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The human body is a complex system maintained in homeostasis thanks to the interactions 
between multiple physiological regulation systems. When faced with physical or biological 
perturbations, this system must react by keeping a balance between adaptability and 
robustness. The SARS-COV-2 virus infection poses an immune system challenge that tests 
the organism’s homeostatic response. Notably, the elderly and men are particularly vulnerable 
to severe disease, poor outcomes, and death. Mexico seems to have more infected young 
men than anywhere else. The goal of this study is to determine the differences in the 
relationships that link physiological variables that characterize the elderly and men, and those 
that characterize fatal outcomes in young men. To accomplish this, we examined a database 
of patients with moderate to severe COVID-19 (471 men and 277 women) registered at the 
“Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán” in March 2020. The 
sample was stratified by outcome, age, and sex. Physiological networks were built using 67 
physiological variables (vital signs, anthropometric, hematic, biochemical, and tomographic 
variables) recorded upon hospital admission. Individual variables and system behavior were 
examined by descriptive statistics, differences between groups, principal component analysis, 
and network analysis. We show how topological network properties, particularly clustering 
coefficient, become disrupted in disease. Finally, anthropometric, metabolic, inflammatory, 
and pulmonary cluster interaction characterize the deceased young male group.
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INTRODUCTION

Currently, the world is undergoing a global pandemic of 
coronavirus infection with SARS-CoV-2 resulting in COVID-19 
(Novelli et al., 2021). This infection presents mainly as a severe 
acute respiratory syndrome that has affected millions of people. 
Since the beginning of the pandemic, the elderly and men 
were identified as particularly vulnerable to severe disease, 
poor outcomes, and death (Carethers, 2021). Although several 
vaccines have been developed for the prevention of this disease, 
and great efforts for worldwide vaccination are being made 
(Case et  al., 2021), this disease has the potential to become 
endemic (Phillips, 2021). A shift in incidence toward younger 
groups of age, driven by several complex dynamics, has been 
identified (Malmgren et al., 2021; Monod et al., 2021). Country-
specific patterns in these shifts caused by socioeconomic factors 
provide detail in the changing landscape of this disease (Leong 
et  al., 2021). In Mexico, there appear to be  more diseased 
young men than anywhere else, this is likely due to an underlying 
epidemic of non-communicable diseases, such as obesity and 
diabetes (Monterrubio-Flores et  al., 2021).

The human body is a complex system maintained in 
homeostasis as a result of the interactions between multiple 
physiological regulation systems (the cardiovascular system 
balances needs like thermoregulation, with and chemo- and 
baro-regulation, heart rate, blood pressure and vascular tone 
being the result of the summation of these multiple and constant 
inputs). When faced with physical or biological perturbations, 
this system must react by keeping a balance between adaptability 
and robustness (Fossion et al., 2020). Furthermore, homeostasis 
is an emergent phenomenon resulting from numerous 
relationships embedded within the physiological network, the 
global set of interactions that take place inside the human 
body (Goldstein, 2019). The SARS-COV-2 virus infection poses 
an immune system challenge that tests the organism’s homeostatic 
response (Sieck, 2020). This challenge is not limited to respiratory 
tract problems. Besides the lungs, several tissues are potential 
targets to SARS-CoV-2 due to their ACE2 expression (Zou 
et al., 2020). Particularly, protein expression has been confirmed 
for endothelial cells in the vasculature of several organs and 
intestinal enterocytes (Hamming et  al., 2004). Autopsy series 
show that while COVID-19 is conceptualized as a primarily 
respiratory illness, widespread effects in the body are present 
(Bryce et  al., 2021). Indeed, extra respiratory manifestations 
are common during and after COVID-19 (Lai et  al., 2020; 
Lopez-Leon et  al., 2021).

Consequently, viral-host interaction may be  understood as 
a mix or transition between two dynamics, localized physiological 
host response and disseminated pathogenic host response (Bohn 
et al., 2020). Local pulmonary effects propagate through several 
mechanisms from the infected lungs to the rest of the body, 
mainly by immune and endothelial cell signaling that generates 
systemic responses (Teuwen et  al., 2020; Gustine and Jones, 
2021). The challenge arises in how to characterize the “aberrant 
regulation” present in severe disease with fatal outcome. The 
goal of this study is to identify different physiological system 
states and determine the differences in the relationships that 

link physiological variables that characterize the traditionally 
vulnerable populations of elderly and men and those that drive 
fatal outcomes in young men. The topology of the physiological 
interactions has immediate functional and dynamic implications 
that are inaccessible through reductionist approaches and lower-
order analysis (Jansson, 2020).

MATERIALS AND METHODS

This study included consecutive patients evaluated at the 
Instituto Nacional de Ciencias Médicas y Nutrición Salvador 
Zubirán (INCMNSZ), a COVID-19 reference center in Mexico 
City between 17 March and 31 May 2020. Subjects were 
initially assessed at triage and required either ambulatory or 
in-hospital care for COVID-19, confirmed with computerized 
tomography (CT) and/or via RT-qPCR test from nasopharyngeal 
swabs. All patients had moderate to severe disease as defined 
by National Institute of Health criteria (National Institutes 
of Health, 2021). Moderate illness was defined as evidence 
of lower respiratory disease during clinical assessment or 
imaging and who have saturation of oxygen (SpO2) ≥ 94% 
on air, and severe illness as SpO2 < 94% on air, a ratio of 
arterial partial pressure of oxygen to fraction of inspired 
oxygen (PaO2/FiO2) <300 mm Hg, respiratory frequency > 30 
breaths/min, or lung infiltrates > 50%. In the database, only 
eight women had moderate disease, but required hospitalization, 
all other patients had severe disease. All patients underwent 
a chest CT, and a radiologist determined the degree of 
pulmonary parenchymal disease and assessed epicardial fat 
thickness. In addition, a medical history, anthropometric 
measurements, and laboratory tests were obtained. The present 
study is a secondary analysis of an existing database that 
was constructed in the frame of a clinical trial realized at 
the Instituto Nacional de Ciencias Médicas y Nutrición Salvador 
Zubirán (INCMNSZ). All study participants gave their written 
consent that their anonymized data may be  used for that 
clinical trial and other subsequent research protocols that 
are submitted to and approved by the research and ethics 
committee of INCMNSZ. The present study was approved 
by the research and ethics committee (Ref. 3,383) and informed 
consent was waived due to its nature of being a 
secondary analysis.

Measurements in this study were taken immediately upon 
arrival to the hospital, prior to the establishment of medical 
treatment. This dataset contains 53 physiological variables 
including vital signs, oxygenation, anthropometry, biochemical 
and cytological blood parameters, and CT scan evaluation, 
derived variables employed in the clinical setting, and two 
variables of hospitalization and ventilatory support time 
(Supplementary Tables 1 and 2).

This sample was stratified according to sex, age, and disease 
outcome. Men and women were divided into two age groups 
for analysis: old (over 60 years old) and young (under 60 years 
old). Hospitalized patients were followed until they recovered 
and were medically discharged or died. The database contained 
748 patients in total. From the recovered group, 25 patients 

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Barajas-Martínez et al. Physiological Network Disruption in COVID-19

Frontiers in Physiology | www.frontiersin.org 3 March 2022 | Volume 13 | Article 848172

were transferred to other hospitals prior to full hospital discharge, 
seven of them were transferred to medical facilities dedicated 
exclusively to patient recovery. Patients who were still receiving 
treatment at the end of the study period (n = 48) were excluded 
from the analysis.

This resulted in eight groups of patients. From these groups, 
only four had more than 60 patients each: recovered young 
females (FYR), recovered young men (MYR), deceased young 
men (MYD), recovered old men (MOR), and an additional 
group comprising deceased old men (MOD) was included. 
Comparison between these groups allowed us to check for 
differences likely due to outcome in young males, age in males, 
and sex in young and recovered, outcome in old males and 
both age and outcome in males (Figure  1).

Model Rationale
The milieu intérieur (internal media) comprises several-regulated 
physiological variables necessary for cellular function, being 
kept within boundaries (setpoints). To keep these regulated 
variables outside their thermodynamic equilibrium and within 
healthy limits, entropy must be  transferred elsewhere in the 
system through effector variables (Fossion et  al., 2021). In this 
model, if a variable is kept ideally within its setpoint, no 
correlation between the regulated variables and the effector 
variables is found because their perturbations are quenched 

successfully. Gaussian distributions would suggest a successful 
homeostatic regulation that “erases” the memory of past  
perturbations.

However, when an external or internal perturbation “pushes” 
a regulated variable outside its setpoint, a negative feedback 
loop is activated to counteract the perturbation (Fossion et  al., 
2018). For a regulated variable, these perturbations may occur 
in both directions. In contrast, an effector variable has a 
preferred direction of action in which it responds. In this 
loop, the related effector variable changes in function of the 
deviation of the regulated variable from the setpoint but exerting 
a balancing effect on the system. Effector variables need time 
to counteract the perturbations, sustaining their change in one 
direction for a length of time. As both variables are entrained, 
their values correlate, showing their shared fluctuation.

Over time, the counteracting of the effector variables absorbs 
the entropy from the regulated variables. This results in regulated 
variables keeping Gaussian behavior and effector variables 
exhibiting long tails (Rivera et  al., 2018).

Perturbations cascade from related variable to variable across 
the system until all alterations of the milieu intérieur reach 
their setpoint. Some regulated variables may be effector variables 
depending on the direction of this cascade. Multiple simultaneous 
perturbations may have synergic or counteracting effects as 
they cascade.

FIGURE 1 | Study design. Patients in the database were classified based on their sex, age, and disease outcome. The network analysis included five groups. Four 
comparisons were made for groups that differed in sex, outcome, age, and both age and outcome.
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In this model, in a pathological state, the entropy pump 
becomes less efficient, requiring increasing response of the 
effector variables to quench the perturbation of the regulated 
variables. The regulated variable that departs from its Gaussian 
behavior indicating wear in the system. This results in increasing 
correlation between physiological variables, producing network 
topology change characterized by increased transitivity and 
clustering coefficient (Barajas-Martínez et  al., 2020). This 
cumulative damage hinders the response to future perturbations.

The disease state is established once a regulated variable 
loses its constraints. This results in a decrease of the correlation 
between physiological variables, decreasing clustering coefficient, 
and increasing modularity (Barajas-Martínez et  al., 2020). In 
an infectious disease, a physiological response is elicited by 
immune recognition of non-self-elements present in the 
microorganism. Both this response and the damage elicited 
by the microorganism change the way physiological variables 
interact. This will result in topological changes that show how 
physiology is affected by disease.

In the present contribution, unless explicitly stated, the same 
mathematical methodology and parameters have been used as 
in our previous publications on physiological networks in this 
journal (Barajas-Martínez et al., 2020, 2021a,b). All calculations 
have been carried out in R, in particular using the packages 
igraph, which includes the Louvain and InfoMAP algorithms 
implementation, and ForceAtlas2 for the topological clustering 
(Barajas-Martínez et  al., 2020, 2021a,b).

Normalization Procedure
Physiological variables are measured in several different units 
to quantify distances, weights, substance concentrations, cellular 
amounts, etc. These differences make comparisons between 
variables difficult. We  use a normalization procedure based 
on the normal ranges and criteria reported in clinical guidelines 
and medical references (Barajas-Martínez et  al., 2021a; 
Supplementary Table  1 for men and Supplementary Table  2 
for women). This allows for immediate identification of values 
above (>1) or below (<0) the thresholds set on the best evidence 
present in the literature. If there are no applicable ranges or 
health guidelines in the literature for certain physiological 
variables, the range of data values was used for normalization.

Descriptive Statistics
Firstly, data distribution of physiological variables may 
be  examined. Regulated variables have a setpoint in health, 
and in consequence, their values will oscillate closely around 
said mean, resulting in a Gaussian distribution. On the other 
hand, effector variables will increase their variation coefficient, 
skewness, and excess kurtosis to account for the disturbances 
of regulated variables (Fossion et  al., 2020). As the capacity 
of the effector variables to quench these disturbances is reduced, 
this landscape of distributions changes, allowing for a loss of 
the Gaussian distribution of the regulated variables, and as 
effector variables become worn or exhausted, are unable to 
sustain their uni-directional response and may appear 
more Gaussian.

Descriptive statistics were computed for each physiological 
variable. For the full dataset and each of the main groups 
studied in this study, mean (μ) standard deviation (σ), coefficient 
of variation (σ/μ), skewness (sk), excess kurtosis (k), deviation 
from Gaussian behavior (⍺), and number of measurements 
(n) are provided (Supplementary Table  3; 
Supplementary Figure  1).
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Because the majority of the physiological variables did not 
have a Gaussian distribution, Mann–Whitney U tests were used 
to compare each group to the MYR group. Fisher’s exact test 
was performed to evaluate whether there were significant 
differences in the prevalence of certain conditions between 
groups. Due to the multiple comparisons performed, values 
of p were adjusted with the Holm-Sidak method.

Principal Component Analysis
Next, the physiological variables’ mutual dependence was 
examined. The Spearman correlation coefficient is a 
non-parametric test that indicates monotonic relationships 
between variables. The correlation matrix of the whole database 
was examined by principal component analysis (PCA; Vásquez-
Correa and Rodas, 2019). Variables were ordered according 
to the first principal component followed by optimal leaf order 
for hierarchical clustering (Bar-Joseph et  al., 2001). To further 
analyze the underlying data structure obtained by PCA, 
we examined the components selected by Bayesian information 
criterion (Revelle, 2021).

Network Analysis
Because each group of interest had a different number of 
patients, from each group  60 patients were randomly selected 
to generate correlation matrices. This procedure was repeated 
30 times and the correlation matrices were averaged. The 
Spearman rank order correlation matrix of each group was 
filtered by p < 0.05 and determination coefficient > 1%. Perfect 
correlations between a variable and itself, and between a variable 
and its derived variable are discarded. This adjacency matrix 
is then presented as a network, where it is possible to visualize 
functional clusters of physiological variables and the paths that 
perturbations follow across the physiological system, as well 
as the changes in the interactions between physiological variables 
and in the structure and organization of the physiological 
network. Results from 30 networks were averaged to analyze 
differences between graph level indices and centrality measures.

The full physiological networks are provided in 
(Supplementary Figures  2–6). In these networks node, color 
shows the median value of the normalized physiological variable, 
and the size shows the divergence from normal distribution. 
These nodes are placed according to a LinLog energy model 
where distance depends on edge density. If two nodes share 
the same edges they are superimposed. Nodes were grouped 
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by the Spinglass algorithm, which works by quality metric 
optimization to find which nodes belong to the same community. 
Network analysis was performed (Barajas-Martínez et al., 2021b). 
Laplacian centrality was selected as the measure of radial 
centrality in the network (Qi et  al., 2012) while fractional 
flow betweenness was chosen to measure medial centrality 
(Koschützki et  al., 2005). Physiological variables may behave 
differently in different networks, altering the centrality values 
of nodes within networks. Medial node centralities depend on 
the walk structure, they are prone to change more easily from 
network to network (Costenbader and Valente, 2003). Spinglass 
clustering was selected to detect communities in the networks 
(Reichardt and Bornholdt, 2006). Clustering was compared by 
normalized mutual information and variation of information 
(Meilă, 2003). Graph structure was compared by product–
moment correlation, structural correlation, and Weisfeiler-
Lehman isomorphism test (Shervashidze et  al., 2011). Overall, 
we  can use this methodology to look for differences in the 
structure of the correlation between physiological variables. 
This, in turn, reflects how COVID-19 alters physiology.

Network Simplification
Physiological networks were constructed from the filtered 
matrices for females young and recovered, males young and 
recovered, males old and recovered, males young and deceased, 
and males old and deceased (Supplementary Figures  2–6). 
To facilitate visualization and meaningful interpretation of the 
physiological networks, InfoMAP algorithm was used to obtain 
the minimal description length of a random walker’s movements 
on a network (Rosvall and Bergstrom, 2008). The network 
was simplified by collapsing the nodes of each InfoMAP cluster 
into the node with greatest eigencentrality creating “supernodes” 
that encompass several closely connected variables. These 
simplified networks highlight interactions between distant 
components in the network.

RESULTS

Database Description
Our sample comes from a tertiary care referral hospital, and 
as such may not reflect current national epidemiological trends. 
Most patients were men, young, and recovered. In contrast, 
few young women reached a fatal outcome. Diabetes prevalence 
was similar between recovered and deceased groups, with the 
exception of young males where diabetes prevalence was doubled 
(17% in males young and recovered to 36% in males young 
and deceased, chi-square = 12.62, df = 1, p = 0.0004).

System-Wide Interactions Are Revealed By 
PCA
By avoiding varimax rotation and keeping the orthogonality 
of the traditional principal components analysis, we  were able 
to isolate “long distance” interactions between physiological 
variables (Table  1; Figure  2). These interactions showcase first 
the main physiological problem in the database, COVID-19 

pulmonary damage, second the obesity and blood pressure 
relation, and third the age-related physiological decay.

In the entire sample, the first principal component accounted 
for 50% of the variation (Figure 2). PC1 was mostly determined 
by biomarkers of COVID-19 severity, neutrophils to lymphocytes 
ratio (DH6), lactic dehydrogenase (M25), C-reactive protein 
(M13) and pulmonary involvement (CT23), and health 
biomarkers albumin (M24) oxygen saturation (O2) and arterial 
oxygen pressure to inspired fraction of oxygen ratio (O3). 
Favorable and unfavorable variables are placed in opposition 
along the first principal component (Figure  2; Table  1).

The second principal component accounted for 10% of the 
variance in the entire sample, with triglycerides to body mass 
index (DM7), body mass index (DB1), and weight (B0) 
contributing to PC2. The second principal component also 
shows shared variance between the anthropometric indicators 
and blood pressure (Table  1). The third principal component 
shows the shared variance between age (D1)-related biomarkers, 
including ultrasensitive troponin, pulmonary artery main trunk 
diameter, serum creatinine, and thoracic subcutaneous 
adipose tissue.

The fifth and sixth principal components show well-known 
physiologically relevant interactions. The fifth principal 
component showcases distinctively only blood pressure measures, 
revealing their mechanical relationship. The sixth principal 
component selects triglycerides, triglycerides to glucose ratio 
and hepatic damage enzymes alanine transferase, and aspartate 
aminotransferase. These variables are indicators of hepatic  
steatosis.

Abnormal interactions which take place during sepsis are 
presented in the fourth, seventh, and eight principal components. 
The fourth principal component shows biomarkers positively 
related as ferritin, estimated glomerular filtration rate, and 
biomarkers negatively related as blood pressure and direct and 
indirect bilirubin. The seventh principal component isolates 
serum creatinine, estimated glomerular filtration rate, total 
neutrophils, alanine transferase and aspartate aminotransferase, 
prothrombin, and D-dimer. Finally, the eight principal component 
reveals the interaction between cytopenia, BUN to creatinine 
ratio, lymphocytes with consolidation, and ground-glass image.

COVID-19 Severity Biomarkers
An advantage of our normalization procedure is the immediate 
identification of physiological variables outside the healthy range 
(Figure  3). Oxygen saturation, the ratio of O2 arterial partial 
pressure to O2 inspired fraction (also known as Horowitz 
index), vitamin D, estimated glomerular filtration rate, total 
lymphocyte count, and lymphocyte percentage all had lower 
values. The majority of the other physiological variables had 
increased values, except height, serum creatinine, direct and 
indirect bilirubin, albumin, BUN to creatinine ratio, hemoglobin, 
platelets, and epicardial fat. Three physiological variables were 
found to be  several times outside the healthy range, C-reactive 
protein, ferritin, and neutrophils to lymphocytes ratio.

Multiple comparisons were performed to assess whether 
a difference in sex, disease outcome, age, or outcome and 
age affects a physiological variable (Table 2; Figure 3). These 
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comparisons were performed in the normalized values to 
control for inherent differences due to sex and age that 
have been described for some physiological variables. For 
instance, a difference between MYR and FYR values in a 
physiological variable that had thresholds adjusted by sex 
indicates that the alteration in values goes beyond the 

correction. This means that a group is being explicitly 
affected by sex. Because differences are sought after 
normalizing, they should not reflect inherent sex differences 
but differential affection by disease. Some physiological 
variables are sensitive to only one stratifying characteristic, 
while others are affected by all.

TABLE 1 | Principal components analysis.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Albumin 0.23 0.08 −0.05 −0.12 −0.06 0.11 −0.17 −0.02
Oxygen saturation 0.24 −0.07 −0.05 −0.1 0 0.08 −0.06 −0.08
PaO2/FiO2 0.22 −0.03 −0.03 −0.04 −0.05 0.02 0.05 −0.04
Estimated glomerular filtration rate 0.15 0.09 −0.13 0.2 0.08 −0.15 0.31 −0.15
Lymphocytes 0.11 0.1 −0.01 0.05 0.02 0.03 −0.13 −0.25
Thoracic subcutaneous a. t. 0.05 0.21 0.27 0.18 −0.02 −0.05 0.05 −0.1
TyG-BMI index −0.08 0.39 0.2 0.05 −0.05 0.12 −0.03 −0.22
Body mass index −0.04 0.4 0.17 0.02 −0.12 −0.01 0 −0.21
Weight −0.03 0.41 0.07 −0.05 −0.21 −0.05 −0.05 −0.1
Hepatic steatosis −0.01 0.23 −0.08 0.09 −0.07 0.13 0.07 0.06
Heart rate −0.06 0.15 −0.2 0.11 0.11 0.03 −0.18 0.19
Axillary temperature 0.01 0.11 −0.09 0 0 −0.04 −0.14 0.15
Prothrombin 0 −0.01 −0.14 −0.08 −0.12 −0.15 −0.22 0.03
Vitamin D 0.03 0.02 −0.14 −0.08 −0.07 −0.03 −0.13 −0.02
Height 0.04 0.11 −0.07 −0.03 −0.19 −0.1 −0.05 0.18
Hemoglobin 0.05 0.1 −0.02 −0.11 −0.09 −0.02 −0.13 −0.08
Diastolic pressure 0.04 0.23 −0.09 −0.24 0.27 −0.03 −0.03 0.09
Mean arterial pressure 0.03 0.25 −0.03 −0.27 0.39 −0.07 0.01 0.15
Systolic pressure 0 0.2 0.07 −0.22 0.44 −0.09 0.05 0.19
Pulse pressure −0.03 0.04 0.14 −0.07 0.29 −0.09 0.09 0.15
Cytopenia 0.02 −0.06 0.13 −0.04 −0.08 0.13 0.03 0.3
Serum creatinine −0.09 −0.04 0.22 −0.01 −0.04 0.18 −0.33 0.17
Consolidation −0.09 0.07 −0.07 0.34 −0.03 −0.22 0.05 0.22
Grounded glass opacity −0.08 0.09 −0.1 0.34 −0.04 −0.22 0.05 0.22
Ventilatory support time −0.11 0.08 −0.07 0.1 −0.06 0.05 −0.15 0.11
Hospitalization time −0.07 0.02 −0.11 0.07 −0.05 0.08 −0.15 0.14
Platelets −0.11 −0.03 −0.17 0.12 0.19 −0.06 0.1 −0.21
Symptomatic time −0.06 0.01 −0.11 −0.1 0.01 −0.1 0.14 −0.14
Indirect bilirubin −0.09 −0.04 −0.09 −0.28 −0.1 −0.15 0.02 −0.17
Direct bilirubin −0.15 −0.01 −0.11 −0.25 −0.15 −0.11 0.05 −0.12
Epicardial fat −0.12 0.06 −0.1 −0.16 −0.14 −0.05 0 0.01
Creatinine kinase −0.06 0.08 −0.03 −0.11 −0.17 0.16 −0.04 0.17
Alanine transaminase −0.07 0.12 −0.19 −0.1 −0.1 0.22 0.35 0.05
Aspartate aminotransferase −0.13 0.04 −0.12 −0.12 −0.17 0.23 0.34 0.13
Ferritin −0.18 0.02 −0.18 −0.2 −0.1 0.12 0.09 0.02
Lactic dehydrogenase −0.24 0.03 −0.09 −0.02 −0.09 0.12 0.11 0.04
Respiratory rate −0.18 0.04 −0.04 0.11 0.07 −0.03 0 0.05
Pulmonary involvement −0.21 0.03 −0.06 0.1 −0.03 −0.14 0.02 −0.03
Fibrinogen −0.2 0 −0.2 0.04 0.13 −0.1 0 −0.12
C-reactive protein −0.22 −0.02 −0.09 −0.01 0.07 −0.07 −0.07 −0.04
Neutrophils/lymphocytes −0.23 −0.09 −0.12 −0.04 0.02 −0.06 −0.11 0.08
Leukocytes −0.21 −0.01 −0.15 0.04 0.09 −0.05 −0.2 −0.16
Total neutrophils −0.15 −0.01 −0.15 0.03 0.07 −0.03 −0.29 −0.18
Triglycerides −0.13 0.04 0 0.13 0.13 0.38 0.04 −0.06
TyG index −0.18 0.04 0.06 0.08 0.16 0.36 −0.02 −0.08
Glucose −0.17 0.02 0.09 −0.02 0.11 0.14 −0.08 −0.03
Blood urea nitrogen −0.21 −0.12 0.16 −0.08 0.02 0.14 −0.18 −0.06
BUN to creatinine ratio −0.14 −0.12 0.15 0.02 0.11 −0.01 0.06 −0.27
D-dimer −0.18 −0.07 0.08 0.02 0 0.02 0.18 0.01
Ultrasensitive troponin −0.15 −0.08 0.25 0.1 0.04 0.01 0.08 0.11
Age −0.12 −0.23 0.26 −0.16 0.04 −0.1 0.08 −0.02
Right pulmonary artery −0.16 0.03 0.21 −0.19 −0.12 −0.23 0.04 0.05
Left pulmonary artery −0.17 0.01 0.21 −0.12 −0.15 −0.2 0.04 0.05
Pulmonary artery trunk −0.12 0.11 0.23 0.03 −0.09 −0.21 −0.04 0.06

Physiological variable contributions to each selected principal component are tabulated according to optimal leaf order.
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Few variables were unaffected by any factor or affected 
equally in the four groups. This was the case for blood pressure 
variables P0, P1, DP0, and DP1, axillary temperature (T0), 
body mass index (DB1) and triglycerides to body mass index 
ratio, triglycerides (M1), triglycerides to body mass index ratio 
(DM7), platelets (H14), and presence of cytopenia (H15). Both 
hospitalization time (HT) and days with symptoms before 
hospitalization (SYMd) were similar for all groups. A few 
variables were different between young recovered males and 
females, prothrombin, vitamin D, bilirubin (direct and indirect), 
epicardial fat, enzymes (creatinine kinase and alanine 
transaminase), and ferritin. As expected by PCA, variables 
placed along the first principal component contributed most 
to total variance and thus provide best discrimination among 
groups. These variables were albumin, oxygen saturation, 

Horowitz index (PaO2/FiO2), estimated glomerular filtration 
rate, lactic dehydrogenase, pulmonary involvement, blood urea 
nitrogen, ultrasensitive troponin, and right and left pulmonary 
artery diameters.

COVID-19 affected biomarkers placed across several 
physiological systems (Figure 4). The proportion of participants 
within each group that had a physiological variable outside 
the reference range, and whether a statistical difference in the 
values was found between groups.

Correlations Between Physiological 
Variables Change With COVID-19 Outcome
After filtering the Spearman correlation matrices by p < 0.05 
and determination coefficient above 1%, they were arranged 

FIGURE 2 | Whole database PCA. The Spearman correlation matrix of the entire database was subjected to PCA. The physiological variable loadings are plotted 
against the PCA1 and PCA2 projections and colored to indicate their contribution, while the transparency indicates cos2.
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by Optimal Leaf Order to highlight regions where correlations 
between groups are different (Figure 5). A region of correlations 
between ferritin, lactic dehydrogenase, respiratory rate, 
pulmonary involvement, fibrinogen, C-reactive protein, 
neutrophils to lymphocytes ratio, leukocytes, and neutrophils 
is present in groups that survived COVID-19 (FYR, MYR, 
and MOR groups) while is lost for the groups of deceased 
(Figure  5). In contrast, a region of correlations appears in 
the non-survival groups between leukocytes, neutrophils, 
triglycerides, triglycerides to glucose index, glucose, blood urea 
nitrogen, BUN to creatinine ratio, D_dimer, and ultrasensitive 
troponin (Figure  5).

Physiological Network Changes in Severe 
COVID-19
Network simplification procedure reduced the number of 
meaningful nodes from 53 to 10 or less (Figures  6, 7). In 
these networks, we  found that a main supernode-related 
pulmonary damage that is surrounded by an ecosystem of 
other physiological variables. This landscape changes from group 
to group. Normal physiological modules are preserved in the 
networks from the recovered groups (FYR, MYR, and MOR). 

For young and recovered networks (FYR and MYR), the main 
supernode is connected with aspartate aminotransferase 
supernode; pulmonary artery diameters supernodes are related 
with pulmonary damage supernode (neutrophils-lymphocytes 
ratio for FYR and consolidation for MYR). A metabolic supernode 
is related to blood pressure supernode (TyG index in FYR or 
TyG-BMI index in MYR). For the networks with severe COVID-
19, these physiological groups are changed. In the networks 
with decease outcome (MYD and MOD), ferritin supernode 
interacts closely with the main supernode dominated by blood 
urea nitrogen (MYD) or oxygen saturation (MOD). For the 
MYR network, the metabolic supernode TyG-BMI index 
correlates with ferritin and direct bilirubin supernodes. In the 
MOD network, prothrombin supernode interacts with leukocytes 
supernode and hepatic steatosis supernode. Physiological variables 
that would not interact in more favorable conditions are clustered 
in the networks with fatal outcome.

The role of each node in the network either as an information 
flow intermediary or as an influential node was assessed by 
fractional flow betweenness and Laplacian centrality, respectively, 
in the right panels. Node color shows the median value of 
the normalized physiological variable, and the size shows the 
divergence from normal distribution. For instance, in the MYR 

FIGURE 3 | Database normalization. Using health intervals reported in the literature, the raw data were normalized (Supplementary Tables 1 and 2). Values are 
presented as Tukey’s box-plots. Values less than 0 are below the acceptable minimum. Values greater than one indicate that the individual has exceeded the highest 
threshold. Values between 0 and 1 (green shadowing area) are considered healthy.
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networks, oxygen saturation is a variable that is both influential 
and intermediary, heart rate is only intermediary but not very 
influential, and the degree of pulmonary involvement is only 
influential. Physiological networks show that variables that may 
be  well within healthy parameters play critical roles in disease 

either acting as exchange mediators or drivers within a network, 
particularly, albumin, bilirubin, and blood urea nitrogen.

Networks were compared by the difference between node degree 
(number of correlations) and strength (weight of the correlations), 
and the difference between normalized median value and normality 

TABLE 2 | Physiological variables differences between groups.

Groups compared Summary FYR MYR MYD MOR MOD

Albumin bcd 3.8 ± 0.4 3.8 ± 0.5 3.4 ± 0.4b 3.6 ± 0.4c 3.3 ± 0.4d

Oxygen saturation bde 85.5 ± 8.8 84.7 ± 9.8 72.2 ± 18.3b 83.4 ± 10.6 68.2 ± 16.7d,e

PaO2/FiO2 bde 256.4 ± 104.4 226.4 ± 88.1 169.6 ± 94.9b 223.1 ± 91.2 151.4 ± 85.6d,e

Estimated glomerular filtration rate abcd 95.4 ± 23.1a 72.8 ± 22.9 59.5 ± 24.9b 57.3 ± 22.1c 48.6 ± 22.4d

Lymphocytes d 956.6 ± 530.2 816 ± 501.3 700.9 ± 443.3 642.2 ± 361.5 547.6 ± 348.2d

Thoracic subcutaneous a. t. ab 23.2 ± 8.4a 14.1 ± 7.9 17.3 ± 9.9b 13.9 ± 8.3 13.4 ± 6.9
TyG-BMI index 155.3 ± 34.5 150 ± 28.5 165.4 ± 36.9 141.6 ± 28.2 146.8 ± 26.4
Body mass index 31 ± 6.4 29.9 ± 5 31.9 ± 6 29 ± 5.2 28.6 ± 4.2
Weight ad 76.9 ± 17a 86.5 ± 16.2 90.6 ± 20 80.3 ± 13.1 77.5 ± 11.2d

Hepatic steatosis c 0.4 ± 0.5 0.4 ± 0.5 0.5 ± 0.5 0.1 ± 0.4c 0.3 ± 0.4
Heart rate ce 101.4 ± 20.1 105.4 ± 15.7 107.3 ± 21.1 92.3 ± 18.8c 105.6 ± 16.1e

Axillary temperature 37.1 ± 0.8 37.3 ± 0.9 37.2 ± 0.9 36.9 ± 0.7 37.2 ± 0.8
Prothrombin a 11.6 ± 1.3a 11.9 ± 1.2 12.3 ± 4.4 14 ± 13.7 14.5 ± 16.2
Vitamin D a 20.4 ± 7.1a 23.7 ± 9.9 20.8 ± 7.4 25.3 ± 9.4 20.3 ± 6.4
Height d 1.6 ± 0.1 1.7 ± 0.1 1.7 ± 0.1 1.7 ± 0.1 1.6 ± 0.1d

Hemoglobin d 16.6 ± 23.5 16.1 ± 1.5 16 ± 1.6 15.8 ± 1.9 15.2 ± 1.6d

Diastolic pressure 74.8 ± 10.4 77.5 ± 10.3 75.8 ± 10.9 74.9 ± 11.2 73.2 ± 12.6
Mean arterial pressure 90.7 ± 10.5 92.8 ± 10.7 90.6 ± 11.7 92.1 ± 11 88.4 ± 14.6
Systolic pressure 122.5 ± 15.1 123.3 ± 15.1 120.1 ± 17.6 126.4 ± 16.2 121.7 ± 17.4
Pulse pressure 47.7 ± 13.2 45.8 ± 12 44.4 ± 14.6 51.5 ± 15 50 ± 18.2
Cytopenia 0.4 ± 0.6 0.4 ± 0.6 0.3 ± 0.5 0.4 ± 0.7 0.3 ± 0.6
Serum creatinine abd 1.2 ± 4.9a 1.1 ± 1.1 1.6 ± 2.7b 1.4 ± 1.4 1.7 ± 2.8d

Consolidation c 0.5 ± 0.5 0.6 ± 0.5 0.5 ± 0.5 0.3 ± 0.5c 0.5 ± 0.5
Grounded glass opacity c 0.5 ± 0.5 0.6 ± 0.5 0.5 ± 0.5 0.3 ± 0.5c 0.5 ± 0.5
Ventilatory support time b 1.7 ± 5 2.6 ± 6.4 4.8 ± 7b 1.5 ± 4.8 2.2 ± 6.1
Hospitalization time 7.6 ± 8.4 9.5 ± 9.6 8.5 ± 6.9 10.1 ± 11.3 7.6 ± 6.7
Platelets 231.1 ± 98.2 230.3 ± 92.2 237 ± 82.8 235.7 ± 90.7 224.8 ± 75.1
Symptomatic time 7.7 ± 4.1 8.1 ± 3.6 8.7 ± 4.3 9.4 ± 5.2 8.9 ± 3.8
Indirect bilirubin a 0.4 ± 0.2a 0.5 ± 0.3 0.5 ± 0.2 0.6 ± 0.3 0.5 ± 0.2
Direct bilirubin a 0.1 ± 0.1a 0.3 ± 0.3 0.3 ± 0.2 0.3 ± 0.6 0.2 ± 0.1
Epicardial fat a 9.9 ± 5.4a 9.2 ± 3 10.4 ± 3.4 10.5 ± 4.3 10.7 ± 3.8
Creatinine kinase a 94.7 ± 92.2a 271.2 ± 420.8 337.6 ± 367.2 226.9 ± 193.4 238.5 ± 237.1
Alanine transaminase a 45.9 ± 87.1a 53.3 ± 41.8 78.9 ± 197 48.8 ± 58.9 57.6 ± 123.5
Aspartate aminotransferase ab 44.8 ± 48.9a 53.2 ± 38.9 128.9 ± 413.6b 68.4 ± 93 77.8 ± 150.2
Ferritin a 428 ± 1227a 895 ± 626 1,355 ± 1,592 906 ± 703 1,130 ± 2,112
Lactic dehydrogenase abde 325 ± 129a 395 ± 185 632 ± 643b 403 ± 140 551 ± 379d,e

Respiratory rate bd 26.6 ± 11.8 26.5 ± 7.6 34.7 ± 11.3b 28.3 ± 10.4 31.2 ± 8d

Pulmonary involvement bde 2 ± 0.8 2.2 ± 0.7 2.7 ± 0.6b 2.3 ± 0.7 2.9 ± 0.3d,e

Fibrinogen a 594.7 ± 175.1a 690.5 ± 196.4 740.3 ± 208 659.4 ± 201.7 779 ± 151
C-reactive protein bde 11.7 ± 8.5 14.9 ± 14.2 30.4 ± 86.7b 16.1 ± 9.7 36.8 ± 94.9d,e

Neutrophils/lymphocytes abd 7.4 ± 7a 10.1 ± 10.5 17.1 ± 17.6b 12.5 ± 11.3 21.5 ± 22.1d

Leukocytes ab 7.4 ± 5.2a 8.7 ± 4.2 11.3 ± 5b 8.1 ± 3.8 11 ± 5.6
Total neutrophils b 5.3 ± 5.3 6 ± 4.3 8.9 ± 5.5b 6.2 ± 4.1 8.4 ± 6.4
Triglycerides 157 ± 71.3 168.4 ± 83.7 179.1 ± 76.9 159.8 ± 77.5 174.9 ± 132.7
TyG index b 4.9 ± 0.3 4.9 ± 0.3 5.2 ± 0.4b 5 ± 0.4 5.1 ± 0.4
Glucose bd 134.3 ± 73.9 136.2 ± 70.8 199 ± 116b 158.6 ± 86.9 217.5 ± 145.2d

Blood urea nitrogen abcd 13 ± 8.4a 16.4 ± 10.5 24.2 ± 21.3b 25.2 ± 20.8c 31.3 ± 17.2d

BUN to creatinine ratio cd 17.2 ± 11.7 15.4 ± 6 17.8 ± 6.9 19.6 ± 6.9c 22 ± 6.9d

D-dimer bd 1,115 ± 2,881 1,654 ± 7,311 3,524 ± 10818b 1,169 ± 1,005 3,325 ± 7071d

Ultrasensitive troponin abcde 7.4 ± 24.4a 29.1 ± 248.5 86 ± 203.7b 77.1 ± 509.1c 93.3 ± 216.4d,e

Age bcd 44.5 ± 9.5 43.5 ± 9.4 48.6 ± 8.2b 66.1 ± 5.6c 67.9 ± 6.6d

Right pulmonary artery abcd 19.9 ± 2.7a 21.2 ± 3.2 23.2 ± 2.6b 23.3 ± 3.3c 24.9 ± 3.4d

Left pulmonary artery bcd 20 ± 2.6 21 ± 2.8 23.1 ± 2.3b 22.8 ± 2.9c 24.1 ± 3.1d

Pulmonary artery trunk b 27.2 ± 3.9 28 ± 3.4 30.7 ± 4b 28.8 ± 5.2 30.1 ± 4.8

Difference between MYR-FYR due to sex in young and recovered (a). Difference between MYR-MYR due to outcome in young men (b). Difference between MYR-MOR due to age in 
men that recovered (c). Difference between MYR-MOD due to age and outcome in men (d). Difference between MOR-MOD due to outcome in old men (e).
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divergence. A positive correlation is observed between the MYR 
and the MYD strength and degree differences (Figure  8A) and 
for the MOR and MOD difference (Figure  8D) and between 
MYR and MOD (Supplementary Figure 7). This positive correlation 

shows that while some health-related variables lost correlations 
and strength, the disease-related variables gained correlations and 
decreased their strength. This is a direct view of the homeostatic 
process in the organism. In health, physiological processes are 

FIGURE 4 | Physiological variables differences and pathologic states prevalence among groups. The variables are grouped according to their usefulness as 
disorders alterations markers. The pie chart graphics show the behavior of the main study groups, the male young recovered (MYR) group is shown in the light blue 
pair, the female young recovered (FYR) group in the pink pair, the male old recovered (MOR) group in blue, and the male young deceased (MYD) group in gray. Each 
pair is made up of a solid shade (a) and a light shade (b). The solid tone (a) represents the population percentage with values outside the reference limits, while the 
light tone (b) represents the population percentage with values within the reference limits. The circle in the center indicates the statistically significant differences 
using Mann-Whitney U. Gray circle indicates a significant difference between the MYR and MYD groups (attributed to the outcome), gold circle indicates the 
difference between the MYR vs MOR groups (attributed to age), red circle indicates the difference between the MYR vs FYR groups (attributed to sex), while the 
black circle indicates the presence of statistically significant differences between all groups.
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kept in balance by several low intensity correlations that fine-tune 
requirements according to requirements. However, in disease, the 
pathological process dominates over other physiological regulations; 
this increases the number of correlations and their strength among 
disease biomarkers. On the other hand, correlations become lost 
under pathological conditions. This is seen by the predominance 
of red nodes in the lower half and blue nodes in the upper half. 
These strength differences are not observed when comparing 
networks between the recovered groups (Figures  8B,C).

To further examine where the difference between physiological 
networks lies, graph structure and clustering were compared. 
Product–moment correlation shows that vertex labeling controls 
for underlying structure while structural correlation coefficient 
shows whether this labeling is exchangeable (Figures  8E,F). 
Last, the Weisfeiler-Lehman isomorphism test is performed to 
assess whether different networks are, in fact, the same 
(Figure  8G). By considering these results, it is possible to see 
that while isomorphism is quite low, node neighborhoods are 

A B

C D

E F

FIGURE 5 | Unfiltered Spearman correlation matrices. (A) displays the filtered correlation matrix resulting from the analysis of the entire database. The Spearman 
correlation matrix for each study group is shown (B–F). Positive correlations are represented by red ellipses, while negative correlations are represented by blue 
ellipses. The rows and columns are arranged by optimal leaf order. Green square shows a region of correlations present in the networks from recovered groups and 
the purple square shows a region of correlations present in the deceased groups.
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different, but both product–moment and structural correlation 
is high (Supplementary Figure  8). In all cases, FYR network 
is more similar to MYR network than outcome and age different 
groups. Despite the differences between networks, the clustering 

of variables is quite similar (Figures 8H,I). As expected, MOD 
network was the most dissimilar to the others with respect 
to all measurements. This is a result of both age and disease 
outcome changes in the network.

A B

C D

E F

FIGURE 6 | Recovered networks. (A,C,E) Represents a simplified network in which supernodes are labeled with the name of the physiological variable with the 
greatest influence within the InfoMAP community. Edges were kept, resulting in a network with multiple edges. Edge betweenness is represented by the color of the 
edge. The flow betweenness centrality is represented by node color, and the Laplacian centrality is represented by node size. Clusters are represented by colored 
shaded areas. (B,D,F) The unmerged physiological variables’ Laplacian and fractional flow betweenness centralities were plotted. The color of the nodes represents 
the normalized median of each variable, whereas the size of the nodes represents the deviation from the normal distribution.
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Results of clustering procedure are summarized in 
Supplementary Figure  9 for each of the 30 iterations of the 
network that were performed. Clusters were identified by the 
node with the highest Laplacian centrality, i.e., the core 
physiological variable around which the other nodes group. 

Sometimes the same cluster was named differently, but 
containing the same variables, because two or more nodes 
were similarly influential. By observing which variables were 
contained by each cluster, functional roles were suggested for 
each cluster.

A B

C D

E F

FIGURE 7 | Deceased networks. (A,C,E) Represents a simplified network in which supernodes are labeled with the name of the physiological variable with the 
greatest influence within the InfoMAP community. Edges were kept, resulting in a network with multiple edges. Edge betweenness is represented by the color of the 
edge. The flow betweenness centrality is represented by node color, and the Laplacian centrality is represented by node size. Clusters are represented by colored 
shaded areas. (B,D,F) The unmerged physiological variables’ Laplacian and fractional flow betweenness centralities were plotted. The color of the nodes represents 
the normalized median of each variable, whereas the size of the nodes represents the deviation from the normal distribution.
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A measure of similitude, the normalized mutual information 
is higher and the variation of information is lower for females 
young and recovered. Although changes between network 
topology are extensive in the MYD group, clustering remains 
similar, this is not the case in the MOR group. This may well 

be  a reflection of the multiple comorbidities reached by age 
above 60 that changes the landscape of clusters. Taken together, 
these comparisons show that young and recovered networks 
are similar and that age and diseases change both topology 
and clustering of the networks.

A B

C D

E F G H I

FIGURE 8 | Differences between physiological networks. The difference in node degree and strength against the reference network (MYR) is plotted for 
comparisons of outcome in young men (A), sex in young recovered patients (B), age in recovered men (C), and outcome in old men (D). The gradient of the 
normalized median value difference is shown in red to blue. The difference between the distributions is indicated by the size of the nodes. To compare the network 
structure to the reference, the product–moment correlation (D), structural correlation (F), and Weisfeiler-Lehman isomorphism tests (G) were used. Normalized 
mutual information (H) was used to quantify cluster similarity, while information variation was used to quantify cluster difference (I). Statistical difference is shown as  
for * p value <0.05, *** p value <0.001, and **** p value <0.0001.
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Topological Changes as Biomarkers of 
Health and Disease
In a previous study, we examined the differences between young 
healthy male (MYH) and female (FYH) participants (Barajas-
Martínez et  al., 2021a). In this work, we  hypothesized that 
FYH networks are more robust while MYH networks are more 
adaptable. We  use these control networks as a reference to 
interpret the results in our networks of patients with COVID-
19, although the set of physiological variables is different for 
each study.

For both healthy participants, sex differences between networks 
were observed. Female networks are more dense, less efficient, 
with shorter average path length, higher entropy, and less small 
world (Figure 9). In the COVID-19 networks, most topological 
differences between sexes are preserved, except density and 
small world index, which was to be expected due to COVID-19 
disruption of the physiological network.

MYD network is characterized by a decrease in average 
path length, clustering coefficient, transitivity, and small world 
index, with an increase in entropy, the mixing parameter, and 
modularity. Although a simultaneous increase in modularity 
with decrease in clustering coefficient may seem counterintuitive, 
a network with a close to zero transitivity can still have a 
clearly defined community structure (Orman et al., 2012). This 
speaks of a network that has been “disordered” from the 
characteristics of homeostatic networks. Furthermore, these 
changes are increased in the MOD network. When considering 
outcome differences in old male transitivity, clustering coefficient, 
small world index, mixing parameter, and modularity remain 
indicators of fatal outcome for both young and old groups 
(Figure  9).

Interactions in Severe COVID-19 With Fatal 
Outcome
We superimposed networks as a quick visual strategy to identify 
which relations between physiological variables are exclusive 
of a group (Figure  10). By visual inspection, MYR and FYR 
have very few specific edges, with low strength. However, it 
is notable that the correlations of hepatic steatosis with 
triglycerides and glucose are present only in FYR network. 
Age-specific correlations are present between blood pressure 
variables and pulmonary involvement, pulmonary consolidation, 
blood urea nitrogen, and bilirubin. Most unique links were 
present in the MYD and MOD networks. In these networks, 
the interaction between metabolic variables (triglycerides and 
glucose) with the pulmonary involvement variables through 
heart rate is notable for the MYD group. For the MYD group, 
axillary temperature and blood pressure exhibit a strong 
correlation. Kidney function biomarkers correlate in the MYD 
network with metabolic variables, pulmonary involvement cluster 
and tomographic evidence of ground-glass opacity, and 
consolidation. Finally, for the MOD group, the blood pressure 
variables become correlated across the entire network, particularly 
with hepatic steatosis, hepatic enzymes (aspartate 
aminotransferase and alanine transaminase), and albumin. From 
these observations, we can conclude that physiological variables 

in our analysis are related differently in a way that depends 
on the outcome of the patient. For the MYD group, the 
interactions between the anthropometric, metabolic, and 
pulmonary clusters are apparent and may drive the fatal outcome.

DISCUSSION

A considerable amount of information regarding possible 
biomarkers relevant to COVID-19 exists in the literature 
(Supplementary Table 4). These biomarkers encompass a wide 
array of physiological systems that include vitamins, 
cardiovascular, metabolic, tomographic innate, and adaptive 
immune indicators. Most of these biomarkers are identified 
by traditional analysis, but network-based strategies (Ahmed, 
2020), metabolomics (Hasan et  al., 2021), and PCA (Zhang 
et  al., 2021) have been employed successfully, although less 
commonly. This growing array of available biomarkers lacks 
an explicative framework on how and why homeostasis becomes 
altered by COVID-19. Here, we show how the three approaches 
to data analysis reveal different aspects of data structure collected 
in a cross-sectional study. Principal components analysis displays 
relevant components that group salient physiological variables 
into outcome, age, sex, and adiposity components (Table  1). 
Traditional analysis shows differences in physiological values 
between groups (Table  2). Finally, by network representation 
of physiological interactions, it is possible to identify which 
variables act as mediators of information flow and which 
physiological variables are the main drivers in the system 
(Figures 6, 7). In this work, we show that system-wide changes 
are present in the physiological network of male young individuals 
whose disease outcome is fatal. Regulated physiological variables 
become widely disconnected from their multiple influences in 
health, and in turn become dependent upon a few physiological 
variables (Figure  8). In consequence, topological changes take 
place, indicating that the network has become disordered 
(Figure  9).

In previous work on healthy young participants, we  had 
shown differences in the connectivity between the networks 
men and women (Barajas-Martínez et  al., 2021a). In this 
contribution, we  provide a detailed explanation of network 
rigidity, which we believe contributes to the different physiological 
response to infection, in addition to many other previously 
described differences between males and females. Regarding 
network topology, we have found that local clustering coefficients 
decrease with age, with a simultaneous pathological states 
increase (Barajas-Martínez et al., 2020), both observations were 
corroborated in this dataset (Figure  9). A modularity increase 
accompanied by a clustering coefficient decrease characterizes 
pathological states of the physiological networks. An advantage 
of our approach is that the difference we  observe occurs at 
a higher organizational level than, for example, immune  
differences.

Clustering comparison shows that physiological variables 
are grouped similarly in all young groups regardless of the 
topological changes. In contrast, physiological variables are 
clustered differently in old age (Figure  8). This suggests that 
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the presence of several chronic alterations is required to change 
the coupling landscape in the organism, such as long-term 
diabetes and hypertension.

Network analysis allows us to pinpoint the physiological players 
that are drivers and mediators of disease, and how their importance 
is different according to disease outcome, age, and sex. An important 
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FIGURE 9 | Network topology. The topological efficiency (A), network density (B), average path length (C), transitivity (D), clustering coefficient (E), Shannon’s entropy 
(F), small world index (G), estimated mixing parameter (H), and modularity (I) of the networks from the study groups were compared to those of the reference group 
(MYR). To demonstrate the behavior of the networks in health conditions, male and female healthy control groups were compared in the columns placed right in each 
panel. Significant differences between groups MYR and FYR (a), MYD (b), MOR (c), MOD (d), between MOR and MOD (e) and between MYH and FYH (f).
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part of this work was to survey the literature in order to evaluate 
if our findings were consistent with previous knowledge 
(Supplementary Table 4). Several biomarkers identified here have 
also been highlighted in different studies. Particularly, we  found 
that several inflammatory, thrombotic, and hepatic biomarkers 
change their behavior in COVID-19. In agreement with current 
knowledge (Supplementary Table  4), well-known cardiovascular 
biomarkers such as ultrasensitive troponin (Zhu et  al., 2021), 
C-reactive protein, and lactic dehydrogenase were increased in 
the groups with fatal outcome (Supplementary Table  4). Our 
work reinforces the role of other less well identified biomarkers 
such as hepatic features (Ramos-Lopez et al., 2021) and pulmonary 
artery diameters (Spagnolo et  al., 2020). We also provide evidence 
that several biomarkers could benefit from adjusted thresholds by 

sex such as ferritin, respectively (Supplementary Table 4). We show 
that COVID-19 alters the correlation structure of physiological 
variables and that key mediators and drivers in the network that 
play a role are not necessarily outside of healthy ranges. This was 
the case for albumin and blood urea nitrogen. Some specific 
biomarkers and interactions may be  most useful only for certain 
patient groups. For instance, heart rate in men that are to recover 
is correlated between physiological clusters, acquiring a high flow 
betweenness value in the network (Figure  6). This central role is 
not observable by mean value alone and becomes lost in patients 
with fatal outcome. This outlines further requirements for identifying 
biomarkers beyond differences between the mean values of groups 
(Supplementary Figure 10). Finally, we show that cluster interactions, 
that show the involvement of different physiological mechanisms, 

A B

FIGURE 10 | Network differences. (A) The networks of the five study groups were merged to determine which edges differed between them. Links that are unique 
to a study group are highlighted in color, while shared links are black. Each correlation’s strength is indicated by the width of the links. LinLog layout was used to 
arrange the nodes. The color of the node represents the normalized median value for the whole database, and the size represents the deviation from the normal 
distribution. The color-shaded areas in this network represent spinglass clusters, while the node border represents the nodes that will be collapsed into a single 
supernode by InfoMAP clustering. (B) Depicts a simplified network in which supernodes are labeled with the name of the physiological variable with the greatest 
influence within the InfoMAP community. Edges were kept, resulting in a network with multiple edges. The flow betweenness centrality is represented by node color, 
and the laplacian centrality is represented by node size.
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are key features in the group of young male deceased where 
metabolic, anthropometric, and immune clusters interact (Figure 10).

While Supplementary Table 4 highlights the common observation 
that the mean values of these biomarkers are found to be  altered 
previously dependent on the severity of the disease, the advantage 
the data structure approaches allow us to observe how relations 
cascade between different physiological function modules. 
Physiological variables increase and decrease their dependency 
between themselves in the different groups. An integrative view 
of physiology is useful to follow how apparently unrelated 
physiological systems are thrown out of balance by systemic effects 
of COVID-19. After acute disease resolution, several pulmonary 
and extrapulmonary affections persist, resulting in chronic health 
loss (Al-Aly et  al., 2021). Taken together, it is possible to generate 
a network-based model of physiological interactions that sustains 
homeostasis. Our results show that, since the whole physiological 
network is affected, return to normal homeostatic regulation may 
be  slow, and system-wide alterations are to be  expected.

Limitations
One limitation of our transversal study is that causal connections 
can be  difficult to deduce from cross-sectional analysis. 
We believe that the literature review of Supplementary Table 4 
is paramount for the adequate interpretation of our networks.

It is worth noting that the correlations found in this study 
are the product of a network that was filtered with a value 
of p threshold. Other approaches, on the other hand, are feasible 
(Musciotto et  al., 2018). The network approach is a powerful 
tool for the visualization and exploratory analysis multivariate 
complex datasets, but it has the drawback of only being able 
to define links using bivariate similarity measurements.

The biomarkers we  employed were chosen based on their 
availability, accessibility, and current medical expertise. However, 
examining the physiological network using a systematic way 
would yield a larger and more unbiased set of biomarkers, 
better characterizing the architecture of the underlying physiology 
we  are attempting to study.

The hospital where we  conducted our research is part of 
the government’s healthcare system. Because this institute is 
a third-level facility that only accepts referrals, inferring 
population trends from this dataset would be challenging. Our 
sample was not subjected to genomic surveillance. National 
surveillance for the study’s geographical area and period is, 
however, available (Taboada et  al., 2020).

CONCLUSION

Relevant physiological biomarkers of disease severity and its 
outcome can be  identified by analyzing data structure in cross-
sectional studies considering the interactions between multiple 
physiological regulation systems. Network analysis indicates the 
relevance of albumin, blood urea nitrogen, D-dimer, and heart 
rate correlations in the characteristic network of physiological 
healthy young men reflecting the homeostatic balance between 
adaptability and robustness. The SARS-COV-2 virus infection 
alters this balance as seen in the topological properties of the 

physiological network, particularly clustering coefficient, 
anthropometric, metabolic, inflammatory, and pulmonary cluster 
interaction become disrupted in disease. Because the physiological 
network of women is more rigid, they have a better prognosis 
that men under a systemic disease like COVID-19.
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