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Abstract

Glioblastoma (GBM) is the most aggressive malignant brain tumour, with a median survival of
3 months without treatment and 15 months with treatment. Early GBM diagnosis can significantly
improve patient survival due to early treatment and management procedures. Magnetic resonance
imaging (MRI) using contrast agents is the preferred method for the preoperative detection of GBM
tumours. However, commercially available clinical contrast agents do not accurately distinguish
between GBM, surrounding normal tissue and other cancer types due to their limited ability to
cross the blood-brain barrier, their low relaxivity and their potential toxicity. New GBM-specific
contrast agents are urgently needed to overcome the limitations of current contrast agents. Recent
advances in nanotechnology have produced alternative GBM-targeting contrast agents. The surfa-
ces of nanoparticles (NPs) can be modified with multimodal contrast imaging agents and ligands
that can specifically enhance the accumulation of NPs at GBM sites. Using advanced imaging tech-
nology, multimodal NP-based contrast agents have been used to obtain accurate GBM diagnoses
in addition to an increased amount of clinical diagnostic information. NPs can also serve as drug
delivery systems for GBM treatments. This review focuses on the research progress for GBM-
targeting MRI contrast agents as well as MRI-guided GBM therapy.
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Introduction

OXFORD

Glioblastoma (GBM) is a World Health Organization-defined grade
IV brain tumour and represents one of the most common malignant
brain tumours in adults. GBM has both high morbidity and mortal-
ity rates. Epidemiologic investigations have shown the incidence of
GBM is higher in men than women, higher in Caucasians than other
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ethnicities and increases with age [1]. It is believed that GBM derives
from neural stem cells, oligodendrocyte precursor cells and astro-
cytes. Current treatments for GBM include a combination of surgi-
cal resection, radiotherapy and chemotherapy. Despite such
aggressive treatments, the recurrence rate of GBM remains high [2].
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GBM is characterized by a poor prognosis, with a median survival
time of 14.6 months (with treatment). The 2-year survival rate is
26.5%, and the 5-year survival rate is 7.2% [3, 4]. Over 10% of
patients with GBM and 30% of patients with astrocytic gliomas re-
main undiagnosed using the existing diagnostic techniques [5].
More effective tumour-targeted imaging methods are needed to pro-
vide greater diagnostic accuracy and more effective therapies for
GBM.

Magnetic resonance imaging (MRI) is a non-invasive approach
used to diagnose GBM that provides high-resolution anatomic
images of soft tissue. GBM diagnoses based on MRI alone might not
be accurate because of the similar relaxation times between normal
brain and GBM tissues. GBM diagnoses could be more accurate if
in vivo contrast agents could provide improved contrast in MR
images with greater characterization of macroscopic contours.
Gadolinium (Gd)-based contrast agents have been commonly used
in MRI for the diagnosis of GBMs [6]. However, the blood-brain
barrier (BBB) blocks the exchange of more than 98% of all
molecules between the peripheral circulation and the central nervous
system [7].

Contrast agents used for subsequent GBM therapy fail in three
ways: the BBB remains intact during the early phase of GBM devel-
opment, thus inhibiting accurate contrast imaging and misdirecting
appropriate therapy [8]; contrast agents are rapidly metabolized in
the kidneys, reducing their bioavailability, and lacking tumour spe-
cificity [5]. Because of their small size, nanoparticles (NPs) provide
several imaging advantages, including superparamagnetism, unique
fluorescence characteristics and high surface-to-volume ratios [9].
Due to these and other characteristics, multifunction NPs have been
applied to the imaging of numerous cancers, leading to early diagno-
ses and effective therapeutic regimens. NP-based therapies have im-
proved targeted drug delivery, controlled drug release and
biocompatibility, and increased tissue permeability. Because of their
physical properties and therapeutic advantages, using NPs combined
with contrast agents could achieve more accurate glioma diagnoses
and improved therapeutic efficacy (theranostics).

Several crucial problems remain to be overcome when designing
NPs for GBM theranostics: (i) BBB-crossing mechanisms, (ii)
tumour-targeting methods and (iii) escape from clearance by the
mononuclear phagocyte system (MPS). This review reports advances
in MRI contrast agents technologies, focusing on BBB-crossing
mechanisms for GBM MRI contrast agents and NPs, strategies for
GBM-targeting theranostics, the use of multimodal contrast agents
and NPs, and MRI-guided therapy (Fig. 1).

Magnetic core of NPs

MRI contrast agents are categorized as either paramagnetic or
superparamagnetic [10, 11] with the critical property of relaxivity
(r), related to their ability to generate contrast in MRI images.
Paramagnetic agents, such as ions of gadolinium (Gd**) and man-
ganese (Mn?%), have similar increases in relaxivity for both longi-
tudinal relaxation (R;) and transverse relaxation (R») rates. Gd>*
and Mn?* are T; agents due to the ‘bright’ (positive) contrast
they provide. Superparamagnetic agents, such as superparamag-
netic iron oxide (SPIO) and ultrasmall-SPIO (USPIO) NPs, are T,
agents due to the ‘dark’ (negative) contrast they exhibit. Standard
SPIOs have diameters of 50-150 nm, USPIOs have diameters of
30-50nm and micron-sized paramagnetic iron oxides have
diameters of ~ 1 pm [12].

Modification of MRI contrast agents

Contrast agent research has focused on modifying MRI NPs, includ-
ing surface coating and functionalization. Surface coatings change
the size of NPs, increase relaxation rates, prolong in vivo circulation
times and provide NPs with functional groups for modification.
Functionalization enables NPs to cross the BBB and target GBM.

Surface coating

High-molecular-weight compounds and derivatives of dextran [13],
chitosan, polyethylene glycol (PEG) [14], N-(trimethoxysilylpropyl)
ethylene diamine triacetic acid (TETT) silane and polyacrylic acid
(PAA) are used as coating agents because of their non-toxicity, non-
immunogenicity, non-antigenicity and protein resistance to biodeg-
radation (Tables 1 and 2). PEG polymers are extensively used in the
pharmaceutical field studies to improve colloidal stability, blood re-
tention and biocompatibility [15]. There are two strategies for coat-
ing PEG or PEG derivatives on oil-soluble NPs. One approach
depends on ligand exchange, the substitution of the original surfac-
tant for PEG-derivatized connecting agents to create a PEG-
functionalized silica shell [16, 17]. A second approach is an encapsu-
lation procedure, using amphiphilic copolymers, including short-
chain PEG polymers, to create PEGylated NPs [18]. PEG-
compatible dimethyl sulphoxide polymers are highly hydrophilic
and have low cytotoxicity [19]. Dimethyl sulphoxide polymers al-
low more water molecules to surround the NPs improving the im-
pact of NPs on water molecules. The bulkier polyacrylate protects
interactions with other particles and with physiological macromole-
cules, enhancing material stability.

TETT silane has three reactive carboxylic groups per molecule
[82]. When attached to the surface of NPs, these stable colloidal sur-
factants supply these reactive groups for further modification of the
NP surface [82]. The amphiphilic poly(aminoethyl ethylene
phosphate)/poly(L-lactide) (PAEEP-PLLA) copolymer is another NP
surfactant that possesses hydrophobic PLLA and hydrophilic PAEEP
moieties [83]. These moieties provide both optimal biocompatibility
and biodegradability. The PAEEP moiety possesses a high number
of amino groups, allowing tumour-targeting biomolecules to cross
the BBB. Both TETT and PAEEP-PLLA surfactants require PEG-
modified targeting molecules. TETT is loaded onto NP surfaces us-
ing a substitution method and PAEEP-PLLA is able to encapsulate
certain coated NPs [33]. The zwitterionic lipid distearoyl
phosphoethanol-amine-polycarboxybetaine was used as a surfactant
to facilitate endosomal/lysosomal NP escape, enhancing the uptake
of a cytotoxic agent by cells [60].

Surface NP modifications depend on the pH and the ionic poten-
tial of the solution [13, 36]. Surfactant desorption during blood cir-
culation or its substitution with plasma constituents can lead to NP
accumulation and nonspecific uptake by mononuclear phagocytic
system cells; it also facilitates clearance and decreases targeting effi-
ciencies [84, 85]. To improve the stability and biocompatibility of
NPs, bovine serum albumin has been used as a cross-linking surfac-
tant on a synthesized targeted NP, which improved the stability and
biocompatibility of the NPs [84, 86]. Surface NP modification
improves colloidal stability, blood retention time and biocompatibil-
ity, and protects NPs from clearance by the MPS. The physical char-
acteristics of NPs, including hydrophobicity, hydrophilicity, surface
charge, size and shape, are important parameters to consider when
modifying NPs for targeting GBMs [87-89].
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Figure 1.Current strategies used with MRI contrast agents for glioblastoma-targeting theranostics. (A) Imaging and therapy methods. (B) Surface modification
components used for glioma targeting. (C) Mechanisms of blood-brain barrier crossing

Methods for BBB penetration

The BBB is a membranous barrier in the central nervous system that
incorporates endothelial cells, pericytes, basement membranes, astro-
cytes, neurons and tight junctions (Fig. 2). The BBB protects neurons
by reducing the entry into the central nervous system of large or
charged substances from the blood [90, 91]. Mechanistic strategies for
penetrating the BBB can be roughly grouped into two types: active and
passive transport methods (Fig. 2). Active transport methods include
energy-consuming receptor-, carrier- and adsorption-mediated transcy-
tosis [92]. Passive transport methods include simple diffusion and en-
hanced permeability and retention (EPR) effects, which do not
consume energy. Other passive transport methods include the use of
nanodrugs that block or bypass the BBB, such as the combination of fo-
cused ultrasound (FUS) with microbubbles (MBs) and convection-
enhanced delivery (CED) [93-95].

Active transport methods

Receptor-mediated transcytosis (RMT) is the most common active
transport method used for crossing the BBB (Table 1). The biologi-
cal ligands lactoferrin (Lf), interleukin (IL)-6 and angiopep-2 have
been used as RMT-based BBB-crossing ligands in MRI CA imaging.
The receptors of these ligands [the Lf receptor, the IL-6 receptor and
the low-density lipoprotein receptor-related protein-1 (LRP1), re-
spectively] are highly expressed in GBM cells. Another active trans-
port method is adsorptive-mediated transcytosis. Adsorptive-
mediated transcytosis is stimulated by electrostatic interactions be-
tween positively charged proteins or cell-penetrating peptides and
negatively charged membrane surfaces of brain capillary endothelial
cells. The trans-activator of transcription (TAT) peptide has a num-
ber of positively charged amino acids (sequence: YGRKKRRQRRR)
and was used to transport doxorubicin (DOX) and Gd*>* across the
BBB to tumour sites [63].

Passive transport methods
MR-guided FUS (MRgFUS) combined with MBs can instantly dis-
rupt the intact BBB, allowing nanodrugs to traverse cerebral

capillaries and enter the tumour tissue. MRgFUS was used to im-
prove BBB permeability for enhancing cisplatin-conjugated gold
NPs delivery into the GBM. Some drugs are used to induce BBB
disruption-enhanced transport. For instance, Gao et al. developed a
new nanoagonist, Den-arginine-glycine-aspartic (RGD)-Reg to en-
hance drug delivery to the GBM [57]. The cRGDyK peptide portion
of the G5 dendrimer NP was used to target the GBM neovascula-
ture, while the linked drug regadenoson activated A,,R signalling
and opened tight junctions between cells. The opening of these tight
junctions allows drug delivery for imaging or therapy. Vascular-
disrupting agents have also been used for BBB penetration, but these
disruption-enhanced transport methods may result in serious side
effects such as epileptic seizures, excessive immune reaction,
cerebral haemorrhage and brain oedema [71]. CED is a local thera-
peutic delivery method that bypasses the BBB such that nanodrugs
enter into the tumour by stereotactic infusion, avoiding the side
effects caused by systemic administration [96]. However, CED car-
ries a risk of brain infection or brain injury due to its method of en-
try [96].

Exosomes have emerged as novel drug carriers for anti-glioma
drug delivery because of their low cytotoxicity, lower immunogenic-
ity, biodegradability and ability to cross the BBB [97]. Exosomes are
extracellular vesicles 40-150 nm in size that are secreted by almost
all types of cells [98]. They contain intercellular exchange signals
such as cell-specific small RNAs and proteins. Exosomes have been
used as carriers loaded with microRNA [99], siRNA [100] and
drugs, such as DOX [101], for glioma therapy. Exosome delivery
systems also can carry SPIO for tumour MRI [102]. Exosomes have
been used as MRI contrast agents for both imaging and the treat-
ment of gliomas. Raw264.7 cell-derived exosomes were loaded with
SPIO and curcumin, and the exosomes were conjugated to the neu-
ropilin-1 (NRP-1)-targeted peptide. The loaded and modified exo-
some was used for glioma targeting, imaging and therapy [103].
This study showed the feasibility and prospect of exosomes using as
BBB crossing therapeutic delivery vehicles. For clinical use, a num-
ber of critical problems about exosomes remain to be solved. For
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Figure 2.(A) Schematic of the blood-brain barrier (BBB). (B) The BBB penetration methods commonly used in magnetic resonance imaging nanoparticles for

glioblastoma theranostics

example, the safety, purity, targeting ability and obtainment rate
should be concerned in the future development of drug delivery us-
ing exosomes. Therefore, it is desirable to improve the efficiency,
specificity and safety of BBB penetration in the future.

GBM-targeting strategies

The main purpose of contrast agents in GBM MRI is to distinguish
tumours from the surrounding brain tissue. The signals from brain
tissue can be enhanced by various inflammatory and/or infectious
conditions, and the uptake of non-targeted drugs by tumours can re-
main too low to meet the thresholds for imaging and therapy. GBMs
infiltrate and grow aggressively into surrounding healthy brain tis-
sue, making it difficult to image tumour edges by EPR effects alone.
Modifying contrast agents with tumour-targeting probes provides
precise delivery to GBMs.

There are many kinds of tumour-targeting probes, including pep-
tides, antibodies, small ligands and aptamers [104]. Both the tumour
microenvironment (TME) and tumour cell-targeting probes can be
classified according to different binding sites. The tumour targets in
the TME can be divided into three categories: those in the tumour
vasculature, such as o, f3; integrin [24, 25]; those in the extracellular
matrix (ECM), such as matrix metalloproteinase (MMP) [23, 32];
and those targets affecting the physiologic microenvironment (hyp-
oxia and acidity) [39].

A, B3 integrin

Tumour angiogenesis is a hallmark of cancer [105]. Tumour prolif-
eration and invasion depend on forming new blood vessels (neovas-
culature) to transport oxygen and nutrients [106]. Integrins are
heterodimeric cell-surface receptors consisting of o and B subunits
and mediate cell-to-cell or cell-to-ECM adhesion. o, B3 integrin is
overexpressed in the neovascular endothelium of tumours during an-
giogenesis but not in that of normal quiescent endothelial cells
[106]. This integrin is also expressed in infiltrating tumours, such as
GBM, prostate tumours and breast tumours. o, B3 levels are closely
associated with the degree of tumour malignancy and progression
[107, 108], making it an important cancer target. RGD sequences
bind to integrins. The canonical RGD motif (Arg-Gly-Asp) binds to

o, B3 integrins with high specificity. This is due to the synergistic or
complementary domains between RGD motif and integrins, and the
feature of flanking residues in RGD. Many peptides containing
RGD sequences, including linear RGD peptides, cyclic pentapeptide
¢(RGDyC), cRGDfK peptide and cRGDyK, demonstrate good tu-
mour vasculature targeting abilities [22-25, 28]. The targeting effi-
ciency of RGD-containing peptides is affected by their structure or
density [109, 110]; cyclic RGD peptides have better tumour-
targeting efficiency compared with linear RGD peptides [111]. A
high-density dual-targeting nanoprobe, Fe304-PEG-RGD-Fah, stim-
ulates greater NP accumulation in GBM sites than its low-density
version (Fe304-PEG-RGD-FAI) [28]. RGD-related drugs are being
used in clinical studies. '®F-fluciclatide, an RGD-based o,p;
integrin-binding radiotracer used in PET imaging, is currently being
developed as a tumour angiogenesis imaging radiotracer in GBM,
sarcoma, melanoma, non-small cell lung cancer, breast cancer, renal
cell cancer, head cancer and neck cancer [112, 113].

Folic acid receptor

The folic acid receptor (FAR) is a membrane-linked glycoprotein
that acts as a tumour-associated antigen. FAR is expressed at low
levels in normal tissues but is overexpressed in various tumour
tissues, including breast cancer, endometrial cancer, ovarian non-
mucinous adenocarcinoma and nasopharyngeal cancer. The low ex-
pression of FAR in normal neural tissues and its high affinity (K4 ~
1071% M) for folic acid (FA) has attracted tumour research for its
potential therapeutic value. FA is overproduced in brain tumours as
well as at the BBB [114-116]. GBM cells express high levels of FARs
to increase extracellular uptake of FA. FA-conjugated MnO-TETT,
a T; CA, was used to synthesize MnO-TETT-FA NPs and targets
GBM, exhibiting a contrast enhancement in miniscule (1.5-1.8 mm)
GBM areas, showing clear margins and extending imaging durations
in vivo [29] (Fig. 3). Gd-doped MnCO3; NPs conjugated with both
the near-infrared (NIR) dye Cy5.5 and FA (Gd/MnCO3-PEG-
Cy5.5-FA NPs) [30] show higher targeting efficiency than non-
targeted NPs in MR/fluorescence imaging of tiny GBMs. The advan-
tages of using FA as a targeting agent for GBMs are that FA is
water-soluble with little or no toxic effects [117], the molecular
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Figure 3.Preparation of MnO-TETT-FA NPs as glioblastoma-distinct MRI contrast agents [29]. (A) Schematic illustration of MnO-TETT-FA preparation and imaging
mechanism. (B) rq relaxivities of MnO-TETT (top) and MnO-TETT-FA (bottom) NPs. (C) In vivo MRI of C6-bearing mice. (D) Quantification of the signal intensity in
the tumour area at different time points. Reproduced with permission [29]. Copyright 2014, American Chemical Society. FA, folic acid; MRI, magnetic resonance
imaging; NPs, nanoparticles; TETT, N-(trimethoxysilylpropyl) ethylene diamine triacetic acid

weight of FA is 441.4 Da. making it suitable for chemical modifica-
tion, and FA remains relatively stable over an extensive range of pH
values and high temperatures [118].

Transferrin and Lf receptors

Transferrin (Tf) and Lf are broadly employed as tumour-targeting
ligands because their receptors are excessively expressed in a variety
of human carcinomas, including GBMs and the BBB [119, 120]. Tf
and Lf traverse the BBB through receptor-induced extracellular en-
docytosis. However, Tf is not an optimal linking ligand for MR con-
trast agents because of its high endogenous plasma concentration
[121]. Lf has a 60-80% sequence similarity with Tf, but the endoge-
nous plasma level of Lf is ~ 5nM, which is much lower than the
concentration of Lf receptors in the BBB. Lf-SPIONs bind to Lf
receptors in GBM tissue with high selectivity and sensitivity,
providing high contrast between the tumour and the surrounding
normal brain tissue for 48h [122]. Iron-containing OAM-MNPs
were encased in a novel amphiphilic PAEEP-PLLA copolymer (M-
PAEEP-PLLA-NPs), which were then linked to Lf (Lf-M-PAEEP-
PLLA NPs) for GBM-targeting [33, 83] (Fig. 4). Iron oxide encapsu-
lation protects the NPs from direct interaction with vascular compo-
nents and limits free Fe ion release, reducing biotoxicity. In
addition, the iron oxide-incorporated polymeric nanocarriers ex-
hibit higher relaxivity than dissociated monocrystalline iron oxide
particles. Lf can also be used in dual-targeted NPs. Upconversion

luminescence (UCL) imaging and MRI contrast agents were synthe-
sized using chlorotoxin (CTX) and Lf as target ligands [32]. This
contrast agent could traverse the BBB and bind to GBMs in vivo
according to MRI and UCL imaging in an orthotopic tumour xeno-
graft rat model [32].

Epidermal growth factor receptor

Epidermal growth factor receptor (EGFR) is a receptor tyrosine ki-
nase in the ErbB family. EGFR variant III (EGFRvIII), the most
common EGFR mutant, is produced by the deletion of exons 2-7 of
the EGFR gene [123]. EGFR is overexpressed in 60-90% of GBMs.
EGFRuIII is expressed in approximately one-third of GBMs and is
more tumour-specific than EGFR [124]. Activation of the EGFR
signalling cascade appears to play a pivotal role in tumour prolifera-
tion, infiltration and metastasis [125, 126].

NPs, such as SPIONs, can be modified with monoclonal anti-
EGFR antibodies or anti-synthetic peptide antibodies to specifically
identify mutant EGFRs for GBM MRI [127]. SPIONs conjugated
with cetuximab, a 152 kDa chimeric monoclonal antibody that tar-
gets EGFR and EGFRUVIIIL, have greater therapeutic effects than
cetuximab applied using CED, both in vitro and in vivo [59].
Cetuximab-based MRI contrast agents can also be employed as trac-
ers for targeted GBM imaging. The contrast agent, Fe304@Au con-
jugated with cetuximab (Fe304@Au-C225), shows good targeting
ability on GBM imaging in a subcutaneous GBM xenograft model
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Figure 4.Lf-M-PAEEP-PLLA-NPs were used as glioblastoma-targeted MRI contrast agents [33]. (A) Schematic illustration of Lf-M-PAEEP-PLLA-NP preparation. (B)
In vivo MRI of C6-bearing rats. (C) Prussian blue staining assays of c6-bearing rats after Lf-M-PAEEP-PLLA-NP injection. (D) Quantification of the signal enhance-
ment in the tumour area at different time points. Reproduced with permission [33]. Copyright 2016, Springer Nature. Lf, lactoferrin; MRI, magnetic resonance im-
aging; NPs, nanoparticles; PAEEEP-PLLA, amphiphilic poly(aminoethyl ethylene phosphate)/poly(L-lactide)

[35]. However, the high molecular weight of this antibody restricts
its delivery of contrast agents through the BBB, limiting the clinical
applications of contrast agents. Tumour-penetrating peptides, such
as RGD or angiopep-2, have been attached to monoclonal antibody-
conjugated contrast agents to help them traverse the BBB [128,
129]. Many EGFR-targeted drugs are approved for clinical applica-
tion, including panitumumab, cetuximab, gefitinib and lapatinib,
expanding the potential for using EGFR-targeted GBM MRI con-
trast agents in clinical applications.

IL receptors

IL receptors are not only involved in immune responses and inflam-
mation but can also regulate the growth and invasion of GBM
cells. IL-13 binds to the IL-13 receptor alpha 1 (IL13Ra1), activat-
ing the JAK-STAT signalling cascade. This process regulates apo-
ptosis and the proliferation of GBM cells. Another IL-13 cytokine
receptor, IL-13 receptor alpha 2 (IL13Ra2), is regarded as a decoy
receptor due to its higher affinity for IL-13 relative to IL13Ral.
The selective expression of IL13Ra2 in GBM cells allows for the

sequestration of the ligand, reducing its binding to IL13Ra1. IL-13
sequestration by IL1302 within tumour cells results in tumour cell
escape from apoptosis, while knocking down IL13Ra2 promotes
GBM cell apoptosis [130]. In addition, the high expression level of
IL13Ra2 is linked to a poor prognosis in patients with GBM [131].
IL-13 has been used to target IL13Ra2 for imaging and therapy
[37, 132]. A Gd metallofullerene-based MRI contrast agent coated
with the IL-13 peptide has an enhanced targeting ability in U-251
GBM cells and orthotopic nude mouse models [37]. The IL-6 re-
ceptor has also been used for GBM-targeting. An IL-6 receptor-tar-
geting peptide (I6P7)-conjugated SPIO (I6P7-Si0,-SPIO) traverses
the BBB via I6P7-mediated transcytosis, efficiently accumulating in
the GBM region [38].

Low-density LRP

The low-density LRP is excessively expressed on the BBB and partic-
ipates in the transcytosis of various ligands traversing the BBB
[133], such as Lf [134, 135] and the receptor-linked protein [136].
LRP is also expressed at high levels in human GBMs, but is also
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present at low levels in normal tissues. Angiopep-2 binds to LRP
and, when conjugated to NPs, significantly enhances BBB compared
with non-angiopep-2-conjugated NPs [137]. This uptake is believed
to be due to the LRP receptor-triggered transcytosis process.
Angiopep-2 efficiently directs NPs to intracranial GBMs [39, 60].

Neuropilin-1

NRP-1 is a transmembrane glycoprotein overexpressed in multiple
cancers (including GBM) and in angiogenic endothelial cells in tu-
mour vasculature. The overexpression of NRP-1 indicates that it
plays a vital role in cancer progression [138, 139]. Many NRP-1-
targeted peptides are used for GBM-targeting [40, 61, 62]. USPIOs,
Gd,0; and AGuIX have been conjugated or combined with NRP-1-
targeted polypeptides for GBM imaging by MRI in in vitro and
in vivo GBM models [40, 61, 62].

Other GBM targets and their corresponding targeted probes

CTX is a peptide in the venom of the Palestine yellow scorpion,
Leiurus quinquestriatus, and is selective for MMP-2, which is
expressed in GBM and other tumours but not in healthy brain tissue
[140, 141]. The binding of CTX to MMP-2 results in the endocyto-
sis of MMP-2 and the inhibition of GBM invasiveness. CTX was
coupled to magnetic nanochains (CTX-NCs) for the diagnosis and
treatment of GBM. CTX modification increases the ability of NCs
to target tumours and suppress GBM [23]. Other tumour targets,
such as vascular endothelial growth factor, a proteolytic fragment of
the cell adhesion molecule protein tyrosine phosphatase (PTP)u, and
the adenosine 2A receptor, have been used for targeted GBM MRI
(Table 1). Some GBM-targeting strategies are based on the meta-
bolic characteristics of the TME and the physicochemical changes
that are different from healthy tissue microenvironments. Hypoxia,
acidic pH levels and high interstitial pressures are common features
of tumour physiology and the TME, and contribute to tumour pro-
gression, metastasis, relapse and resistance to treatment in a range
of tumour types, including GBM [142]. These features permit the
development of a targeting strategy for GBM theranostics. A multi-
functional TAT peptide-targeted gold NP trans-activator (TAT-Au
NP) conjugated with DOX shows high level of therapeutic efficacy
in a mouse model of intracranial U87 GBM.

Despite the advantages of tumour-targeting probes, one draw-
back is the expression levels of the target molecules in normal tis-
sues. For example, RGD-binding integrins are not only expressed in
tumours but also during inflammation, fibrosis, vascular leakage
and angiogenesis, resulting in nonspecific high background signals
and side effects [143]. Furthermore, GBMs in different patients and
even among cells in the same GBM are likely to have distinct and
unique expression patterns. Inter-tumour and intra-tumour hetero-
geneity in target expression increases the complexity of GBM imag-
ing and limits the application of GBM-targeting probes.

Dual-mode imaging

With advances in imaging technology, diverse imaging approaches
are emerging. Targeted contrast agents and NPs provide excellent
spatial resolution combined with MRI but are dramatically limited
when the BBB is intact. In addition, the compounds have poor sensi-
tivity in detecting abnormalities such as tumour relapse (tumour
progression) or pseudoprogression [144, 145]. In addition, using
MRI to detect GBM requires a large amount of contrast agent [146].
Multimodal imaging combines structural/functional data from

multiple imaging techniques, thus, promising more precise and
abundant diagnoses relative to any single imaging approach [147,
1438].

Dual-mode optical/MR imaging

Optical imaging is evolving as a non-invasive, fast and highly sensi-
tive strategy for cancer diagnoses, which may provide an accurate
assessment of the boundary separating the GBM tissue and healthy
tissue. Multiple approaches have been used to design NPs containing
the functionalities of both MR and optical imaging, including shell/
core encased fluorescent quantum dots (QDs) in superparamagnetic
NPs, linking organic dyes onto superparamagnetic NP surfaces, and
encapsulation of magnetic and fluorescent NPs in silica or polymer
shells [54, 149-151].

Among the fluorescent optical imaging methods, NIR fluores-
cence imaging in the wavelength range of 700-1000nm has
attracted increasing attention given its low absorption and its auto-
fluorescence from organisms and tissues outside the NIR spectral
range. These properties reduce background disturbances and en-
hance tissue penetration depths and imaging sensitivities [152, 153].

Indocyanine green (ICG) is an amphiphilic tricarbocyanine dye
that exhibits optimal absorption and fluorescence in the NIR be-
tween 780 and 810 nm [154, 155]. As the only NIR organic dye ap-
proved for clinical applications by the US Food and Drug
Administration, ICG has one of the lowest toxicity levels for human
applications [154, 155]. SPIONs coated with PEG-derivatized lipids
and loaded with ICG were employed as NIR fluorescence probes for
real-time fluorescence imaging [55]. Cy5.5 and KIR fluorescent dyes
were linked to PEG, and the complex was conjugated to MnO-NPs
for accurate dual-mode imaging for diagnosing GBM [45, 55].
Linked Cy5.5-conjugated Lf (Cy5.5-Lf) was conjugated to Fe3Oy4
NP-loaded poly(N-isopropylacrylamide-coacrylic acid) (MPNA)
nanogels and investigated as contrast agents for the dual-mode im-
aging of GBM using MRI and optical spectroscopy [156]. Cy5.5-Lf-
MPNA nanogels change in size, as well as in hydrophilic or hydro-
phobic properties under certain in vivo conditions due to their pH
and temperature sensitivities, facilitating effective tumour-targeting
[156]. However, there are concerns regarding the aggregate cytotox-
icity of each constituent of the nanogels. Thus, the development of
dual-mode imaging nanoprobes with fewer costly constituents with
less toxicity is desirable [157]. A one-step thermal decomposition of
Mn-oleate produced fluorescent MnO-NPs that required no further
linking or secondary fluorescent agent encapsulation has been
reported [157].

Semiconductor nanocrystals, also referred to as QDs, are tracer
molecules used in optical imaging and biomedical diagnostics be-
cause of their longer fluorescent lifetimes, high resistance to photo-
bleaching, narrow discharge spectra and broad excitation spectra
[158, 159]. The nonspecific distribution of these nanocrystals
in vivo and the potential cytotoxic effects resulting from heavy metal
release caused by either oxidation of the core or surface defects.
QDs can be encased in organic materials like polymeric micelles,
NPs and liposomes [160]. A liposome integrating multiple imaging
agents, including SPIONs and QDs, simultaneously showed a good
ability for directing accurate GBM surgical resection [160]. Carbon
nanodots probes have improved the practicality of optical tumour
imaging because they avoid the unsteady fluorescent discharge of or-
ganic dyes/fluorescent proteins and the elevated cytotoxicity of semi-
conductor nanocrystals [149, 150, 161].
nitrogen-loaded carbon nanodots are fine in size, have good biocom-

Polymer-encrusted

patibility and high-water dispersity. These nanodots have the
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Copyright 2014, American Chemical Society

potential to traverse the BBB using EPR by aggregating in GBM
tumours using EPR effects, which has provided a significant ad-
vancement for GBM fluorescence imaging [151]. Polymer-encrusted
nitrogen-loaded carbon nanodots have provided an MR/fluores-
cence imaging platform [54] that diminishes cytotoxicity, improves
the contrast ability of conventional gadolinium-diethylenetriamine
pentaacetic acid (Gd-DTPA) and increases the spatial resolution of
fluorescence imaging using improved MRI contrast. Because of its
small hydrated particle size (30 nm), nitrogen-loaded carbon nano-
dots can traverse the BBB using the EPR effect and passively target
GBM:s [162]. However, the application of Gd-loaded carbon nano-
dots is limited because they can cause nephrogenic systemic fibrosis
[163]. Mn-loaded carbon nanodots have been prepared via a one-
step green microwave-assisted route using citric acid, manganese
chloride and urea as the starting materials [164]. The size of the
Mn-loaded carbon nanodots is < 5Snm. These nanodots have a
unique excitation wavelength dependency photoluminescence (PL)

emission and efficient R; relaxation resistance, enhancing the MR/
optical contrast in the GBM region.

The NIR light of 980 nm in the optical transmission window of
biological tissues (750-1000nm) excites the upconversion NPs
(UCNPs) to emit stable visible-to-NIR light, have high tissue travers-
ing and nonblinking luminescence signals with diminished photic
damage [5]. UCNPs also diminish toxicity relative to QDs, which
contain toxic heavy metal ions [165]. Upconverting lanthanide-
loaded NPs are potentially novel fluorescent probes [166]. Gd ions
are paramagnetic with comparatively low electronic relaxation and
are extensively used in MRI [167]. Gd-loaded UCNPs are
prospective MR/UCL dual-mode imaging nanoprobes that exhibit
greater imaging effectiveness than the clinically used MRI contrast
agent, Gd-DTPA and the fluorescent dye, five-aminolaevulinic acid
(5-ALA) [168, 169] (Fig. 35). NaGdF; NPs possess an r; of
5.7mM~'s ~! and improve the contrast in intraperitoneal GBM
xenografts [165]. Core-shell NaYF4: Yb, Er/NaGdF4 NPs exhibit
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green/red luminescence and MRI signal enhancements in U87 MG
xenografts [168].

Computed tomography/MR dual-mode imaging
Computed tomography (CT) imaging relies on X-ray absorption
differences between healthy and pathologic tissues. CT is a struc-
tural imaging mode that reconstructs three-dimensional tomogra-
phy with good spatial resolution in healthy tissue and provides
lesion anatomy [170]. However, it has low soft-tissue sensitivity
[171]. Au NPs provide better CT imaging features than
Omnipaque, an iodine-centred clinical CT contrast agent, because
Au has a greater atomic number and an elevated K-edge energy
compared with iodine [26]; 1,4,7-triacyclononane-1,4,7-triacetic
acid (NOTA) and PEGylated RGD were conjugated to a G2-NH,
PAMAM dendrimer surface and mixed with Au NPs by in situ
NaBH, reduction, which chelated Mn(Il) through the NOTA
ligands. This platform could be used as an agent in MR/CT dual-
mode imaging of orthotopic GBMs [26] (Fig. 6).

Dual-mode PET/MR imaging

PET is based on metabolic imaging and is a reliable method for
neuro-oncologic imaging [172, 173]. It has elevated sensitivity, and
there are numerous biologically relevant tracers. However, it has
low spatial resolution (>1cm in a clinical scanner) and is restricted
to diagnostic assessments of GBMs [149, 174, 175]. However, when
combined with MRI, these shortcomings can be overcome. The four
key hallmarks of cancer, proliferation, apoptosis resistance, inva-
siveness and angiogenesis can be imaged by either PET or MRI. The
potential advantages of integrating PET and MRI systems include
verifying any one of these hallmarks using two complementary

approaches, imaging two or more biological parameters indepen-
dently and concurrently and imaging the distribution of a prospec-
tive therapeutic or biomarker of disease concurrently. The
combination of PET and MRI could result in excellent spatial reso-
lution and increased sensitivity i vivo for diagnosing lesions at the
molecular level [176, 177]. Gadofullerenes incorporating **Zr (t1/
2=78.4h) or ®*Cu (t1/2=12.7h) can be used as potential PET/
MRI agents [27] (Fig. 7).

When MRI was used with the PET contrast agent, O-(2-[**F] flu-
oroethyl)-L-tyrosine, the precision of GBM detection increased
[174]. ®®Ga-conjugated peptides have gained increased attention in
tumour imaging because of their physical properties. ®*Ga provides
a CT attenuation correction of 89% and is released from an internal
%8Ge/*®Ga generator, offering an ideal positron-releasing isotope
with no need for an on-site cyclotron [178]. AGuIX derivatives con-
jugated with ®®*Ga are present as a potential imaging approach for
concurrent PET/MRI [179]. Typical AGuIX NPs composed of poly-
siloxane and those covalently linked DOTAGA(Gd>*) where
DOTA was replaced with NODAGA 2,2-(7-(1-carboxy-4-((2,5-diox-
opyrrolidin-1-yl)oxy)-4-oxobutyl)-1,4,7-triazanonane1,4-diyl)diacetic
acid. 8 Ga AGUIX@NODAGA NPs are to be suitable for dual-mode
PET/MRI in a U87 MG tumour model [179].

T4/ T, dual-mode imaging

T, contrast agents have resulted in poor contrast images when low
background signals are present. These agents are also affected by
high magnetic susceptibility or inhomogeneity, leading to the ab-
sence of inherent tissue signals in in vivo imaging. SPIOs as MRI
contrast agents for GBM imaging are not less restrained than T,
contrast agents in their utility and do have challenges [180, 181].
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Gd-chelated contrast agents accelerate spin-lattice relaxation
(T;), yielding positive contrast images, better spatial resolution
and imaging distinctions between healthy and diseased tissues,
and they are extensively used in clinical GBM diagnoses
[182, 183]. However, Gd-chelated contrast agents can be
cytotoxic, and concentrations in the vascular system are
diminished because of their increased mobility. T;—T> dual-mode
contrast agents provide both T; and T, signals, as well as MR
images, which is highly attractive for GBM diagnostics. Several
strategies have been developed to synthesize T;/T, contrast
agents. For example, magnetic NPs, with rational size and
magnetic regulations, can be used as T;/T, contrast agents. The
size of SPIOs were reduced to 3.3 nm, exhibiting not only an r, of
35.1mM s

8.3mM™'s™!, providing intrinsic signal enhancements on

on T,-weighted images but also an r; of

T;-weighted images [184]. T, materials mixed with T; contrast
materials can also be used as T;/T, contrast agents. Gd-loaded
SPIO exhibits a high r; value, resulting in a low R,/R; ratio, and
has been used as a T;/T, dual-modal MRI contrast agent. A
limitation of these NPs is that the production is laborious,
requiring a multistep synthesis. However, a one-pot processed
Fe-hinged nanostructured coordination polymer T/T, MRI
contrast agent has shown a high T| and T, contrast ability, high
colloidal steadiness and low toxicity in an orthotopic GBM
mouse model [52].

MRI-guided GBM therapy

Accurate diagnosis of cancer progression in response to treatment is vi-
tal to improve specific treatment strategies for patients at early stages
[185]. Anatomic techniques based on the determination of tumour size
are widely used for assessing therapeutic responses, although there are
substantial limitations. The limitations include not being able to mea-
sure some smaller tumours, limited reproducibility in tumour measure-
ments and lesions that persist after treatment [186]. MRI might offer
tumour progression and tumour response surveillance of cancer thera-
pies because it has high spatial resolution and excellent contrast of soft

tissue images.

MRI-guided drug delivery systems

Many drugs have been used in MRI-guided drug delivery systems, in-
cluding cisplatin [69, 70, 78], DOX [63, 68], paclitaxel (PTX) [56, 67],
temozolomide [60] and curcumin [58]. In addition to these drugs, pep-
tides [76], monoclonal antibodies [59], proteins and siRNAs have been
used [60] (Fig. 8). MRI-guided drug delivery approaches can be used
to improve treatment effects by validating the biodistribution, pharma-
cokinetics and pharmacodynamics of drugs.

MRI-guided radiotherapy
Radiotherapy is the most effective treatment for brain tumours and
is largely restrained in its potential to deliver treatment doses to the

B
NPs “cross BBE"
bEnd.3
GL281 s
C ’ D _
- 2 100{
: i
o
Fw é 2]
PBS 05 1 2 5 10 20 S0 100 3
TMZ or TMZ equivalent
concentration (pg'mi)
E Pre-injection
LBTA
ALBTA

Figure 8.(A) Schematic illustration of the Ang-LiB(T+an@siTGF-B) component and delivery strategy [60]. (B) In vitro BBB model to investigate the BBB-crossing
ability of Ang-LiB(T+an@siTGF-p). (C) The cytotoxicity of GL261 cells after different treatments. (D) Percent survival of orthotopic GL261-bearing mice after differ-
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target tumour volume while diminishing damage to adjacent healthy
tissues. Molecules containing high atomic weight elements, such as
Gd (Z = 64), have demonstrated a substantial capacity for radio-sen-
sitization [187-189]. MRI is critical for maximizing the impact of
radiotherapy because radiation exposure can be stimulated only
when the Gd content, gauged from MR images, is both high in the
tumour, and low in the adjacent non-tumour tissue. AGulX, a GD-
based NP, is a small non-toxic magnetic resonance contrast agent
with efficient renal clearance [190]. The grouping of Gd atoms
within the NPs permits ionizing radiation with intense dose deposi-
tion in nm scales following X-ray exposure [191]. This method
increases the survival rate of rats with aggressive GBM [191].

MRI-guided photodynamic therapy
Photodynamic therapy (PDT) is a strategy for treating tumours un-
der certain conditions, where the photosensitizer results in the pro-
duction of reactive oxygen species (ROS) that stimulate cancer cell
apoptosis [192-195]. PDT has the potential for improved selectivity
and fewer complications than radiotherapy and chemotherapy.
Extracellular cancer cell killing by photodynamic NPs was ob-
served using MRI. The core of the NP is PAA, which consists of
both photosensitizers and MRI CAs. The surface-coatings are PEG
and molecular targeting groups [196]. Because there is no need to re-
lease drugs, multidrug resistance can be avoided. Human serum al-
bumin (HSA) was modified with PTX and the photosensitizer,
chlorin e6 (Ce6). Then, the complex was conjugated to cRGDyK
(HSA-Ce6(Mn)-PTX-RGD) as a PDT NP. Under light irradiation,
the drug-induced self-assembled NPs show high efficacy in a subcu-
taneous GBM nude mouse model [56]. Chlorin and porphyrin deriv-
atives are the most frequently used photosensitizers in MRI-guided
PDT [61, 74] (Table 2). The high efficacy of PDT in GBM therapy
has sparked increased interest in other types of photosensitizers for
MRI-guided PDT in GBM.

MRI-guided chemodynamic therapy

Chemodynamic therapy (CDT) is defined as an in situ treatment
that damages tumour cells by converting hydrogen peroxide (H,0O,)
to hydroxyl radicals (-OH) via the Fenton reaction [197]. Other
transition metal ions, such as Mn>*, Cu®**, Ti**and Co®" ions, can
also act as catalytic ions for the reaction. Fe>™ and Mn** can be
used as MRI contrast agents and are suitable for GBM theranostics.
A sufficient H,O, concentration is crucial for CDT, and the concen-
tration of endogenous H,O, in tumour tissues is not sufficient for
CDT. Biodegradable dendritic mesoporous silica has been used as
scaffolds for loading natural glucose oxidase and USPIO Fe30O4 NPs
into dendritic silica NPs_ Glucose oxidase oxidizes endogenous f-d-
glucose into gluconic acid and H,O, [198]. Fe;O4 is released, react-
ing with H,O, to generate "OH, which kill tumour cells. These NPs
show moderate and steady therapeutic effects in a subcutaneous
U87 MG xenograft mouse model. However, an adequate supply of
oxygen is necessary for glucose oxidation, and the TME is hypoxic.
Feng et al. used a manganese dioxide (MnO,) nanoshell to supply
0O, [199]. The acidic environment of the TME decomposed the
MnO, nanoshells into Mn?>" and O,. This provided sufficient O,
for glucose oxidation while Mn** served as an MRI contrast agent
for real-time monitoring of the therapeutic effects. Furthermore,
Mn?" can also be used as a Fenton reactant [200]. CDT efficiency
can be improved by reducing the pH, producing more H,O,, de-
creasing glutathione concentrations and increasing the reduction
rate of Fe>* to Fe** [197].

MRI-guided FUS

Haematoporphyrin derivatives stimulate cell degradation in vitro us-
ing transcranial MRI-guided focused ultrasound (TcMRgFUS) in a
process termed sonodynamic therapy (SDT). Some photosensitizers,
such as protoporphyrin IX, can be used as sonosensitizers to trigger
tumour cell apoptosis in animal models [201]. FUS can cause ther-
mal damage to normal tissue, but MRI can be used to survey an area
for a rise in FUS-induced tissue temperature to limit that damage
[202, 203]. TcMRgFUS precisely targets anatomic structures and
can be used in conjunction with SDT to treat GBMs [204].
TcMRgFUS has been combined with 5-ALA, generating ROS under
FUS-induction to suppress tumour cell multiplication, infiltration
and tumour angiogenesis, while preventing thermal injury to healthy
brain tissue in a GBM model [205].

FUS in the presence of preformed gas-filled MBs can stimulate
localized, temporary and reversible BBB disruptions in the deep
brain [206]. Vesicular transportation and transient disassembly of
tight junctional complexes permit molecular passage of contrast
agents and NPs that would not otherwise traverse the BBB [207,
208]. SPIONs were delivered into a TcMRgFUS-induced BBB dis-
rupted region, successfully delivering a tissue-targeted sonosensitive
drug to GBM tissues. An SPIO-DOX-MB was used with
TcMRgFUS to successfully facilitate BBB opening and deliver DOX
to C-6 cell orthotopic rats with GBM [209].

Once treatment agents traverse the BBB, they still must cross the
intricate brain extracellular space to offer more consistent drug de-
livery to the tumour and the infiltrating tumour cells. Drug- or
plasmid-loaded NPs with exceptionally dense PEG coatings can be
modified with non-adhesive surfaces allowing particles to traverse
normal and cancerous brain tissue [210]. The dense PEG layer
causes longer drug circulation times, minimizing the rapid clearance
of drugs through the reticuloendothelial system [211]. Brain-
penetrating NPs coated with dense PEG and loaded with cisplatin
were introduced into brains using MRgFUS, enhancing the control
of tumour proliferation and animal survival [69].

Conclusions

Research on targeted Contrast agents has focused primarily on im-
proving their synthesis. The physical and chemical properties of con-
trast agents, including imaging stability, iz wvivo distribution,
metabolism and removal efficiency, can be improved with modifica-
tions. Adding specific ligands to the surface of contrast agents will
allow them to traverse the BBB and target GBM cells in the brain,
improving specificity. MRI-based molecular imaging offers several
advantages to contrast agent- and NP-based therapies. However, a
number of issues still need to be addressed. First, more efficient
BBB-crossing methods should be developed. Second, additional tu-
mour- and TME-specific targets should be identified that can in-
crease the specificity and sensitivity of glioma molecular imaging.
Third, the sensitivity of MRI can be improved using multimodal im-
aging and appropriate nanoparticle design, such as cascade signal
amplifications. With the improved effectiveness of GBM-targeting
contrast agents and NPs, clinical applications to diagnose and prog-
nosticate GBM will be enhanced.
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