are recruited by cytokines
and chemokines to create new vessels.'® Sprouting angiogenesis is
the sprouting of neoplastic capillaries from existing ECs and tumor
blood vessels; it might be the most characteristic way for the tumor
to obtain oxygen and nutrients.'*2° VEGF is the key player driving
this process, which occurs in pathological situations in malignant
tumors.?! However, studies on intussusceptive angiogenesis are
limited; in this type of angiogenesis, transluminal tissue pillars grow
in pre-existing vessels and then integrate to recreate the vascular
system.?? It is also referred to as a “complementary method” to
sprouting angiogenesis.?® Contrary to canonical tumor angiogenesis,
vasculogenic mimicry (VM) supplies independent blood perfusion to
tumor cells.?° The phenomenon of vascular mimicry exists in various
kinds of tumor masses, including CRC.?* The mechanism is a com-
plex process and has not been distinctly distinguished. In particular,
CRC stem cells (CRCSCs) are transdifferentiated to create vascular
tube structures that assist tumor blood supply independent of tumor
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FIGURE 1 Full-text mechanism diagram. In normal blood vessels, endothelial cells have tight junctions with a normal number of
surrounding pericytes and intact basement membranes (BMs). The diameters of most tumor blood vessels are wide, and their shapes
are curved in different sizes, with few pericytes around and defective BMs. Tumor blood vessels are also hyperpermeable. The tumor
microenvironment consists of stromal cells, ECM components, and exosomes. Many growth factors that promote angiogenesis and their
signaling pathways are involved in these changes. Multiple anti-angiogenesis agents target different molecules. Drugs targeting immune

checkpoints are also illustrated in this figure.

angiogenesis.?> Nevertheless, epithelial-mesenchymal transition
(EMT) and tumor microenvironment (TME) are related to sprouting
angiogenesis.?® As VM cells directly come into contact with blood
flow, shed cells can be easily transported. Therefore, VM is related to
advanced malignant tumors with high invasion and high metastasis,
which are indicators of poor patient prognosis.? Moreover, vessel
co-option indicates that tumor tissue receives oxygen and nutrients
from pre-existing vessels rather than creating new vascellums.?’"%?
Vessel co-option is a possible cause of anti-angiogenic drug resist-
ance (DR). Frentzas showed that vessel co-option might be involved
in an undesirable response to anti-angiogenic agents in patients with
CRC and hepatic metastases.?® Utilization of numerous angiogenesis
types, together with some normal physiological balance disruptions,

can eventually lead to the unbridled growth of tumor cells.

3 | ANGIOGENESIS AND COLORECTAL
CANCER

Similar to other observed solid tumors, CRC development, pro-

gression, and metastasis depend heavily on angiogenesis.3°’31

Numerous molecules participate in the process, such as growth

factors (VEGF and epidermal growth factors [EGFs]), fibroblast
growth factor (FGF)-2, transforming growth factor (TGF)-a and
TGF-B,
(PDGF), membrane-bound factors (integrins, ephrins, cadherins,

angiopoietins (Angs), platelet-derived growth factor
matrix metalloproteinases [MMPs], and hypoxia-inducible factor-
1 [HIF-1]).32 Figure 1 illustrates some prominent pro-angiogenic

factors.

3.1 | Molecules in angiogenesis

Vascular endothelial growth factor plays a crucial role in all forms
of solid tumor growth and development, including CRC, by causing
the formation of new blood vessels. Its high serum level is closely
associated with CRC and its clinical stages.>® Derived from tumor
cells and the surrounding microenvironment, it is upregulated by hy-
poxia, growth factors, and cytokines such as IL-1, EGFs, PDGFs, and
tumor necrosis factor (TNF)-a.24"%¢ Furthermore, VEGF-mediated
pathogenic effects on vascular permeability are primarily caused
by junction remodeling, fenestra induction, and vesiculo-vascular
organelles (VVOs).%” As a survival factor, VEGF can accelerate
the growth and prevent apoptosis of vascular ECs.®® The seven
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members of the VEGF family are VEGF-A to VEGF-F and placenta
growth factor (PIGF).%> Among them, VEGF-A, VEGF-B, and PIGF
stimulate angiogenesis, whereas VEGF-C and VEGF-D are respon-
sible for Iymphangiogenesis.39 VEGF-A undergoes alternative splic-
ing of pre-mRNA from eight exons that leads to multiple isoforms,
including VEGF121, VEGF165, VEGF189, and VEGF206.3*%° The
overexpressed VEGF165 increases the expansion of the tumor by
promoting the recruitment of smooth muscle cells and vessel mat-
uration in CRC.** Three VEGF receptors exist in CRC: VEGFR-1,
VEGFR-2, and VEGFR-3. VEGFR-1 is related to tumor grade, Dukes’
stage, and lymph node involvement; VEGFR-2 is correlated with
lymph node involvement; and VEGFR-3 is not associated with any
of the clinicopathological variables.*? Activated VEGFR-2 leads to
the activation of various signaling pathways, including the PLCy and
RAS/RAF/MEK/ERK (MAPK) pathways, by which the growth of EC
is promoted, and the PI3BK/AKT pathway, by which cells might avoid
apoptosis.** VEGF might suggest metastasis and poor prognosis of
CRC.** Overexpressed VEGF was detected in 70% of the cases in a
study where 50 patients with CRC were enrolled, thereby reveal-
ing patients’ poor prognosis as its tight relationship with tumor size,
grade, and advanced tumor stage (p=0.006, p<0.001, p<0.001,
respectively).*> Meanwhile, overexpression of VEGF-A can reverse
the inhibition of CRC cell proliferation, migration, invasion, and an-
giogenesis caused by HIF-1miR-150-5p.*¢ Moreover, VEGF-VEGFR
activity might be altered by HIF-1, COX-2, mutated K-RAS, and p53,
which can promote the malignant phenotype of tumor cells such as
proliferation and migration.47

Binding with EGFR and EGF can activate several crucial
downstream signaling pathways, including PI3K/AKT/mTOR,
MAPK, and Janus kinase (JAK)/Signal Transducer and Activator
of Transcription 3 (STAT3), in regulating cell growth survival, in-
vasion, and migration.*3-5° Dysregulation of the EGFR signaling
pathway often occurs in human cancers, including CRC.”! The
erythroblastosis oncogene B (ErbB)/human epidermal growth fac-
tor receptor (HER) family is composed of tyrosine kinase receptors
(RTKs), which contain ErbB1 (EGFR/HER1), ErbB2 (Neu/HER2),
ErbB3 (HER3), and ErbB4 (HER4).52°% HER2 is a special member
of the EGFR family, which is activated by heterodimerizing with
other ligand-bound receptors but not Iigands.54 Gene amplifica-
tion and missense mutation are the most common alterations in
HER2 in 7%-8% CRC.>> Approximately 5% of metastatic CRC tu-
mors are facilitated by amplification or mutation of HER2, which
might be a cancer-promoting factor, a prognostic and diagnostic
biomarker, and a promising treatment target in CRC.>® EGFR was
found to be highly expressed in 85.2% of the 54 patients with can-
cer and correlated with tumor sizes and invasion depth (p=0.043
and p=0.05, respectively).’” In addition, angiogenic-associated
cytokines including VEGFA and IL-8, produced by the EGFR/Akt/
NF-xB pathway, can be activated by highly dry human CRC cells,
thereby inducing angiogenesis.’® Heparin-binding EGF-like growth
factor (HB-EGF), a member of the EGF family, and EGF are both
pro-angiogenesis mediators that work by activating signaling path-
ways including PI3K, MAPK, and eNOS.%’

Twenty-three small heparin-binding growth factor members
contained in the FGF family are highly conserved and bind to one or
more of the four highly affine FGFRs (FGFR1-FGFR4).¢ FGF2 is also
a basic FGF (bFGF) that plays dual roles not only as a stimulator of
VEGF-A expression in ECs or stromal cells but also as a regulator of
VEGFR-2 signaling; thus, it is the most distinctive mediator in regulat-
ing angiogenesis.®® In addition, high expression of FGFs and FGFRs in
cancers including CRC and its pathway functional mechanism is re-
lated to tumor growth and invasion.®! The MAPK, PI3K, PLCy, or STAT
pathways, activated by the binding of FGFs and FGFRs, participate
in regulating cell proliferation, survival, differentiation, migration,
and angiogenesis.®? Knuchel et al. showed that fibroblasts induce cell
contact-dependent CRC cell migration and invasion in vitro under 2D
and 3D conditions by FGF-2. They are located on the fibroblast cell
surface, activate SRC, and are mediated by FGFR, and the adhesion of
cancer cell to fibroblast is dependent on avp5 integrin.63

The PDGF family harbors four heparin-binding polypeptide
growth factors: A, B, C, and D. PDGF has a wide range of sources,
such as activated platelets, ECs, epithelial cells, inflammatory cells,
and glial cells. Moreover, its targets contain a broad category of cell
types, including fibroblasts, pericytes, and smooth muscle cells.®*
All members in the PDGF family show strong angiogenic capacity
in vivo, but the PDGF-B/PDGFRp axis is the most representative.’
PDGFs and PDGFRs are expressed in a large range of malignant tu-
mors, and their activation is relevant to tumor growth, metastasis,
invasion, and angiogenesis by stimulating downstream signaling
pathways‘(’6 Pericytes and vascular smooth muscle cells (VSMCs)
are the major targets of the PDGF/PDGFR signaling pathway, and
they are known to promote angiogenesis. Higher preoperative in-
traplatelet VEGF and PDGF levels were detected in patients with
CRC than in controls.®” Higher expression of PDGF-BB was found in
patients with CRC than in patients with adenoma. Consistently, the
high levels of PDGFR a/p in patients with CRC were related to tumor
invasion and metastasis.®® PDGF-BB can elicit different downstream
cascade pathways, including PI3K, PLCy, MAPK, and JAK/STAT.®’

Similar to VEGFs, Angs are one of the growth factors that can
regulate vascular homeostasis and tissue repair. Three members
are included in the human Angs family (Ang-1, Ang-2, and Ang-4),
whereas their receptors are Tie-1 and -2, which are highly expressed
transmembrane tyrosine kinases in ECs. Ang-1 and -2 are the main
ligands of Tie-2; upon their activation, several downstream signal-
ing pathways are stimulated, including PISK/AKT, MARK, caspase-9,
eNOS, Bad, and survivin.”>7? Ang-1 promotes the recruitment of
smooth muscle cells and pericytes to maintain the stabilization of
mature vasculature.”® However, as a prognostic factor in metastatic
CRC,”* Ang-2 guides vasculature conversion to an unstable state,
which is easier to induce under the effect of VEGF.”> Thus, Ang-2
might be highly expressed in tumor cells, whereas Ang-1 is the oppo-
site. This deduction was verified by Ahmad etal. 7% Ang-2 was found
to be an oncogene, whose malignant biological functions were inves-
tigated with shRNA in the LoVo CRC cell line, and its expression was
convoluted with clinicopathological parameters in CRC.”” Similar to
VEGF, Ang-2 expression is induced by hypoxia in CRC.”®
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3.2 | Signaling pathway in angiogenesis

The phosphatidylinositol-3 kinase (PI3K)/Akt/mammalian target
of rapamycin (mTOR) signaling pathway overexpression has been
identified in various malignant tumors, including primary and meta-
static CRCs.”” Common in CRC, overactivation of mTOR signaling is
strongly related to cancer progression, initiation, and DR. In CRC,
mTOR significantly regulates proliferation, survival, growth, dif-
ferentiation, and autophagy.t’ The PI3K/AKT/mTOR pathway is
an intracellular signaling pathway composed of different kinases.
Dysregulation of the PI3K signaling pathway is caused by the am-
plification and genetic mutation of the PI3K gene, encoding a cata-
lytic and regulatory subunit of PI3K isoforms, and various protein
mutations described in this pathway, which is responsible for cell
growth, proliferation, survival, and angiogenesis.gi’82 For angiogen-
esis, mTOR is important for energy metabolism in ECs. It receives
signals from PI3K-Akt, which can be upregulated by growth factors
(VEGF, insulin-like growth factor-1 [IGF-1], and EGF) and their re-
spective receptors.®38% PI3K/Akt signal transduction, which is es-
sential for proliferation, metastasis, and survival, is one of the classic
ways to increase blood vessel quantity and vascular permeability.
Blood vessel reconstruction can be achieved by VSMC phenotype
transformation.’®® Increased EGF upregulates hydrogen perox-
ide (H,0,) synthesis, which stimulates ribosomal protein S6 kinase
beta-1 (S6K1) or p70S6K1 via the PISBK/AKT/mTOR pathway, even-
tually activating VEGF.8¢ In CRC, other angiogenic factors can also
be regulated by the PISK/AKT pathway, including angiopoietins and
nitric oxide (NO).8*

The human TGF-p family consists of 33 identified members,
including three TGF-p isoforms, three activins, growth and differ-
entiation factors, and nodal and bone morphogenetic protein.?” In
addition, the SMAD family is the downstream effector of this sig-
naling pathway.88 Nevertheless, the absence of SMAD4 upregulates
VEGF expression, increases the vascular quantity, and promotes
tumor metastasis in the CRC HCT116 cell line.®? The combination
of TGF-B and its type Il TGF-B receptors (TGFBR2) initially activates
the TGF-p signaling pathway.”® Under normal conditions, TGF-p
suppresses normal intestinal epithelial cell proliferation and induces
apoptosis and differentiation.”* However, highly expressed TGF-p
plays a pro-tumor role in the late stage of CRC, thereby increasing
the production of several mitogenic growth factors, including TGF-
«, FGF, and EGF.”? Recently, CRC was suggested to be classified into
four consensus molecular subtypes (CMS) based on transcriptomic
properties and the following molecular characteristics: CMS1 (mi-
crosatellite instability [MSI] immune), with DNA damage repair and
defective DNA mismatch repair, BRAF mutations, and diffuse im-
mune infiltrate; CMS2 (canonical), with more oncogene expression
with absent tumor suppressor gene expression, epithelial differ-
entiation, Wnt and MYC pathway upregulation; CMS3 (metabolic),
with KRAS activating mutations and metabolic dysregulation; and
CMS4 (mesenchymal), with angiogenesis, EMT, TGF-p signaling ac-
tivating, and matrix remodeling.93 The TGFBR2 gene, containing mi-
crosatellite sequence, accumulates MSI mutations to a high level in

nearly all CRC cells. Nonetheless, TGF-p signaling activation remains
functional to promote the tumor-stromal interaction, which has a
positive correlation with malignant cell phenotype and poor progno-
sis.?*?> Secreted by TGF-B-stimulated cancer-associated fibroblasts
(CAFs), IL11 acts on GP130/STAT3 signaling in tumor cells.”®

The NF-xB family contains five members that interact with one
another to homodimerize or heterodimerize: NF-kB1 (p50), NF-kB1
(p52), RelA (p65), RelB, and c-Rel.?” The IKK kinase complex consist-
ing of catalytic subunits IKKa and IKKp and regulatory subunit NF-
kB (an essential modulator) is the key element of the NF-xB signaling
cascade.”® NF-kB signaling has two different but interactive path-
ways: the canonical (activated by TNF-q, lipopolysaccharide, and IL-
1) and non-canonical (activated by BAFF, CD40, receptor-activated
NF-kB ligand, and lymphotoxin ) pathways.”” Their activation is pos-
itively associated with cell survival, angiogenesis, apoptosis, and me-
tastasis in CRC.'°° Moreover, in CRC, the expression of NF-kB (p65)
is directly associated with the expression level of HIF-1«, VEGF, and
vascular invasion.’®* The NF-xB pathway promotes the expression
of multiple angiogenic factors, including VEGF, PDGF-BB, CXCL1,
CXCL8, MMP-2, MMP-9, COX-2, and IL-8, ulteriorly inducing tumor
angiogenesis. Highly expressed B7-H3 in the tissues of patients with
CRC promotes VEGFA expression through the NF-kB pathway. In
other words, the B7-H3/NF-kB/VEGFA axis plays a role in CRC an-
giogenesis.}®? As one of the immune checkpoint proteins, such as
star molecules CD80 and CD86, B7-H3 (CD276) was detected in var-
jous malignant masses, including CRC.1°® B7-H3 has immunomodu-
lating effects and participates in regulating angiogenesis.104 In the
study of tumor-bearing mice, highly expressed B7-H3 was found to
be correlated with increases in TGF-p and interleukin 10 (IL-10).2%
This phenomenon might activate the JAK-STAT pathway and pro-
mote VEGF expression, thereby inducing angiogenesis.*®®

As another critical signaling pathway, JAK/STAT occupies a place
in the list of regulating angiogenesis and other pathological pro-
cesses in CRC. JAK and STAT are two key tyrosine kinase-associated
receptors in this pathway. They become activated after being
coupled. Four proteins constitute the JAK family: JAK1, 2, 3, and
TYK2.17 Meanwhile, the STAT family has seven members: STAT1
to STAT7.2°% Binding to their ligands, RTK, cytokine receptors, or
G-protein-coupled receptors (GPCRs) recruit JAK, which facilitates
signal transduction and STAT3 phosphorylation and homodimeriza-
tion.2®? By promoting gene expression and release of inflammatory
mediators to activate the STAT3 signaling pathway, STAT2 is consid-
ered a factor in promoting the development of CRC.}° In a hypoxia
micro-environment, activated by reactive oxygen species (ROS), a
mechanistic target of rapamycin complex 1, and/or IL-6 in cancer
cells, STAT3 finally induces HIF-1a expression. This transcription
factor promotes the transcription of VEGF. These events act on
surrounding ECs to reactivate STAT3 via VEGFR. In ECs, together
with HIF-1a and specificity protein 1 (sp1), STAT3 upregulates gene
expression that induces EC growth, survival, and migration, resulting
in angiogenesis.111 Otherwise, several promoting factors have been
reported, including IL-6, EGF, IL-11, and solute carrier family 6 mem-
ber 14 (SLC6A14).112115
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The aberrant activation of the Wnt signaling pathway is an-
other major molecular mechanism in CRC development and pro-
gression.116 Humans have 19 Wnts, suggesting it is a complicated
signaling and biological process.'*” The Wnt signaling pathway has

two branches: canonical and non-canonical pathways.%°

B-catenin
is a crucial member of the canonical pathway as a switch, and its
expression is promoted by activated Wnt signaling.1*® Mutations of
the B-catenin gene associated with nuclear localization of the pro-
tein have been mainly detected in microsatellite unstable CRC 116
Wnt/p-catenin signaling upregulates angiogenic factors such as
VEGFs, chemokines, and MMPs.** Wnt2 is primarily produced by
CAFs, thereby inducing invasive and metastatic CRC cell pheno-
types.t'? Wnit2 levels are closely correlated with the expression of
angiogenesis-associated regulators, including Ang-2, PIGF, granulo-
cyte colony-stimulating factor (G-CSF), IL-6, and extracellular matrix
components.120 The expression levels of transglutaminase 2 (TGM2)
and transmembrane-4L-six family member-1 (TM4SF1) are both
higher in CRC tissues than in normal tissues. TGM2 upregulates the
expression of Wnt3a and p-catenin, whereas TM4SF1 activates the
Wnt/p-catenin/c-Myc/SOX2 signaling pathway, thereby promoting
angiogenesis in CRc 100

Moreover, the COX-2/PGE2/EP4 axis,'?! notch signaling path-
way, 1% c-MET/hepatocyte growth factor (HGF) signaling pathway, 1%
and EPH/ephrin signaling system'? are all related to angiogenesis in
CRC. These various factors and pathways are connected and cross
each other like points and lines. Therefore, angiogenesis is stimu-
lated by multiple points to achieve promotion. The complex network
they form is like a map but with landmarks, which can be inferred as

targets for diagnosis, prediction, or treatment.

3.3 | Tumor microenvironment
The TME is a complex system formed by the interaction of different
cells and their products, which can be described as “soil” cultivating

124

tumor cells.”*" It is important for tumor progression and metasta-

sis and is functionally immunosuppressive.!?>12%

It is a compound
comprising stromal cells (including pericytes, ECs, fibroblasts, mac-
rophages, regulatory T cells, myeloid-derived suppressor cells, and
platelets), ECM components (including inflammatory cytokines,
chemokines, MMPs, integrins, and other secreted molecules), and
exosomes.'?” TECs are the innermost cells of tumor blood vessels,
which are mostly derived from normal vascular ECs or directly dif-
ferentiated from tumor cells. Their irregular cell morphology and
phenotype lead to the defective barrier function of blood vessels,
which can be beneficial for tumor survival.'?>'28 |n the processes of
tumorigenesis and angiogenesis, multifunctional pericytes, together
with ECs, play a key role in BM remodeling in the TME.*?'?? Immune
functions of pericytes might be involved in the exit of innate leu-
kocytes in inducing angiogenesis, regulating lymphocyte activation,
and controlling phagocytic activity.130 CAFs, including fibroblasts or
myofibroblasts, take effect in the ECM through intercellular contact,
soluble growth factor (FGF2 and VEGFA) secretion, and promotion
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of ECs’ malignant phenotype transformation.*3* Autophagy of CAFs
induced by oxidative stress has a positive effect on tumor prolif-
eration and metabolism.'? Exosomes secreted by CAFs promote
CRC metastasis and chemotherapy resistance '3 Expressed in
CAFs, endoglin is involved in CAF-mediated invasion and metastasis
through TGF-b signaling pathway activation.’®* Tumor-associated
macrophages (TAMs) are indispensable in TME and control angio-
genesis.’®> TAMs were detected both in vivo and in human tissues
as a main source of multiple kinds of pro-angiogenic and ECM re-
modeling regulators, including VEGF, EGF, PDGF, TGF-a, TGF-f,
Ang-1 and 2, and MMPs (e.g., MMP2, MMP9, and MMP12).3%¢ The
interaction between TAMs and CRC cells mediated by cytokines or
exosomes can jointly promote the metastasis of CRC by regulating
the EMT of tumor cells and the M2-type polarization of TAMs.*¥’
Tumor-associated neutrophils (TANs) promote tumor invasion and
angiogenesis by upregulating MMP9, VEGF, and HGF in the primary
and metastatic sites. The neutrophil-to-lymphocyte ratio is a prom-
ising predictive marker of CRC.1*® As a member of various proteases,

the MMP family plays a fundamental role in angiogenesis.!*¢

It is piv-
otal in degrading ECM, which makes the blood vessel permeable and
allows cancer cells to dissociate from the tumor mass and be eas-
ily transferred.’®” In colon cancer, the upregulated MMPs are cor-
related with tumor progression, and some of them influence tumor
invasion, metastasis, or poor outcomes. In Buttacavoli etal., MMP2
and MMP9 were found to be expressed more in colon cancer tis-
sues than in normal adjacent tissues.**° Moreover, the MMP family is
regulated by circRNAs in ECM remodeling.141 Citrullination of ECM,
expression of peptidylarginine deiminase 4 (PAD4, a member of the
PAD family), and expression of tenascin C (TNC, a glycoprotein in
ECM) were found to promote liver metastasis in human CRC.**?
Inflammation has been well established as a hallmark of CRC.
Pro-inflammatory factors promote tumor growth and angiogenesis
while inhibiting apoptosis and suppressing antitumor activities.'*®
Myeloid-derived suppressor cells (MDSCs) in the TME have dual
functions. They promote the metastasis of tumor cells by infiltrating
primary tumors and promoting tumor angiogenesis. MDSCs also in-
hibit the immune response to accelerate tumor progression. MDSCs
maintain the survival and proliferation of tumor cells by releasing in-
flammatory cytokines (IL-1, IL-6, IL-23, and IL-17A) or possibly induce
adaptive anti-tumoral immunity by IL-12, interferon-gamma (IFN-
7).1%* Overexpressed CD33* CD11b* HLA-DR"MDSCs were found
in primary CRC tissues, which suggested advanced TNM stage and

lymph node metastasis.**®

IL-1a is one of the dominant inflammatory
mediators influencing the pathogenesis of inflammation-associated
CRC. It enhances angiogenesis, metastasis, DR, and inhibition of

tumor-suppressive genes in CRC.1#¢

IL-17A is a pro-inflammatory
cytokine that contributes to the pathogenesis of inflammatory and
autoimmune diseases.**” High levels of IL-17 in serum and tissues of
patients with CRC are important in the metastasis and prognosis of
CRC.® |L-17A activates the ERK, p38 MAPK, and NF-kxB signaling
pathways within transformed enterocytes, thereby inducing early
tumor development in mice.'*” As a tumor prompter, IL-17A also

relies on stromal cells in the microenvironment. In murine models,
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tumor-infiltrating Th17 cells and IL-17 can stimulate TAF to release
G-CSF, which, in turn, recruits MDSCs to the tumor parenchyma.150
MDSCs produce VEGF, prokineticin 2/Bv8, MMP9, and pro-
inflammatory S100A8/9 molecules (calprotectin).'®® Chemokines
are GPCRs binding small peptides, which mediate angiogenesis,
inflammation, and chemoattraction.}®? Tumor cells often secrete a
few inflammatory chemokines, such as neutrophil-attracting CXC-
chemokines. After combining with CXCR1 and/or CXCR2, CXC-
chemokines can induce the migration of TANs. In the background
of the TME, increasing evidence has revealed that by infiltrating into
tumor tissues, neutrophils play a prominent role in promoting tu-
mors and embracing growth, invasion, angiogenesis, and metasta-
sis in various cancers, including CRC, although they were originally
thought to be antitumor cells.!%8

Continuously driven by cancer-promoting factors in the tumor,
novel vascular networks might be incapable of maturing and pruning,
vascular diameters are not of uniform size, and blood flow through
the poorly organized and malformed vessels is possibly chaotic.!®
Along with high tumor cell density, hypoxia is induced within the
tumor mass. Hypoxia is not only a hallmark of cancer that influences
cancer cells’ function but also an important component in the TME
because it alters the extracellular matrix, modulates the tumor-
immune response (immune cell infiltration, immune checkpoint
[IC] expression, and secretion of immune molecules) in the TME'>*
and increases angiogenesis. Tumor hypoxia promotes the recruit-
ment of ECs and pericytes to stimulate angiogenesis by inducing
VEGEF, particularly VEGF—A,155 and hastens the recruitment of bone
marrow-derived cells (BMDCs). Recruited stromal cells heighten tu-
morigenesis through extracellular matrix remodeling, growth factor
signaling, and evasion of the antitumor immune response.}?¢ A hy-
poxic environment inhibits immune response by promoting ICs such
as PD-L1 expression, stimulating immunosuppressive cells including
TAMs, MDSCs, and regulatory T cells (Treg cells), as well as inhibiting
tumor-infiltrating lymphocyte (TIL) infiltration.2>¢1%7

Tumor hypoxia is primarily attuned by a transcription factor
family, described as HIFs.2>® HIFs are heterodimeric transcription
factors consisting of one of three possible isoforms of an O2-labile
a subunit (HIF-1a, 2a, and 3a) and a HIF-1f subunit. Expression of
HIF-1a induced by hypoxia promotes abnormal angiogenesis for-
mation and enhances CRC metastasis.»>* Evidence from Arabsorkhi
et al. showed that the level of HIF-1a expression in CRC is related
to different MSI classifications.*® Overexpressed HIF-1 acts as a
master regulator of oxygen-regulated gene expression; in addition,
its target genes are particularly relevant to cancer-encoding angio-
genic factors, proliferation/survival factors, glucose transporters,
and glycolytic enzymes.*° In the hypoxic environment, ubiquitin-
mediated HIF-1 degradation is disabled, leading to the accumulation
of HIF-1,%! which plays an active role in promoting the expression of
angiogenesis-associated target genes, including HIF1, VEGF, PLGF,
Ang-2, TGF-B, and hypoxaMIRs.%? The supposed Warburg effect
indicates that regardless of oxygen level, tumor cells preferentially
utilize glycolysis to produce lactic acid for energy supply. This pro-
cess has extremely high efficiency in energy generation to meet

the nutritional needs of tumor cells’ rapid growth.*® The increased
HIF-1a can augment the Warburg effect.'¢?

As a gaseous free radical, NO acts as a signal that is relatively
stable in biological systems.’®* It is involved in angiogenesis and
stimulates the EGF-R signaling pathway. NO mediates stimulatory
effects on tyrosine phosphorylation of EGF-R. BK-mediated angio-
genesis in ECs involves the induction of the expression of VEGF as-
sociated with the activation of the NO/EGF-R/p21Ras/ERK1/2 MAP
kinase signaling pathway, which indicates that NO generation plays
a role in the expression of VEGF.1®> Nearly all cells, whether normal
or malignant, produce NO by taking advantage of heme enzymes
from the family of NADPH cytochrome P450 reductases, referred
to as NO synthase (NOS).166 Three isoforms have been identified
in mammals: NOS1 (neuronal) and NOS3 (endothelial), which are
persistently expressed, and NOS2, which needs to be induced and
was initially characterized in macrophages. All isoforms require |-
arginine as a substrate for NO synthesis. NOS2 and NOS3 play key
roles in angiogenesis with the regulation of VEGF.X** Endogenous
NO promotes colon neoplasms. Moreover, NO is a crucial factor in
many signaling pathways in CRC, including the Wnt/p-catenin and
ERK pathway, which are relevant to cancer initiation, metastasis, in-
flammation, and chemoresistance/radioresistance. Thus, NO/NOS
is expected to be a promising target for the treatment of CRC.*¢”

Exosomes are membrane-bound extracellular vehicles (EVs) that
can transmit bioactive molecules between different cells in vivo.*®
These signaling molecules have been identified as miRNAs, mRNAs,
IncRNAs, and proteins.169 Exosomes released by various cell types
perform various biological functions, primarily mediating commu-
nication between different cells, particularly those active in cancer,
including CRC.Y° The ncRNAs released from exosomes play a pivotal
role in multiple processes of tumor formation and development, in-
cluding proliferation, differentiation, angiogenesis, migration, and
apoptosis.”l'172 The quantity and contents of exosomes are signifi-
cantly different in tumors or normal tissues; thus, exosomes might be
diagnostic indicators of CRC.1® Numerous EV-miRNAs are not only
possible diagnostic markers in CRC, including miR-1246, miR-21, miR-
92A, and various others,”2 but also useful prognostic markers, such
as miR-27a and miR-130a, which indicate poor prognosis.”* Exosomal
miR-21 derived from transformed cells regulates VEGF and angiogen-
esis in recipient cells.”® In addition, cancer-derived exosomes activate
the angiogenic properties of macrophages, such as producing VEGF.
Meanwhile, exosomes from macrophages are thought to disturb the
adhesion, morphology, and apoptosis of tumor cells, thereby contrib-

uting to their migration, invasion, and metastasis.}”®

3.4 | RNA: Long non-coding RNAs, miRNA, and
circRNA

Long non-coding RNAs (IncRNAs), miRNA, and circRNA belong to
the family of non-coding RNAs (ncRNAs). Acting as oncogenes or
tumor suppressor genes in CRC, they might be potential diagnostic

biomarkers.'””
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Long non-coding RNAs are longer than 200nts non-coding
transcripts, which recently became one of the largest and most
significantly diverse RNA families. As small and long evolutionarily
conserved ncRNA families, IncRNAs activate and repress genes
through various mechanisms at both transcriptional and transla-
tional levels.'’? They have dual effects on tumor cell proliferation,
angiogenesis, and DR by promoting or inhibiting them. Thus, DR
affected by IncRNA appears in various aspects of tumor treat-
ment strategies involving chemotherapy, targeted therapy, and
immunotherapy.'®'”? Recently discovered IncRNA SET binding
factor 2 antisense RNA 1 (IncRNA SBF2-AS1), an oncogenic anti-
sense RNA to SBF2, is located at 11p15.1 locus and is 2708 nt long.
Furthermore, IncRNA SBF2-AS1 participates in the progression
of various tumors, including CRC.° |ncRNA and miRNA interact
with each other. On the one hand, IncRNA can regulate diverse
functions and expression levels of miRNA as endogenous regula-
tors. On the other hand, miRNA affects the stability of IncRNA
after combining with it. IncRNA can competitively bind to the
target mRNA of miRNA to isolate it, thereby inhibiting its func-
tion. Multiple pairs of interacting IncRNA and miRNA have been
identified in angiogenesis, such as H19/miR-let-7 and NFIA/miR-
382-5p.181182 |nteractions among IncRNA/miRNA/mRNA have
been found in liver metastasis, EMT, inflammation formation, and
chemoresistance/radioresistance in CRC. In summary, IncRNAs
play an important role in CRC growth and metastasis.*3

miRNAs are highly conserved short single-stranded ncRNAs
(18-22 nucleotides). They promote regulatory effects via the
3’-untranslated binding region (3’-UTR) of target messenger RNA in

184 which indicates that

the posttranscriptional regulation of genes,
miRNAs modulate protein-coding gene expression primarily through
mRNA degradation or silencing.?’? In addition, miRNAs have two
contradictory functions in regulating angiogenesis in CRC. Some
miRNAs directly affect VEGF or inhibit angiogenesis through certain
signaling pathways (PI3BK/AKT and HIF-1a). By contrast, some other
RNAs, particularly exocrine-derived ones, can promote angiogene-

sis. Along with angiogenesis, miRNAs also have effects on cancer

— 741
Cancer Science RUIo S A

genesis, invasion, and metastasis as diverse functions.'®2185 miRNAs
that promote or inhibit angiogenesis are shown in Table 1.

Previous studies showed that circRNAs also play multiple roles
in regulating the TME.'® circRNAs are a family of single-stranded
closed-circle molecules that lack 5" and 3’ ends and poly(A) tails,
which make them capable of resisting RNase R, leading to high
stability.®8 As an indispensable factor inhibiting angiogenesis, cir-
cRNAs can conversely promote VEGFA and the expression of other
pro-angiogenic molecules to positively regulate angiogenesis.187
For example, the high expression of circ-Erbin was found in CRC,
thereby promoting the miR-125a-5p-5p/miR-138-5p/4E binding
protein 1 axis to elevate the expression of HIF-1a and finally induc-
ing angiogenesis.*®’ By contrast, in glioblastoma multiforme cells,
circSMARCAS5 was confirmed to downregulate the expression of
VEGFA through alternative splicing of its pre-mRNA to limit the in-
crease of blood vessel density.190 Several studies showed similar
results; the expression levels of different circRNAs might be up-
regulated or downregulated in CRC. Collectively, these research
findings revealed that circRNA is related to the progression and
pathogenesis of CRC.** As they can be both oncogenic and anti-
oncogenic, circRNAs can potentially be utilized in the treatment
and prognosis of CRC.172

Therefore, by enlarging our perspective to the level of the micro-
environment, the participation of different functions of various cells
and the specific release of different types of signals make this mix-
ture similar to soil with abundant nutrients, which is greatly different
from the normal tissue environment. Such an environment is more
conducive to the growth and development of tumors than a normal

tissue environment.

3.5 | Gut microbiota

Being parasitic in the human intestinal tract, the microflora is a huge
organism that can interact with the host. As for CRC, the gut mi-
crobiota plays a special role. Gut microflora is important for host

TABLE 1 miRNAs that regulate angiogenesis in colorectal cancer8>18¢
miRNA Function Targets Result
miR-145, miR-206, miR-148a, miR-195-5p, miR-107 Inhibit HIF Inhibit angiogenesis
miR-622, miR-590-5p, miR-520a, miR-126, miR-27b, Inhibit VEGF
miR-150-5p, miR-1249
miR-218 Inhibit Connective tissue growth factor
miR-125a-3p, miR-143 Inhibit PIBK/AKT
miR-7, miR-375 Inhibit EGFR
miR-181a-5p Inhibit MMP-14
miR-181a Activate SRC (increased VEGF secretion) Promote angiogenesis
miR-1229 Inhibit HIPK2 (inhibits VEGF angiogenic gene)
miR-194 Inhibit Platelet-reactive protein 1 (TSP-1 inhibits VEGF)
miR-25-3p Inhibit KLF2/KLF4 (inhibit promoter activity of VEGFR2)

Abbreviations: HIF, hypoxia-inducible factor; VEGF, vascular endothelial growth factor.
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survival and health because of its antitumor capability, and it can
alleviate tissue damage by reducing the level of oxygen free radicals.
A significant abundance variation of intestinal flora was found in pa-
tients with CRC compared with healthy people.193 The abundance
of intestinal flora is affected by hypoxia in the microenvironment.*?*
Alterations in specific flora abundance might accelerate the forma-
tion and development of CRC. In addition, gut microbiota is involved
in modulating immunity, transforming metabolome, and modifying
the therapeutic effect.’®*1 Disturbance of the category and quan-
tity of intestinal flora activates the NF-xB pathway by stimulating
intestinal epithelial cells that can trigger an inflammation stage.'”®
Furthermore, chronic inflammation is the key element in inducing
CRC formation. Several pro-tumorigenic and anti-tumorigenic bac-
terial species and their respective products of metabolism disturb
major signaling pathways such as Wnt, PI3K-Akt, MAPK, TGF-g,
EGFR, mTOR, and p53.7¢ Intestinal microflora also participates in
the formation of the TME by mediating angiogenesis.*”” In general,
bacterial toxins are related to pro-inflammatory processes, activa-
tion of angiogenesis, and cellular proliferation pathways.!?® Notably,
among multitudinous intestinal microflora metabolites, bile acid can
promote CRC progression through multiple mechanisms, including
inhibiting apoptosis and enhancing cancer cell proliferation, invasion,
and angiogenesis.199 Some scholars have proposed the application
of drugs for intestinal flora in combination with chemotherapy and

immunotherapy to improve treatment response and tolerance.'”®

4 | TREATMENT STRATEGY

In recent decades, with the research progress on cancer etiology,
treatment methods for CRC have been constantly updated and
improved. Besides surgery, which is the most common treatment
method, other approaches such as chemotherapy, targeted therapy,
immunotherapy, and radiotherapy are used to improve therapeu-
tic effectiveness and prognosis and extend the survival period and
quality of life of patients with metastatic CRC (mCRC). For patients
with neoadjuvant chemotherapy indications, 5-fluorouracil (5-FU),
5-FU plus leucovorin (LV), single-agent capecitabine, reduced-dose
capecitabine plus oxaliplatin (XELOX), or oxaliplatin plus 5-FU plus
LV (FOLFOX) are considered optimal treatment schemes.?°° On the
basis of the staging of patients with CRC, postoperative adjuvant
chemotherapy, including 5-FU plus LV, capecitabine, mFOLFOX6,
or XELOX, might be selected. Among these plans, combination with
oxaliplatin has the best treatment effect and the greatest benefit
for patients.ml’203 FOLFIRI (doublet cytotoxic combinations of fluo-
rouracil, leucovorin, and irinotecan) and FOLFOX are the two first-
line treatment prescriptions for patients with mCRC, and they are
presently recommended by European Society for Medical Oncology
(ESMO) guidelines and the Pan-Asia adaptation of the guidelines.>?°4

Clinical evidence has shown that combination with targeted ther-
apy and chemotherapy significantly improves progression-free sur-
vival (PFS) and overall survival (OS) compared to chemotherapy alone
in patients with mCRC.2°° Among various aspects, angiogenesis has

been validated to be a key element in the pathogenesis of malig-
nancy, and it has provided biological insights and subsequent thera-
peutic options.10 Regarding its central status in tumor angiogenesis,
VEGFs and their receptors are the major targets in anti-angiogenesis
treatment.2%° Tumors highly dependent on VEGF-induced angiogen-
esis, such as CRC, renal cell carcinoma, and neuroendocrine tumors,
might have a relatively satisfactory response to anti-VEGF drugs.?%®
In addition, targeted drugs are recommended as first-line treatment

drugs for most patients, unless contraindications exist.%°

4.1 | Targeting agents

Inhibition of angiogenesis by blocking VEGF is a major focus of tar-
geted cancer therapy. The important functions of pro-angiogenesis
molecules, which have strong relations with tumor growth, invasion,
and metastasis, make them ideal targets in suppressing tumors in-
cluding CRC.%? VEGF is one of the most decisive factors that pro-
mote angiogenesis. Several different strategies have been applied
to block VEGF, such as neutralizing anti-VEGF monoclonal antibod-
ies, monoclonal antibodies that block VEGFRs, and small-molecule
tyrosine kinase inhibitors (TKIls) that block VEGFR activation and
downstream signaling Figure 1.2

Anti-VEGF: Bevacizumab is an 1gG1 humanized monoclonal an-
tibody (MoAB) against VEGF-A. Initially, it was recommended as a
first-line treatment because it showed good results in phases | and
Il clinical trials. Bevacizumab plus chemotherapy, compared with
chemotherapy alone, showed advantages for PFS (10.6 months
vs. 6.2months, p<0.001) and OS (20.3months vs. 15.6months,
p<0.001).2%8 Nevertheless, bevacizumab combined with standard
first-line treatment did not show the expected advantages of treat-
ment with ras mutation in a phase Il clinical trial.?%? As a second-line
treatment, bevacizumab plus FOLFOX had a better outcome than
FOLFOX alone: 7.3 months versus 4.7 months (p <0.001) in PFS and
12.9 months versus 10.8 months (p=0.0011) in 0S.%1° Therefore, it
was recommended that bevacizumab be combined with a chemo-
therapy regimen. In addition, other researchers have proposed that
bevacizumab can eliminate RAS mutant clones to convert RAS gene
mutant, which is more dependent on angiogenesis compared with
wild-type (WT) RAS genes.?!

Aflibecept: Aflibecept is a fusion protein targeting VEGF-A,
VEGF-B, and PIGF. It might exhibit a more comprehensive inhibition
effect on angiogenesis because of its multiple targets compared
with bevacizumab or ramucirumab.3® VELOUR results?'? revealed
that the OS median survival was 13.50months in the FOLFIRI/af-
libercept group versus 12.06 months in the control group. Moreover,
FOLFIRI/aflibercept showed a remarkable improvement in the me-
dian PFS of 6.90 months versus 4.67 in the placebo (p <0.0001). The
response rate (RR) was 19.8% in the aflibercept group but 11.1% in
the placebo group (p<0.0001).2*3 Strongly supported by existing
research results, aflibercept combined with FOLFIRI can be an op-
tion for patients with DR or progression after oxaliplatin-containing
treatment. Meanwhile, ESMO guidelines explicitly recommend
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aflibercept as an alternative second-line treatment agent for RAS
WT and RAS mutant patients.*°

Anti-VEGF receptors: Ramucirumab is a humanized monoclo-
nal antibody targeting the extracellular domain of VEGF receptor 2
(VEGFR2). It received US Food and Drug Administration (FDA) ap-
proval in 2015 for the second-line treatment of mCRC?** combined
with FOLFIRI, based on the results of the RAISE trial. Ramucirumab
is a newcomer among the antiangiogenic agents that can improve
overall survival with a safe and manageable toxicity proﬁle.215
Fruquintinib (HMPL-013), a long-term small-molecule, which can
selectively inhibit VEGFR (VEGFR1, VEGFR2, and VEGFR3), has
demonstrated several advantages, such as low off-target toxicity,
good drug tolerance, and a remarkable effect in clinical studies.
Thus, it is recommended as a third-line agent for the treatment of
patients with CRC via other targeted therapy drugs.216

Numerous small-molecule TKls exist.?!” Regorafenib is a multi-
targeting kinase inhibitor (TKI) approved for the treatment of pa-
tients with mCRC as a third-line treatment for advanced CRC in
comparison with standard chemotherapy.?'® This agent was origi-
nally developed as a RAF1 inhibitor. The dual blockade of VEGFRs
and TIE2 can lead to accessional anti-angiogenesis effects and the
distinctive regulation of vessel stability. In addition, it is a TKI of the
VEGF signaling pathways,?*” enabling its continuous antiangiogenic
effect even in tumors resistant to VEGF inhibitors. Moreover, rego-
rafenib has the important effect of enhancing anti-tumor immunity
via macrophage modulation.??° Therefore, preliminary evidence
suggested that this multi-kinase inhibitor might be an optimal com-
bination partner for immune checkpoint inhibitors (ICIs).221

However, prolonged VEGF blockade enhances tumor hypoxia,
causes resistance to hypoxia-induced apoptosis, and increases VEGF
expression, thereby promoting tumor aggressiveness.zzz'223 Aside
from VEGFR, EGFR is another commonly used target in treating the
anti-angiogenesis of CRC.??* The treatment strategy often has two
directions: monoclonal antibodies that block EFGR and inhibitors
targeting intracellular tyrosine kinase. As a chimeric IgG antibody,
cetuximab leads to the internalization and degradation of EGFR
after binding to its external domain.??> However, immunity reactions
might occur as cetuximab is a murine-human chimeric antibody.
Panitumumab is the perfect solution to this issue; it is an antibody
that is fully humanized and does not induce cytotoxicity mediated by
antibody-dependent cells.??® Cetuximab and panitumumab are ap-
proved as first-line treatment agents for CRC by the FDA. However,
anti-EGFR drugs are not recommended for priority use in second- or
third-line treatment of CRC because they do not show good statis-
tics in PFS or 05.2%7 Approximately 45% of colon cancer cells present
RAS mutations.??8 In patients with mCRC, the proportions of KRAS,
NRAS, and HRAS mutations are 40%-50%, 2%-9%, and 1%-2%, re-
spectively.??? The KRAS proto-oncogene encodes a GTPase protein
(KRAS) that is crucial in copious molecular pathways including the
EGFR pathway.?®® With high-frequency occurrence in CRC KRAS
mutations, KRAS G12V is related to multiple aspects of tumor clin-
ical pathology, such as invasion and poor prognosis. Moreover, it is
linked to undesirable therapeutic effects of anti-EGFR agents. There
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are interactions between KRAS G12V and HIF-1a. Furthermore,
KRAS G12V promotes the expression of HIF-1a, whereas overex-
pressed hypoxia or HIF-1a activates KRAS G12V. Only patients with
WT RAS tumors receive a clinical benefit from anti-EGFR antibody
therapy.?3! Hypoxia is related to anti-EGFR therapy resistance. Thus,
adding HIF-1a inhibitor PX-478 to it might achieve a good therapeu-
tic effect.2%? Moreover, KRAS mutations can represent the response
to EGFR inhibitors as a negative predictive factor.?** With the intro-
duction of anti-EGFR in the treatment of RAS WT mCRC, the optimal
sequencing between anti-VEGFs and anti-EGFRs in this population
of patients has been a matter of intense debate. For example, data
from Francesca showed that using anti-EGFRs in the first-line setting
for the right CRC (RC) should be avoided when other therapeutic al-
ternatives are available.?®® Meanwhile, for RAS WT metastatic CRC
patients with left-side colon tumors, chemotherapy plus anti-EGFR
agents are recommended as first-line treatment.*®

Ingredients from traditional Chinese medicine, such as several
phenolic compounds (e.g., flavones, phenolcarboxylic acids, and
ellagitannins),234 hyperforin,235 Raddeanin A,%%¢ and matrine®®’
suppress CRC by inhibiting angiogenesis and other mechanisms.
However, the details are not clearly explained. These promising
pharmaceutical ingredients have not been approved as standard

treatment drugs, which might be used as an adjuvant treatment.

4.2 | Drugresistance
Drug resistance cannot be ignored in the treatment of CRC. Data
from Bardelli et al. reported that DR occurs in approximately 80% of
cases during treatment.?®® The mechanisms of DR are divided into
the following three aspects: transformation in VEGF dependence,
alternative pathways, and stromal cell interactions.®? As described,
anti-angiogenic therapies might cause hypoxia and increase HIF-1a
expression, which are known as drivers of EMT. Moreover, HIF-1
has multiple functions to promote cancer cell survival in the hypoxic
environment. Resistance to anti-angiogenesis agents involves sev-
eral different but related mechanisms: recruiting various BMDCs,
which differentiate into ECs, pericytes, and pro-angiogenic mono-
cytes, such as TAM; enhancing and increasing pericyte coverage,
which safeguards tumor blood vessels; and increasing invasiveness
of tumor cells, thereby leading to vessel co-option.2823%:240
Compensatory pathways in angiogenesis are nonnegligible in
DR. TGF-B, FGF 2, PDGF, Ang-2, and IL-1 are assumed to be highly
relevant to anti-VEGF resistance in cancer.?** Alternative angiogenic
factors and their pathways are shown in Table 2. Others involve
EGF, G-CSF, PIGF, HGF, stromal cell-derived factor-1, and IGF.?%2
The table below shows that Ras/Raf/MEK/ERK and PI3K/Akt are
the major downstream signaling pathways. Interestingly, these two
pathways are also the dominant cascades of EGFR activation,'”’
which indirectly validates the crosstalk between VEGF and EFGR.
Other mechanisms might include EGF overexpression, EGFR alter-
ation, RAS/RAF/PI3K gene mutations, ERBB2/MET/IGF-1R activa-
tion, metabolic remodeling, MSI, and autophagy.?*?
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TABLE 2 Alternative angiogenic factors and their pathways?*!
Ligands— Ang-2 Bv8 bFGF PDGF PIGF TGF -p1
Receptors—
TGF-BRII,
Pathways| Tie2 PROKR2 FGFR IL-1RI, IL-1RACP PDGFR VEGFR1, NRP1/2 TGF -gRI
Ras/Raf/MEK/ERK A A A
PI3K/Akt A A A A
JAK/STAT A
PLCy A A
NF-xB A
INK A
P38/MAPK A A
Smad A

Note: A: regulating downstream pathways.
Abbreviation: VEGF, vascular endothelial growth factor.

Molecular and biochemical mechanisms are related to the phe-
notypic changes that support carcinogenesis, including apoptosis
inhibition, reinforced tumor cell proliferation, increased invasive-
ness, cell adhesion perturbations, angiogenesis promotion, and
immune surveillance inhibition.?®! Tumor immune escape implies
that tumor cells escape from immune surveillance and inhibit the
immune response of the host.?** Tumor cells have developed sev-
eral mechanisms to avoid detection by immune cells. Secretion of
soluble immunosuppressive factors, such as TGF-p and IL-10, or
downregulation of major histocompatibility complex (MHC 1) ex-

2451C modulation is

pression might all be related to immune escape.
another well-known mechanism by which tumor cells suppress the
local immune response. IC receptors, including programmed death
1 (PD-1), cytotoxic T lymphocyte antigen 4 (CTLA-4), and CD279,
contribute to inactivating and exhausting tumor-related T cells.?*¢

ICls represent a new time for cancer treatment. They selectively
combine with immunosuppressive molecules on the surface of im-
munocytes (e.g., CTLA-4) or on tumor cells, such as PD-1 or their li-
gand (PD-L1), to block tumor cells’immune escape.?*”2*8 |pilimumab,
pembrolizumab, and nivolumab are three types of ICls approved
by the FDA in 2015 for CRC treatment in patients with mismatch
repair defects or microsatellite instability.221’249 Nivolumab and
pembrolizumab are anti-PD1 drugs that competitively bind with
PD-1, thereby blocking tumor immune evasion mediated by the
combination of PD-1 and its ligands, PD-L1 or PD-L2. By contrast,
ipilimumab inhibits the combination of CTLA-4 and a cluster of dif-
ferentiation 80/86 (CD80/CD86), which attenuates T-cell activation.
Nevertheless, the application of ICls remains limited because of the

lack of sensitive markers and inevitable DR.}**

5 | DISCUSSION

To date, although anti-angiogenesis agents, with their highlighted ad-
vantages such as improving oxygen levels and drug delivery through
vascular normalization, carry weight in the treatment of CRC, their

therapeutic efficacy remains far from satisfactory. However, ensuring
that every patient receiving treatment achieves satisfactory results in
one unified plan is never an easy task. With the increase in knowl-
edge about CRC, novel targets have been identified. Nevertheless,
therapy resistance and unresponsiveness to immunotherapy remain
major treatment obstacles. However, the treatment scheme selection
based on biomarkers for patients with CRC remains limited because
of the incomplete accuracy of conventional biomarkers in diagnosis,
prediction, and prognosis. Thus, further studies are necessary to de-
velop clinically applicable biomarkers. However, developing appropri-
ate therapeutic programs to increase ICl activity and efficacy through
the regulation of gut microbiota in patients with CRC is another clinical
challenge. Artificial intelligence shows promise and will takes us into a
new era to persistently improve molecular prediction algorithms from
the sea of usable data. It might help us explore new methods to over-

come the predicaments of the current antitumor strategy.
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