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Abstract
The morbidity of colorectal cancer (CRC) has risen to third place among malignant 
tumors worldwide. In addition, CRC is a common cancer in China whose incidence 
increases annually. Angiogenesis plays an important role in the development of tu-
mors because it can bring the nutrients that cancer cells need and take away meta-
bolic waste. Various mechanisms are involved in the formation of neovascularization, 
and vascular endothelial growth factor is a key mediator. Meanwhile, angiogenesis 
inhibitors and drug resistance (DR) are challenges to consider when formulating 
treatment strategies for patients with different conditions. Thus, this review will 
discuss the molecules, signaling pathways, microenvironment, treatment, and DR of 
angiogenesis in CRC.
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1  |  INTRODUC TION

As the third most common malignancy worldwide, colorectal 
cancer (CRC) refers to the malignant transformation of colorec-
tal cells. The global incidence of CRC has increased in recent 
decades.1 The mortality rate of CRC ranks second next to lung 
cancer. When diagnosed, approximately one-quarter of patients 
present with metastatic disease.2 Thus, a cure for cancer based 
on the mechanism of tumor formation is necessary. Complex 
networked systems are involved in tumor cell proliferation, sur-
vival, angiogenesis, invasion, and metastasis. Given that malignant 
tumor cells need nutrients, including oxygen and growth factors, 
to support their growth, they require sufficient blood circulation 
around them. Tumor vessel formation is an important promoter 
of tumor growth and metastasis. Folkman proposed that tumor 
angiogenesis is the beginning of tumor development.3 However, 
tumor-promoting angiogenesis was not demonstrated until vas-
cular endothelial growth factor (VEGF)-A was identified and its 
monoclonal antibody was manufactured, which ultimately clari-
fied the preliminary mechanism between neovascularization and 
tumorigenesis.3 Angiogenesis indicates that neonatal blood ves-
sels take shape from existing blood vessels. This process is related 
to the proliferation, migration, and differentiation of endothelial 
cells (ECs), and multiple procedures during its process are rigor-
ously regulated.4 In addition, angiogenesis is primarily regulated 
by growth factors, cytokines, oncogenes, and other modulators.5 
Considering its key role in tumor formation and development, it 
might be a promising target in tumor treatment.6 Although various 
successful studies have been conducted, its mechanism remains 
unclear, and the effects of targeted therapy are also controversial. 
These issues will be briefly discussed below.

2  |  ANGIOGENESIS IN TUMORS

Angiogenesis is rather prominent in various aspects under normal 
physiological conditions, including tissue growth, wound healing, 
menstrual cycle, and placental implantation.7 Regular occurrence of 
angiogenesis heavily depends on the dynamic equilibrium between 
the promoting and inhibiting function systems.8 Angiogenesis is the 
process of new blood vessel formation. This process plays a key role 
in the progression of all types of cancers. Tumor masses have high 
nutritional requirements to support their need for growth; thus, 
new blood vessels are gradually formed around them to persistently 
supply oxygen and glucose.9,10 In malignant tumors, angiogenic pro-
cesses are sustainably maintained in a pro-angiogenic milieu,11 simi-
lar to a wound that never heals.

2.1  |  Characteristics of tumor vasculature

Tumor blood vessels are structurally and functionally abnormal 
compared with normal blood vessels. Besides being heterogene-
ous, the diameters of most tumor blood vessels are wide and their 
shapes are curved in different sizes, with few pericytes and defec-
tive basement membranes (BMs).12 Tumor blood vessels are also 
hyp erpermeable, partly because of the overproduction of VEGF. 
The loose intercellular junction of tumor endothelial cells (TECs), 
lack of pericytes, and smooth muscle cells lead to extravasation of 
plasma fluid and proteins.13 TECs with altered phenotypic release 
factors promote tumor progression and downregulate suppressing 
factors, finally promoting tumor formation adjacent to tumor cells 
in space.14 Furthermore, tumor blood vessels are molecularly dif-
ferent because of their responses to environmental cues through 
transcriptional regulation.15 In adenoma with dysplasia, pre-
malignant lesions of the colon, VEGF (p < 0.0005), and microves-
sel density (p < 0.0005) significantly increase.16 Thus, tumor blood 
vessels have different characteristics compared with normal blood 
vessels (Figure 1).

2.2  |  Types of vascular formation

Tumor blood vessels are formed in various patterns, such as vas-
culogenesis, sprouting angiogenesis, intussusceptive angiogenesis, 
and vascular mimicry. Vasculogenesis and angiogenesis are the two 
main types of vascular formation. In addition, tumor angiogenesis 
is the most extensively studied pattern of new vessel generation.17 
Vasculogenesis is the process in which endothelial and hematopoi-
etic progenitor cells in the blood cycle are recruited by cytokines 
and chemokines to create new vessels.18 Sprouting angiogenesis is 
the sprouting of neoplastic capillaries from existing ECs and tumor 
blood vessels; it might be the most characteristic way for the tumor 
to obtain oxygen and nutrients.19,20 VEGF is the key player driving 
this process, which occurs in pathological situations in malignant 
tumors.21 However, studies on intussusceptive angiogenesis are 
limited; in this type of angiogenesis, transluminal tissue pillars grow 
in pre-existing vessels and then integrate to recreate the vascular 
system.22 It is also referred to as a “complementary method” to 
sprouting angiogenesis.23 Contrary to canonical tumor angiogenesis, 
vasculogenic mimicry (VM) supplies independent blood perfusion to 
tumor cells.20 The phenomenon of vascular mimicry exists in various 
kinds of tumor masses, including CRC.24 The mechanism is a com-
plex process and has not been distinctly distinguished. In particular, 
CRC stem cells (CRCSCs) are transdifferentiated to create vascular 
tube structures that assist tumor blood supply independent of tumor 

Grant/Award Number: 22ZYYLCCG09; 
Public Hospital Research Joint Fund 
Technology Project of Inner Mongolia 
Autonomous Region, Grant/Award 
Number: 2023GLLH0449



736  |    YANG et al.

angiogenesis.25 Nevertheless, epithelial–mesenchymal transition 
(EMT) and tumor microenvironment (TME) are related to sprouting 
angiogenesis.20 As VM cells directly come into contact with blood 
flow, shed cells can be easily transported. Therefore, VM is related to 
advanced malignant tumors with high invasion and high metastasis, 
which are indicators of poor patient prognosis.26 Moreover, vessel 
co-option indicates that tumor tissue receives oxygen and nutrients 
from pre-existing vessels rather than creating new vascellums.27–29 
Vessel co-option is a possible cause of anti-angiogenic drug resist-
ance (DR). Frentzas showed that vessel co-option might be involved 
in an undesirable response to anti-angiogenic agents in patients with 
CRC and hepatic metastases.28 Utilization of numerous angiogenesis 
types, together with some normal physiological balance disruptions, 
can eventually lead to the unbridled growth of tumor cells.

3  |  ANGIOGENESIS AND COLOREC TAL 
C ANCER

Similar to other observed solid tumors, CRC development, pro-
gression, and metastasis depend heavily on angiogenesis.30,31 
Numerous molecules participate in the process, such as growth 

factors (VEGF and epidermal growth factors [EGFs]), fibroblast 
growth factor (FGF)-2, transforming growth factor (TGF)-α and 
TGF-β, angiopoietins (Angs), platelet-derived growth factor 
(PDGF), membrane-bound factors (integrins, ephrins, cadherins, 
matrix metalloproteinases [MMPs], and hypoxia-inducible factor-
1 [HIF-1]).32 Figure  1 illustrates some prominent pro-angiogenic 
factors.

3.1  |  Molecules in angiogenesis

Vascular endothelial growth factor plays a crucial role in all forms 
of solid tumor growth and development, including CRC, by causing 
the formation of new blood vessels. Its high serum level is closely 
associated with CRC and its clinical stages.33 Derived from tumor 
cells and the surrounding microenvironment, it is upregulated by hy-
poxia, growth factors, and cytokines such as IL-1, EGFs, PDGFs, and 
tumor necrosis factor (TNF)-α.34–36 Furthermore, VEGF-mediated 
pathogenic effects on vascular permeability are primarily caused 
by junction remodeling, fenestra induction, and vesiculo-vascular 
organelles (VVOs).37 As a survival factor, VEGF can accelerate 
the growth and prevent apoptosis of vascular ECs.38 The seven 

F I G U R E  1  Full-text mechanism diagram. In normal blood vessels, endothelial cells have tight junctions with a normal number of 
surrounding pericytes and intact basement membranes (BMs). The diameters of most tumor blood vessels are wide, and their shapes 
are curved in different sizes, with few pericytes around and defective BMs. Tumor blood vessels are also hyperpermeable. The tumor 
microenvironment consists of stromal cells, ECM components, and exosomes. Many growth factors that promote angiogenesis and their 
signaling pathways are involved in these changes. Multiple anti-angiogenesis agents target different molecules. Drugs targeting immune 
checkpoints are also illustrated in this figure.
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members of the VEGF family are VEGF-A to VEGF-F and placenta 
growth factor (PlGF).35 Among them, VEGF-A, VEGF-B, and PIGF 
stimulate angiogenesis, whereas VEGF-C and VEGF-D are respon-
sible for lymphangiogenesis.39 VEGF-A undergoes alternative splic-
ing of pre-mRNA from eight exons that leads to multiple isoforms, 
including VEGF121, VEGF165, VEGF189, and VEGF206.34,40 The 
overexpressed VEGF165 increases the expansion of the tumor by 
promoting the recruitment of smooth muscle cells and vessel mat-
uration in CRC.41 Three VEGF receptors exist in CRC: VEGFR-1, 
VEGFR-2, and VEGFR-3. VEGFR-1 is related to tumor grade, Dukes’ 
stage, and lymph node involvement; VEGFR-2 is correlated with 
lymph node involvement; and VEGFR-3 is not associated with any 
of the clinicopathological variables.42 Activated VEGFR-2 leads to 
the activation of various signaling pathways, including the PLCγ and 
RAS/RAF/MEK/ERK (MAPK) pathways, by which the growth of EC 
is promoted, and the PI3K/AKT pathway, by which cells might avoid 
apoptosis.43 VEGF might suggest metastasis and poor prognosis of 
CRC.44 Overexpressed VEGF was detected in 70% of the cases in a 
study where 50 patients with CRC were enrolled, thereby reveal-
ing patients’ poor prognosis as its tight relationship with tumor size, 
grade, and advanced tumor stage (p = 0.006, p < 0.001, p < 0.001, 
respectively).45 Meanwhile, overexpression of VEGF-A can reverse 
the inhibition of CRC cell proliferation, migration, invasion, and an-
giogenesis caused by HIF-1miR-150-5p.46 Moreover, VEGF-VEGFR 
activity might be altered by HIF-1, COX-2, mutated K-RAS, and p53, 
which can promote the malignant phenotype of tumor cells such as 
proliferation and migration.47

Binding with EGFR and EGF can activate several crucial 
downstream signaling pathways, including PI3K/AKT/mTOR, 
MAPK, and Janus kinase (JAK)/Signal Transducer and Activator 
of Transcription 3 (STAT3), in regulating cell growth survival, in-
vasion, and migration.48–50 Dysregulation of the EGFR signaling 
pathway often occurs in human cancers, including CRC.51 The 
erythroblastosis oncogene B (ErbB)/human epidermal growth fac-
tor receptor (HER) family is composed of tyrosine kinase receptors 
(RTKs), which contain ErbB1 (EGFR/HER1), ErbB2 (Neu/HER2), 
ErbB3 (HER3), and ErbB4 (HER4).52,53 HER2 is a special member 
of the EGFR family, which is activated by heterodimerizing with 
other ligand-bound receptors but not ligands.54 Gene amplifica-
tion and missense mutation are the most common alterations in 
HER2 in 7%–8% CRC.55 Approximately 5% of metastatic CRC tu-
mors are facilitated by amplification or mutation of HER2, which 
might be a cancer-promoting factor, a prognostic and diagnostic 
biomarker, and a promising treatment target in CRC.56 EGFR was 
found to be highly expressed in 85.2% of the 54 patients with can-
cer and correlated with tumor sizes and invasion depth (p = 0.043 
and p = 0.05, respectively).57 In addition, angiogenic-associated 
cytokines including VEGFA and IL-8, produced by the EGFR/Akt/
NF-κB pathway, can be activated by highly dry human CRC cells, 
thereby inducing angiogenesis.58 Heparin-binding EGF-like growth 
factor (HB-EGF), a member of the EGF family, and EGF are both 
pro-angiogenesis mediators that work by activating signaling path-
ways including PI3K, MAPK, and eNOS.59

Twenty-three small heparin-binding growth factor members 
contained in the FGF family are highly conserved and bind to one or 
more of the four highly affine FGFRs (FGFR1–FGFR4).6 FGF2 is also 
a basic FGF (bFGF) that plays dual roles not only as a stimulator of 
VEGF-A expression in ECs or stromal cells but also as a regulator of 
VEGFR-2 signaling; thus, it is the most distinctive mediator in regulat-
ing angiogenesis.60 In addition, high expression of FGFs and FGFRs in 
cancers including CRC and its pathway functional mechanism is re-
lated to tumor growth and invasion.61 The MAPK, PI3K, PLCγ, or STAT 
pathways, activated by the binding of FGFs and FGFRs, participate 
in regulating cell proliferation, survival, differentiation, migration, 
and angiogenesis.62 Knuchel et al. showed that fibroblasts induce cell 
contact-dependent CRC cell migration and invasion in vitro under 2D 
and 3D conditions by FGF-2. They are located on the fibroblast cell 
surface, activate SRC, and are mediated by FGFR, and the adhesion of 
cancer cell to fibroblast is dependent on αvβ5 integrin.63

The PDGF family harbors four heparin-binding polypeptide 
growth factors: A, B, C, and D. PDGF has a wide range of sources, 
such as activated platelets, ECs, epithelial cells, inflammatory cells, 
and glial cells. Moreover, its targets contain a broad category of cell 
types, including fibroblasts, pericytes, and smooth muscle cells.64 
All members in the PDGF family show strong angiogenic capacity 
in vivo, but the PDGF-B/PDGFRβ axis is the most representative.65 
PDGFs and PDGFRs are expressed in a large range of malignant tu-
mors, and their activation is relevant to tumor growth, metastasis, 
invasion, and angiogenesis by stimulating downstream signaling 
pathways.66 Pericytes and vascular smooth muscle cells (VSMCs) 
are the major targets of the PDGF/PDGFR signaling pathway, and 
they are known to promote angiogenesis. Higher preoperative in-
traplatelet VEGF and PDGF levels were detected in patients with 
CRC than in controls.67 Higher expression of PDGF-BB was found in 
patients with CRC than in patients with adenoma. Consistently, the 
high levels of PDGFR α/β in patients with CRC were related to tumor 
invasion and metastasis.68 PDGF-BB can elicit different downstream 
cascade pathways, including PI3K, PLCγ, MAPK, and JAK/STAT.69

Similar to VEGFs, Angs are one of the growth factors that can 
regulate vascular homeostasis and tissue repair. Three members 
are included in the human Angs family (Ang-1, Ang-2, and Ang-4), 
whereas their receptors are Tie-1 and -2, which are highly expressed 
transmembrane tyrosine kinases in ECs. Ang-1 and -2 are the main 
ligands of Tie-2; upon their activation, several downstream signal-
ing pathways are stimulated, including PI3K/AKT, MARK, caspase-9, 
eNOS, Bad, and survivin.70–72 Ang-1 promotes the recruitment of 
smooth muscle cells and pericytes to maintain the stabilization of 
mature vasculature.73 However, as a prognostic factor in metastatic 
CRC,74 Ang-2 guides vasculature conversion to an unstable state, 
which is easier to induce under the effect of VEGF.75 Thus, Ang-2 
might be highly expressed in tumor cells, whereas Ang-1 is the oppo-
site. This deduction was verified by Ahmad et al. 76 Ang-2 was found 
to be an oncogene, whose malignant biological functions were inves-
tigated with shRNA in the LoVo CRC cell line, and its expression was 
convoluted with clinicopathological parameters in CRC.77 Similar to 
VEGF, Ang-2 expression is induced by hypoxia in CRC.78

https://pubmed.ncbi.nlm.nih.gov/?term=Knuchel+S&cauthor_id=25973543
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3.2  |  Signaling pathway in angiogenesis

The phosphatidylinositol-3 kinase (PI3K)/Akt/mammalian target 
of rapamycin (mTOR) signaling pathway overexpression has been 
identified in various malignant tumors, including primary and meta-
static CRCs.79 Common in CRC, overactivation of mTOR signaling is 
strongly related to cancer progression, initiation, and DR. In CRC, 
mTOR significantly regulates proliferation, survival, growth, dif-
ferentiation, and autophagy.80 The PI3K/AKT/mTOR pathway is 
an intracellular signaling pathway composed of different kinases. 
Dysregulation of the PI3K signaling pathway is caused by the am-
plification and genetic mutation of the PI3K gene, encoding a cata-
lytic and regulatory subunit of PI3K isoforms, and various protein 
mutations described in this pathway, which is responsible for cell 
growth, proliferation, survival, and angiogenesis.81,82 For angiogen-
esis, mTOR is important for energy metabolism in ECs. It receives 
signals from PI3K-Akt, which can be upregulated by growth factors 
(VEGF, insulin-like growth factor-1 [IGF-1], and EGF) and their re-
spective receptors.83,84 PI3K/Akt signal transduction, which is es-
sential for proliferation, metastasis, and survival, is one of the classic 
ways to increase blood vessel quantity and vascular permeability. 
Blood vessel reconstruction can be achieved by VSMC phenotype 
transformation.13,85 Increased EGF upregulates hydrogen perox-
ide (H2O2) synthesis, which stimulates ribosomal protein S6 kinase 
beta-1 (S6K1) or p70S6K1 via the PI3K/AKT/mTOR pathway, even-
tually activating VEGF.86 In CRC, other angiogenic factors can also 
be regulated by the PI3K/AKT pathway, including angiopoietins and 
nitric oxide (NO).84

The human TGF-β family consists of 33 identified members, 
including three TGF-β isoforms, three activins, growth and differ-
entiation factors, and nodal and bone morphogenetic protein.87 In 
addition, the SMAD family is the downstream effector of this sig-
naling pathway.88 Nevertheless, the absence of SMAD4 upregulates 
VEGF expression, increases the vascular quantity, and promotes 
tumor metastasis in the CRC HCT116 cell line.89 The combination 
of TGF-β and its type II TGF-β receptors (TGFBR2) initially activates 
the TGF-β signaling pathway.90 Under normal conditions, TGF-β 
suppresses normal intestinal epithelial cell proliferation and induces 
apoptosis and differentiation.91 However, highly expressed TGF-β 
plays a pro-tumor role in the late stage of CRC, thereby increasing 
the production of several mitogenic growth factors, including TGF-
α, FGF, and EGF.92 Recently, CRC was suggested to be classified into 
four consensus molecular subtypes (CMS) based on transcriptomic 
properties and the following molecular characteristics: CMS1 (mi-
crosatellite instability [MSI] immune), with DNA damage repair and 
defective DNA mismatch repair, BRAF mutations, and diffuse im-
mune infiltrate; CMS2 (canonical), with more oncogene expression 
with absent tumor suppressor gene expression, epithelial differ-
entiation, Wnt and MYC pathway upregulation; CMS3 (metabolic), 
with KRAS activating mutations and metabolic dysregulation; and 
CMS4 (mesenchymal), with angiogenesis, EMT, TGF-β signaling ac-
tivating, and matrix remodeling.93 The TGFBR2 gene, containing mi-
crosatellite sequence, accumulates MSI mutations to a high level in 

nearly all CRC cells. Nonetheless, TGF-β signaling activation remains 
functional to promote the tumor–stromal interaction, which has a 
positive correlation with malignant cell phenotype and poor progno-
sis.94,95 Secreted by TGF-β-stimulated cancer-associated fibroblasts 
(CAFs), IL11 acts on GP130/STAT3 signaling in tumor cells.96

The NF-κB family contains five members that interact with one 
another to homodimerize or heterodimerize: NF-κB1 (p50), NF-κB1 
(p52), RelA (p65), RelB, and c-Rel.97 The IKK kinase complex consist-
ing of catalytic subunits IKKα and IKKβ and regulatory subunit NF-
κB (an essential modulator) is the key element of the NF-κB signaling 
cascade.98 NF-κB signaling has two different but interactive path-
ways: the canonical (activated by TNF-α, lipopolysaccharide, and IL-
1) and non-canonical (activated by BAFF, CD40, receptor-activated 
NF-κB ligand, and lymphotoxin β) pathways.99 Their activation is pos-
itively associated with cell survival, angiogenesis, apoptosis, and me-
tastasis in CRC.100 Moreover, in CRC, the expression of NF-κB (p65) 
is directly associated with the expression level of HIF-1α, VEGF, and 
vascular invasion.101 The NF-κB pathway promotes the expression 
of multiple angiogenic factors, including VEGF, PDGF-BB, CXCL1, 
CXCL8, MMP-2, MMP-9, COX-2, and IL-8, ulteriorly inducing tumor 
angiogenesis. Highly expressed B7-H3 in the tissues of patients with 
CRC promotes VEGFA expression through the NF-κB pathway. In 
other words, the B7-H3/NF-κB/VEGFA axis plays a role in CRC an-
giogenesis.102 As one of the immune checkpoint proteins, such as 
star molecules CD80 and CD86, B7-H3 (CD276) was detected in var-
ious malignant masses, including CRC.103 B7-H3 has immunomodu-
lating effects and participates in regulating angiogenesis.104 In the 
study of tumor-bearing mice, highly expressed B7-H3 was found to 
be correlated with increases in TGF-β and interleukin 10 (IL-10).105 
This phenomenon might activate the JAK–STAT pathway and pro-
mote VEGF expression, thereby inducing angiogenesis.106

As another critical signaling pathway, JAK/STAT occupies a place 
in the list of regulating angiogenesis and other pathological pro-
cesses in CRC. JAK and STAT are two key tyrosine kinase-associated 
receptors in this pathway. They become activated after being 
coupled. Four proteins constitute the JAK family: JAK1, 2, 3, and 
TYK2.107 Meanwhile, the STAT family has seven members: STAT1 
to STAT7.108 Binding to their ligands, RTK, cytokine receptors, or 
G-protein-coupled receptors (GPCRs) recruit JAK, which facilitates 
signal transduction and STAT3 phosphorylation and homodimeriza-
tion.109 By promoting gene expression and release of inflammatory 
mediators to activate the STAT3 signaling pathway, STAT2 is consid-
ered a factor in promoting the development of CRC.110 In a hypoxia 
micro-environment, activated by reactive oxygen species (ROS), a 
mechanistic target of rapamycin complex 1, and/or IL-6 in cancer 
cells, STAT3 finally induces HIF-1a expression. This transcription 
factor promotes the transcription of VEGF. These events act on 
surrounding ECs to reactivate STAT3 via VEGFR. In ECs, together 
with HIF-1a and specificity protein 1 (sp1), STAT3 upregulates gene 
expression that induces EC growth, survival, and migration, resulting 
in angiogenesis.111 Otherwise, several promoting factors have been 
reported, including IL-6, EGF, IL-11, and solute carrier family 6 mem-
ber 14 (SLC6A14).112–115
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The aberrant activation of the Wnt signaling pathway is an-
other major molecular mechanism in CRC development and pro-
gression.116 Humans have 19 Wnts, suggesting it is a complicated 
signaling and biological process.117 The Wnt signaling pathway has 
two branches: canonical and non-canonical pathways.100 β-catenin 
is a crucial member of the canonical pathway as a switch, and its 
expression is promoted by activated Wnt signaling.118 Mutations of 
the β-catenin gene associated with nuclear localization of the pro-
tein have been mainly detected in microsatellite unstable CRC.116 
Wnt/β-catenin signaling upregulates angiogenic factors such as 
VEGFs, chemokines, and MMPs.116 Wnt2 is primarily produced by 
CAFs, thereby inducing invasive and metastatic CRC cell pheno-
types.119 Wnt2 levels are closely correlated with the expression of 
angiogenesis-associated regulators, including Ang-2, PlGF, granulo-
cyte colony-stimulating factor (G-CSF), IL-6, and extracellular matrix 
components.120 The expression levels of transglutaminase 2 (TGM2) 
and transmembrane-4 L-six family member-1 (TM4SF1) are both 
higher in CRC tissues than in normal tissues. TGM2 upregulates the 
expression of Wnt3a and β-catenin, whereas TM4SF1 activates the 
Wnt/β-catenin/c-Myc/SOX2 signaling pathway, thereby promoting 
angiogenesis in CRC.100

Moreover, the COX-2/PGE2/EP4 axis,121 notch signaling path-
way,100 c-MET/hepatocyte growth factor (HGF) signaling pathway,122 
and EPH/ephrin signaling system123 are all related to angiogenesis in 
CRC. These various factors and pathways are connected and cross 
each other like points and lines. Therefore, angiogenesis is stimu-
lated by multiple points to achieve promotion. The complex network 
they form is like a map but with landmarks, which can be inferred as 
targets for diagnosis, prediction, or treatment.

3.3  |  Tumor microenvironment

The TME is a complex system formed by the interaction of different 
cells and their products, which can be described as “soil” cultivating 
tumor cells.124 It is important for tumor progression and metasta-
sis and is functionally immunosuppressive.125,126 It is a compound 
comprising stromal cells (including pericytes, ECs, fibroblasts, mac-
rophages, regulatory T cells, myeloid-derived suppressor cells, and 
platelets), ECM components (including inflammatory cytokines, 
chemokines, MMPs, integrins, and other secreted molecules), and 
exosomes.127 TECs are the innermost cells of tumor blood vessels, 
which are mostly derived from normal vascular ECs or directly dif-
ferentiated from tumor cells. Their irregular cell morphology and 
phenotype lead to the defective barrier function of blood vessels, 
which can be beneficial for tumor survival.125,128 In the processes of 
tumorigenesis and angiogenesis, multifunctional pericytes, together 
with ECs, play a key role in BM remodeling in the TME.12,129 Immune 
functions of pericytes might be involved in the exit of innate leu-
kocytes in inducing angiogenesis, regulating lymphocyte activation, 
and controlling phagocytic activity.130 CAFs, including fibroblasts or 
myofibroblasts, take effect in the ECM through intercellular contact, 
soluble growth factor (FGF2 and VEGFA) secretion, and promotion 

of ECs’ malignant phenotype transformation.131 Autophagy of CAFs 
induced by oxidative stress has a positive effect on tumor prolif-
eration and metabolism.132 Exosomes secreted by CAFs promote 
CRC metastasis and chemotherapy resistance.133 Expressed in 
CAFs, endoglin is involved in CAF-mediated invasion and metastasis 
through TGF-b signaling pathway activation.134 Tumor-associated 
macrophages (TAMs) are indispensable in TME and control angio-
genesis.135 TAMs were detected both in vivo and in human tissues 
as a main source of multiple kinds of pro-angiogenic and ECM re-
modeling regulators, including VEGF, EGF, PDGF, TGF-α, TGF-β, 
Ang-1 and 2, and MMPs (e.g., MMP2, MMP9, and MMP12).136 The 
interaction between TAMs and CRC cells mediated by cytokines or 
exosomes can jointly promote the metastasis of CRC by regulating 
the EMT of tumor cells and the M2-type polarization of TAMs.137 
Tumor-associated neutrophils (TANs) promote tumor invasion and 
angiogenesis by upregulating MMP9, VEGF, and HGF in the primary 
and metastatic sites. The neutrophil-to-lymphocyte ratio is a prom-
ising predictive marker of CRC.138 As a member of various proteases, 
the MMP family plays a fundamental role in angiogenesis.116 It is piv-
otal in degrading ECM, which makes the blood vessel permeable and 
allows cancer cells to dissociate from the tumor mass and be eas-
ily transferred.139 In colon cancer, the upregulated MMPs are cor-
related with tumor progression, and some of them influence tumor 
invasion, metastasis, or poor outcomes. In Buttacavoli et al., MMP2 
and MMP9 were found to be expressed more in colon cancer tis-
sues than in normal adjacent tissues.140 Moreover, the MMP family is 
regulated by circRNAs in ECM remodeling.141 Citrullination of ECM, 
expression of peptidylarginine deiminase 4 (PAD4, a member of the 
PAD family), and expression of tenascin C (TNC, a glycoprotein in 
ECM) were found to promote liver metastasis in human CRC.142

Inflammation has been well established as a hallmark of CRC. 
Pro-inflammatory factors promote tumor growth and angiogenesis 
while inhibiting apoptosis and suppressing antitumor activities.143 
Myeloid-derived suppressor cells (MDSCs) in the TME have dual 
functions. They promote the metastasis of tumor cells by infiltrating 
primary tumors and promoting tumor angiogenesis. MDSCs also in-
hibit the immune response to accelerate tumor progression. MDSCs 
maintain the survival and proliferation of tumor cells by releasing in-
flammatory cytokines (IL-1, IL-6, IL-23, and IL-17A) or possibly induce 
adaptive anti-tumoral immunity by IL-12, interferon-gamma (IFN-
γ).144 Overexpressed CD33+ CD11b+ HLA-DR−MDSCs were found 
in primary CRC tissues, which suggested advanced TNM stage and 
lymph node metastasis.145 IL-1α is one of the dominant inflammatory 
mediators influencing the pathogenesis of inflammation-associated 
CRC. It enhances angiogenesis, metastasis, DR, and inhibition of 
tumor-suppressive genes in CRC.146 IL-17A is a pro-inflammatory 
cytokine that contributes to the pathogenesis of inflammatory and 
autoimmune diseases.147 High levels of IL-17 in serum and tissues of 
patients with CRC are important in the metastasis and prognosis of 
CRC.148 IL-17A activates the ERK, p38 MAPK, and NF-κB signaling 
pathways within transformed enterocytes, thereby inducing early 
tumor development in mice.149 As a tumor prompter, IL-17A also 
relies on stromal cells in the microenvironment. In murine models, 
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tumor-infiltrating Th17 cells and IL-17 can stimulate TAF to release 
G-CSF, which, in turn, recruits MDSCs to the tumor parenchyma.150 
MDSCs produce VEGF, prokineticin 2/Bv8, MMP9, and pro-
inflammatory S100A8/9 molecules (calprotectin).151 Chemokines 
are GPCRs binding small peptides, which mediate angiogenesis, 
inflammation, and chemoattraction.152 Tumor cells often secrete a 
few inflammatory chemokines, such as neutrophil-attracting CXC-
chemokines. After combining with CXCR1 and/or CXCR2, CXC-
chemokines can induce the migration of TANs. In the background 
of the TME, increasing evidence has revealed that by infiltrating into 
tumor tissues, neutrophils play a prominent role in promoting tu-
mors and embracing growth, invasion, angiogenesis, and metasta-
sis in various cancers, including CRC, although they were originally 
thought to be antitumor cells.138

Continuously driven by cancer-promoting factors in the tumor, 
novel vascular networks might be incapable of maturing and pruning, 
vascular diameters are not of uniform size, and blood flow through 
the poorly organized and malformed vessels is possibly chaotic.153 
Along with high tumor cell density, hypoxia is induced within the 
tumor mass. Hypoxia is not only a hallmark of cancer that influences 
cancer cells’ function but also an important component in the TME 
because it alters the extracellular matrix, modulates the tumor-
immune response (immune cell infiltration, immune checkpoint 
[IC] expression, and secretion of immune molecules) in the TME154 
and increases angiogenesis. Tumor hypoxia promotes the recruit-
ment of ECs and pericytes to stimulate angiogenesis by inducing 
VEGF, particularly VEGF-A,155 and hastens the recruitment of bone 
marrow-derived cells (BMDCs). Recruited stromal cells heighten tu-
morigenesis through extracellular matrix remodeling, growth factor 
signaling, and evasion of the antitumor immune response.126 A hy-
poxic environment inhibits immune response by promoting ICs such 
as PD-L1 expression, stimulating immunosuppressive cells including 
TAMs, MDSCs, and regulatory T cells (Treg cells), as well as inhibiting 
tumor-infiltrating lymphocyte (TIL) infiltration.156,157

Tumor hypoxia is primarily attuned by a transcription factor 
family, described as HIFs.158 HIFs are heterodimeric transcription 
factors consisting of one of three possible isoforms of an O2-labile 
α subunit (HIF-1α, 2α, and 3α) and a HIF-1β subunit. Expression of 
HIF-1α induced by hypoxia promotes abnormal angiogenesis for-
mation and enhances CRC metastasis.154 Evidence from Arabsorkhi 
et al. showed that the level of HIF-1α expression in CRC is related 
to different MSI classifications.159 Overexpressed HIF-1 acts as a 
master regulator of oxygen-regulated gene expression; in addition, 
its target genes are particularly relevant to cancer-encoding angio-
genic factors, proliferation/survival factors, glucose transporters, 
and glycolytic enzymes.160 In the hypoxic environment, ubiquitin-
mediated HIF-1 degradation is disabled, leading to the accumulation 
of HIF-1,161 which plays an active role in promoting the expression of 
angiogenesis-associated target genes, including HIF1, VEGF, PLGF, 
Ang-2, TGF-β, and hypoxaMIRs.162 The supposed Warburg effect 
indicates that regardless of oxygen level, tumor cells preferentially 
utilize glycolysis to produce lactic acid for energy supply. This pro-
cess has extremely high efficiency in energy generation to meet 

the nutritional needs of tumor cells’ rapid growth.163 The increased 
HIF-1α can augment the Warburg effect.162

As a gaseous free radical, NO acts as a signal that is relatively 
stable in biological systems.164 It is involved in angiogenesis and 
stimulates the EGF-R signaling pathway. NO mediates stimulatory 
effects on tyrosine phosphorylation of EGF-R. BK-mediated angio-
genesis in ECs involves the induction of the expression of VEGF as-
sociated with the activation of the NO/EGF-R/p21Ras/ERK1/2 MAP 
kinase signaling pathway, which indicates that NO generation plays 
a role in the expression of VEGF.165 Nearly all cells, whether normal 
or malignant, produce NO by taking advantage of heme enzymes 
from the family of NADPH cytochrome P450 reductases, referred 
to as NO synthase (NOS).166 Three isoforms have been identified 
in mammals: NOS1 (neuronal) and NOS3 (endothelial), which are 
persistently expressed, and NOS2, which needs to be induced and 
was initially characterized in macrophages. All isoforms require l-
arginine as a substrate for NO synthesis. NOS2 and NOS3 play key 
roles in angiogenesis with the regulation of VEGF.164 Endogenous 
NO promotes colon neoplasms. Moreover, NO is a crucial factor in 
many signaling pathways in CRC, including the Wnt/β-catenin and 
ERK pathway, which are relevant to cancer initiation, metastasis, in-
flammation, and chemoresistance/radioresistance. Thus, NO/NOS 
is expected to be a promising target for the treatment of CRC.167

Exosomes are membrane-bound extracellular vehicles (EVs) that 
can transmit bioactive molecules between different cells in  vivo.168 
These signaling molecules have been identified as miRNAs, mRNAs, 
lncRNAs, and proteins.169 Exosomes released by various cell types 
perform various biological functions, primarily mediating commu-
nication between different cells, particularly those active in cancer, 
including CRC.170 The ncRNAs released from exosomes play a pivotal 
role in multiple processes of tumor formation and development, in-
cluding proliferation, differentiation, angiogenesis, migration, and 
apoptosis.171,172 The quantity and contents of exosomes are signifi-
cantly different in tumors or normal tissues; thus, exosomes might be 
diagnostic indicators of CRC.168 Numerous EV-miRNAs are not only 
possible diagnostic markers in CRC, including miR-1246, miR-21, miR-
92A, and various others,173 but also useful prognostic markers, such 
as miR-27a and miR-130a, which indicate poor prognosis.174 Exosomal 
miR-21 derived from transformed cells regulates VEGF and angiogen-
esis in recipient cells.175 In addition, cancer-derived exosomes activate 
the angiogenic properties of macrophages, such as producing VEGF. 
Meanwhile, exosomes from macrophages are thought to disturb the 
adhesion, morphology, and apoptosis of tumor cells, thereby contrib-
uting to their migration, invasion, and metastasis.176

3.4  |  RNA: Long non-coding RNAs, miRNA, and  
circRNA

Long non-coding RNAs (lncRNAs), miRNA, and circRNA belong to 
the family of non-coding RNAs (ncRNAs). Acting as oncogenes or 
tumor suppressor genes in CRC, they might be potential diagnostic 
biomarkers.177

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/angiogenesis
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/signal-transduction
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/cytochrome-p450-reductase
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/isoform
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/nos1
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/angiogenesis
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/angiogenesis
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Long non-coding RNAs are longer than 200 nts non-coding 
transcripts, which recently became one of the largest and most 
significantly diverse RNA families. As small and long evolutionarily 
conserved ncRNA families, lncRNAs activate and repress genes 
through various mechanisms at both transcriptional and transla-
tional levels.172 They have dual effects on tumor cell proliferation, 
angiogenesis, and DR by promoting or inhibiting them. Thus, DR 
affected by lncRNA appears in various aspects of tumor treat-
ment strategies involving chemotherapy, targeted therapy, and 
immunotherapy.178,179 Recently discovered lncRNA SET binding 
factor 2 antisense RNA 1 (lncRNA SBF2-AS1), an oncogenic anti-
sense RNA to SBF2, is located at 11p15.1 locus and is 2708 nt long. 
Furthermore, lncRNA SBF2-AS1 participates in the progression 
of various tumors, including CRC.180 lncRNA and miRNA interact 
with each other. On the one hand, lncRNA can regulate diverse 
functions and expression levels of miRNA as endogenous regula-
tors. On the other hand, miRNA affects the stability of lncRNA 
after combining with it. lncRNA can competitively bind to the 
target mRNA of miRNA to isolate it, thereby inhibiting its func-
tion. Multiple pairs of interacting lncRNA and miRNA have been 
identified in angiogenesis, such as H19/miR-let-7 and NFIA/miR-
382-5p.181,182 Interactions among lncRNA/miRNA/mRNA have 
been found in liver metastasis, EMT, inflammation formation, and 
chemoresistance/radioresistance in CRC. In summary, lncRNAs 
play an important role in CRC growth and metastasis.183

miRNAs are highly conserved short single-stranded ncRNAs 
(18–22 nucleotides). They promote regulatory effects via the 
3′-untranslated binding region (3′-UTR) of target messenger RNA in 
the posttranscriptional regulation of genes,184 which indicates that 
miRNAs modulate protein-coding gene expression primarily through 
mRNA degradation or silencing.172 In addition, miRNAs have two 
contradictory functions in regulating angiogenesis in CRC. Some 
miRNAs directly affect VEGF or inhibit angiogenesis through certain 
signaling pathways (PI3K/AKT and HIF-1a). By contrast, some other 
RNAs, particularly exocrine-derived ones, can promote angiogene-
sis. Along with angiogenesis, miRNAs also have effects on cancer 

genesis, invasion, and metastasis as diverse functions.182,185 miRNAs 
that promote or inhibit angiogenesis are shown in Table 1.

Previous studies showed that circRNAs also play multiple roles 
in regulating the TME.187 circRNAs are a family of single-stranded 
closed-circle molecules that lack 5′ and 3′ ends and poly(A) tails, 
which make them capable of resisting RNase R, leading to high 
stability.188 As an indispensable factor inhibiting angiogenesis, cir-
cRNAs can conversely promote VEGFA and the expression of other 
pro-angiogenic molecules to positively regulate angiogenesis.187 
For example, the high expression of circ-Erbin was found in CRC, 
thereby promoting the miR-125a-5p-5p/miR-138-5p/4E binding 
protein 1 axis to elevate the expression of HIF-1α and finally induc-
ing angiogenesis.189 By contrast, in glioblastoma multiforme cells, 
circSMARCA5 was confirmed to downregulate the expression of 
VEGFA through alternative splicing of its pre-mRNA to limit the in-
crease of blood vessel density.190 Several studies showed similar 
results; the expression levels of different circRNAs might be up-
regulated or downregulated in CRC. Collectively, these research 
findings revealed that circRNA is related to the progression and 
pathogenesis of CRC.191 As they can be both oncogenic and anti-
oncogenic, circRNAs can potentially be utilized in the treatment 
and prognosis of CRC.192

Therefore, by enlarging our perspective to the level of the micro-
environment, the participation of different functions of various cells 
and the specific release of different types of signals make this mix-
ture similar to soil with abundant nutrients, which is greatly different 
from the normal tissue environment. Such an environment is more 
conducive to the growth and development of tumors than a normal 
tissue environment.

3.5  |  Gut microbiota

Being parasitic in the human intestinal tract, the microflora is a huge 
organism that can interact with the host. As for CRC, the gut mi-
crobiota plays a special role. Gut microflora is important for host 

TA B L E  1  miRNAs that regulate angiogenesis in colorectal cancer185,186

miRNA Function Targets Result

miR-145, miR-206, miR-148a, miR-195-5p, miR-107 Inhibit HIF Inhibit angiogenesis

miR-622, miR-590-5p, miR-520a, miR-126, miR-27b, 
miR-150-5p, miR-1249

Inhibit VEGF

miR-218 Inhibit Connective tissue growth factor

miR-125a-3p, miR-143 Inhibit PI3K/AKT

miR-7, miR-375 Inhibit EGFR

miR-181a-5p Inhibit MMP-14

miR-181a Activate SRC (increased VEGF secretion) Promote angiogenesis

miR-1229 Inhibit HIPK2 (inhibits VEGF angiogenic gene)

miR-194 Inhibit Platelet-reactive protein 1 (TSP-1 inhibits VEGF)

miR-25-3p Inhibit KLF2/KLF4 (inhibit promoter activity of VEGFR2)

Abbreviations: HIF, hypoxia-inducible factor; VEGF, vascular endothelial growth factor.
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survival and health because of its antitumor capability, and it can 
alleviate tissue damage by reducing the level of oxygen free radicals. 
A significant abundance variation of intestinal flora was found in pa-
tients with CRC compared with healthy people.193 The abundance 
of intestinal flora is affected by hypoxia in the microenvironment.194 
Alterations in specific flora abundance might accelerate the forma-
tion and development of CRC. In addition, gut microbiota is involved 
in modulating immunity, transforming metabolome, and modifying 
the therapeutic effect.154,195 Disturbance of the category and quan-
tity of intestinal flora activates the NF-κB pathway by stimulating 
intestinal epithelial cells that can trigger an inflammation stage.193 
Furthermore, chronic inflammation is the key element in inducing 
CRC formation. Several pro-tumorigenic and anti-tumorigenic bac-
terial species and their respective products of metabolism disturb 
major signaling pathways such as Wnt, PI3K-Akt, MAPK, TGF-β, 
EGFR, mTOR, and p53.196 Intestinal microflora also participates in 
the formation of the TME by mediating angiogenesis.197 In general, 
bacterial toxins are related to pro-inflammatory processes, activa-
tion of angiogenesis, and cellular proliferation pathways.198 Notably, 
among multitudinous intestinal microflora metabolites, bile acid can 
promote CRC progression through multiple mechanisms, including 
inhibiting apoptosis and enhancing cancer cell proliferation, invasion, 
and angiogenesis.199 Some scholars have proposed the application 
of drugs for intestinal flora in combination with chemotherapy and 
immunotherapy to improve treatment response and tolerance.198

4  |  TRE ATMENT STR ATEGY

In recent decades, with the research progress on cancer etiology, 
treatment methods for CRC have been constantly updated and 
improved. Besides surgery, which is the most common treatment 
method, other approaches such as chemotherapy, targeted therapy, 
immunotherapy, and radiotherapy are used to improve therapeu-
tic effectiveness and prognosis and extend the survival period and 
quality of life of patients with metastatic CRC (mCRC). For patients 
with neoadjuvant chemotherapy indications, 5-fluorouracil (5-FU), 
5-FU plus leucovorin (LV), single-agent capecitabine, reduced-dose 
capecitabine plus oxaliplatin (XELOX), or oxaliplatin plus 5-FU plus 
LV (FOLFOX) are considered optimal treatment schemes.200 On the 
basis of the staging of patients with CRC, postoperative adjuvant 
chemotherapy, including 5-FU plus LV, capecitabine, mFOLFOX6, 
or XELOX, might be selected. Among these plans, combination with 
oxaliplatin has the best treatment effect and the greatest benefit 
for patients.201–203 FOLFIRI (doublet cytotoxic combinations of fluo-
rouracil, leucovorin, and irinotecan) and FOLFOX are the two first-
line treatment prescriptions for patients with mCRC, and they are 
presently recommended by European Society for Medical Oncology 
(ESMO) guidelines and the Pan-Asia adaptation of the guidelines.2,204

Clinical evidence has shown that combination with targeted ther-
apy and chemotherapy significantly improves progression-free sur-
vival (PFS) and overall survival (OS) compared to chemotherapy alone 
in patients with mCRC.200 Among various aspects, angiogenesis has 

been validated to be a key element in the pathogenesis of malig-
nancy, and it has provided biological insights and subsequent thera-
peutic options.10 Regarding its central status in tumor angiogenesis, 
VEGFs and their receptors are the major targets in anti-angiogenesis 
treatment.205 Tumors highly dependent on VEGF-induced angiogen-
esis, such as CRC, renal cell carcinoma, and neuroendocrine tumors, 
might have a relatively satisfactory response to anti-VEGF drugs.206 
In addition, targeted drugs are recommended as first-line treatment 
drugs for most patients, unless contraindications exist.30

4.1  |  Targeting agents

Inhibition of angiogenesis by blocking VEGF is a major focus of tar-
geted cancer therapy. The important functions of pro-angiogenesis 
molecules, which have strong relations with tumor growth, invasion, 
and metastasis, make them ideal targets in suppressing tumors in-
cluding CRC.32 VEGF is one of the most decisive factors that pro-
mote angiogenesis. Several different strategies have been applied 
to block VEGF, such as neutralizing anti-VEGF monoclonal antibod-
ies, monoclonal antibodies that block VEGFRs, and small-molecule 
tyrosine kinase inhibitors (TKIs) that block VEGFR activation and 
downstream signaling Figure 1.207

Anti-VEGF: Bevacizumab is an IgG1 humanized monoclonal an-
tibody (MoAB) against VEGF-A. Initially, it was recommended as a 
first-line treatment because it showed good results in phases I and 
II clinical trials. Bevacizumab plus chemotherapy, compared with 
chemotherapy alone, showed advantages for PFS (10.6 months 
vs. 6.2 months, p < 0.001) and OS (20.3 months vs. 15.6 months, 
p < 0.001).208 Nevertheless, bevacizumab combined with standard 
first-line treatment did not show the expected advantages of treat-
ment with ras mutation in a phase III clinical trial.209 As a second-line 
treatment, bevacizumab plus FOLFOX had a better outcome than 
FOLFOX alone: 7.3 months versus 4.7 months (p < 0.001) in PFS and 
12.9 months versus 10.8 months (p = 0.0011) in OS.210 Therefore, it 
was recommended that bevacizumab be combined with a chemo-
therapy regimen. In addition, other researchers have proposed that 
bevacizumab can eliminate RAS mutant clones to convert RAS gene 
mutant, which is more dependent on angiogenesis compared with 
wild-type (WT) RAS genes.211

Aflibecept: Aflibecept is a fusion protein targeting VEGF-A, 
VEGF-B, and PlGF. It might exhibit a more comprehensive inhibition 
effect on angiogenesis because of its multiple targets compared 
with bevacizumab or ramucirumab.30 VELOUR results212 revealed 
that the OS median survival was 13.50 months in the FOLFIRI/af-
libercept group versus 12.06 months in the control group. Moreover, 
FOLFIRI/aflibercept showed a remarkable improvement in the me-
dian PFS of 6.90 months versus 4.67 in the placebo (p < 0.0001). The 
response rate (RR) was 19.8% in the aflibercept group but 11.1% in 
the placebo group (p < 0.0001).213 Strongly supported by existing 
research results, aflibercept combined with FOLFIRI can be an op-
tion for patients with DR or progression after oxaliplatin-containing 
treatment. Meanwhile, ESMO guidelines explicitly recommend 
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aflibercept as an alternative second-line treatment agent for RAS 
WT and RAS mutant patients.30

Anti-VEGF receptors: Ramucirumab is a humanized monoclo-
nal antibody targeting the extracellular domain of VEGF receptor 2 
(VEGFR2). It received US Food and Drug Administration (FDA) ap-
proval in 2015 for the second-line treatment of mCRC214 combined 
with FOLFIRI, based on the results of the RAISE trial. Ramucirumab 
is a newcomer among the antiangiogenic agents that can improve 
overall survival with a safe and manageable toxicity profile.215 
Fruquintinib (HMPL-013), a long-term small-molecule, which can 
selectively inhibit VEGFR (VEGFR1, VEGFR2, and VEGFR3), has 
demonstrated several advantages, such as low off-target toxicity, 
good drug tolerance, and a remarkable effect in clinical studies. 
Thus, it is recommended as a third-line agent for the treatment of 
patients with CRC via other targeted therapy drugs.216

Numerous small-molecule TKIs exist.217 Regorafenib is a multi-
targeting kinase inhibitor (TKI) approved for the treatment of pa-
tients with mCRC as a third-line treatment for advanced CRC in 
comparison with standard chemotherapy.218 This agent was origi-
nally developed as a RAF1 inhibitor. The dual blockade of VEGFRs 
and TIE2 can lead to accessional anti-angiogenesis effects and the 
distinctive regulation of vessel stability. In addition, it is a TKI of the 
VEGF signaling pathways,219 enabling its continuous antiangiogenic 
effect even in tumors resistant to VEGF inhibitors. Moreover, rego-
rafenib has the important effect of enhancing anti-tumor immunity 
via macrophage modulation.220 Therefore, preliminary evidence 
suggested that this multi-kinase inhibitor might be an optimal com-
bination partner for immune checkpoint inhibitors (ICIs).221

However, prolonged VEGF blockade enhances tumor hypoxia, 
causes resistance to hypoxia-induced apoptosis, and increases VEGF 
expression, thereby promoting tumor aggressiveness.222,223 Aside 
from VEGFR, EGFR is another commonly used target in treating the 
anti-angiogenesis of CRC.224 The treatment strategy often has two 
directions: monoclonal antibodies that block EFGR and inhibitors 
targeting intracellular tyrosine kinase. As a chimeric IgG antibody, 
cetuximab leads to the internalization and degradation of EGFR 
after binding to its external domain.225 However, immunity reactions 
might occur as cetuximab is a murine-human chimeric antibody. 
Panitumumab is the perfect solution to this issue; it is an antibody 
that is fully humanized and does not induce cytotoxicity mediated by 
antibody-dependent cells.226 Cetuximab and panitumumab are ap-
proved as first-line treatment agents for CRC by the FDA. However, 
anti-EGFR drugs are not recommended for priority use in second- or 
third-line treatment of CRC because they do not show good statis-
tics in PFS or OS.227 Approximately 45% of colon cancer cells present 
RAS mutations.228 In patients with mCRC, the proportions of KRAS, 
NRAS, and HRAS mutations are 40%–50%, 2%–9%, and 1%–2%, re-
spectively.229 The KRAS proto-oncogene encodes a GTPase protein 
(KRAS) that is crucial in copious molecular pathways including the 
EGFR pathway.230 With high-frequency occurrence in CRC KRAS 
mutations, KRAS G12V is related to multiple aspects of tumor clin-
ical pathology, such as invasion and poor prognosis. Moreover, it is 
linked to undesirable therapeutic effects of anti-EGFR agents. There 

are interactions between KRAS G12V and HIF-1α. Furthermore, 
KRAS G12V promotes the expression of HIF-1α, whereas overex-
pressed hypoxia or HIF-1α activates KRAS G12V. Only patients with 
WT RAS tumors receive a clinical benefit from anti-EGFR antibody 
therapy.231 Hypoxia is related to anti-EGFR therapy resistance. Thus, 
adding HIF-1α inhibitor PX-478 to it might achieve a good therapeu-
tic effect.232 Moreover, KRAS mutations can represent the response 
to EGFR inhibitors as a negative predictive factor.231 With the intro-
duction of anti-EGFR in the treatment of RAS WT mCRC, the optimal 
sequencing between anti-VEGFs and anti-EGFRs in this population 
of patients has been a matter of intense debate. For example, data 
from Francesca showed that using anti-EGFRs in the first-line setting 
for the right CRC (RC) should be avoided when other therapeutic al-
ternatives are available.233 Meanwhile, for RAS WT metastatic CRC 
patients with left-side colon tumors, chemotherapy plus anti-EGFR 
agents are recommended as first-line treatment.43

Ingredients from traditional Chinese medicine, such as several 
phenolic compounds (e.g., flavones, phenolcarboxylic acids, and 
ellagitannins),234 hyperforin,235 Raddeanin A,236 and matrine237 
suppress CRC by inhibiting angiogenesis and other mechanisms. 
However, the details are not clearly explained. These promising 
pharmaceutical ingredients have not been approved as standard 
treatment drugs, which might be used as an adjuvant treatment.

4.2  |  Drug resistance

Drug resistance cannot be ignored in the treatment of CRC. Data 
from Bardelli et al. reported that DR occurs in approximately 80% of 
cases during treatment.238 The mechanisms of DR are divided into 
the following three aspects: transformation in VEGF dependence, 
alternative pathways, and stromal cell interactions.32 As described, 
anti-angiogenic therapies might cause hypoxia and increase HIF-1a 
expression, which are known as drivers of EMT. Moreover, HIF-1 
has multiple functions to promote cancer cell survival in the hypoxic 
environment. Resistance to anti-angiogenesis agents involves sev-
eral different but related mechanisms: recruiting various BMDCs, 
which differentiate into ECs, pericytes, and pro-angiogenic mono-
cytes, such as TAM; enhancing and increasing pericyte coverage, 
which safeguards tumor blood vessels; and increasing invasiveness 
of tumor cells, thereby leading to vessel co-option.28,239,240

Compensatory pathways in angiogenesis are nonnegligible in 
DR. TGF-β, FGF 2, PDGF, Ang-2, and IL-1 are assumed to be highly 
relevant to anti-VEGF resistance in cancer.241 Alternative angiogenic 
factors and their pathways are shown in Table  2. Others involve 
EGF, G-CSF, PlGF, HGF, stromal cell-derived factor-1, and IGF.242 
The table below shows that Ras/Raf/MEK/ERK and PI3K/Akt are 
the major downstream signaling pathways. Interestingly, these two 
pathways are also the dominant cascades of EGFR activation,199 
which indirectly validates the crosstalk between VEGF and EFGR. 
Other mechanisms might include EGF overexpression, EGFR alter-
ation, RAS/RAF/PI3K gene mutations, ERBB2/MET/IGF-1R activa-
tion, metabolic remodeling, MSI, and autophagy.243
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Molecular and biochemical mechanisms are related to the phe-
notypic changes that support carcinogenesis, including apoptosis 
inhibition, reinforced tumor cell proliferation, increased invasive-
ness, cell adhesion perturbations, angiogenesis promotion, and 
immune surveillance inhibition.231 Tumor immune escape implies 
that tumor cells escape from immune surveillance and inhibit the 
immune response of the host.244 Tumor cells have developed sev-
eral mechanisms to avoid detection by immune cells. Secretion of 
soluble immunosuppressive factors, such as TGF-β and IL-10, or 
downregulation of major histocompatibility complex (MHC 1) ex-
pression might all be related to immune escape.245 IC modulation is 
another well-known mechanism by which tumor cells suppress the 
local immune response. IC receptors, including programmed death 
1 (PD-1), cytotoxic T lymphocyte antigen 4 (CTLA-4), and CD279, 
contribute to inactivating and exhausting tumor-related T cells.246

ICIs represent a new time for cancer treatment. They selectively 
combine with immunosuppressive molecules on the surface of im-
munocytes (e.g., CTLA-4) or on tumor cells, such as PD-1 or their li-
gand (PD-L1), to block tumor cells’ immune escape.247,248 Ipilimumab, 
pembrolizumab, and nivolumab are three types of ICIs approved 
by the FDA in 2015 for CRC treatment in patients with mismatch 
repair defects or microsatellite instability.221,249 Nivolumab and 
pembrolizumab are anti-PD1 drugs that competitively bind with 
PD-1, thereby blocking tumor immune evasion mediated by the 
combination of PD-1 and its ligands, PD-L1 or PD-L2. By contrast, 
ipilimumab inhibits the combination of CTLA-4 and a cluster of dif-
ferentiation 80/86 (CD80/CD86), which attenuates T-cell activation. 
Nevertheless, the application of ICIs remains limited because of the 
lack of sensitive markers and inevitable DR.154

5  |  DISCUSSION

To date, although anti-angiogenesis agents, with their highlighted ad-
vantages such as improving oxygen levels and drug delivery through 
vascular normalization, carry weight in the treatment of CRC, their 

therapeutic efficacy remains far from satisfactory. However, ensuring 
that every patient receiving treatment achieves satisfactory results in 
one unified plan is never an easy task. With the increase in knowl-
edge about CRC, novel targets have been identified. Nevertheless, 
therapy resistance and unresponsiveness to immunotherapy remain 
major treatment obstacles. However, the treatment scheme selection 
based on biomarkers for patients with CRC remains limited because 
of the incomplete accuracy of conventional biomarkers in diagnosis, 
prediction, and prognosis. Thus, further studies are necessary to de-
velop clinically applicable biomarkers. However, developing appropri-
ate therapeutic programs to increase ICI activity and efficacy through 
the regulation of gut microbiota in patients with CRC is another clinical 
challenge. Artificial intelligence shows promise and will takes us into a 
new era to persistently improve molecular prediction algorithms from 
the sea of usable data. It might help us explore new methods to over-
come the predicaments of the current antitumor strategy.
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Ligands→ Ang-2 Bv8 bFGF IL-1 PDGF PlGF TGF -β1

Receptors→

Tie2 PROKR2 FGFR IL-1RI, IL-1RAcP PDGFR VEGFR1, NRP1/2
TGF-βRII, 
TGF -βRIPathways↓

Ras/Raf/MEK/ERK ▲ ▲ ▲

PI3K/Akt ▲ ▲ ▲ ▲

JAK/STAT ▲

PLCγ ▲ ▲

NF-κB ▲

JNK ▲

P38/MAPK ▲ ▲

Smad ▲

Note: ▲: regulating downstream pathways.
Abbreviation: VEGF, vascular endothelial growth factor.
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