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This paper reports an overview on the chemistry of the indole alkaloid goniomitine focusing, mainly, on the methods of synthesis
related to this natural product and analogs.

1. Introduction

The indole alkaloids belong to the class of natural substances
displaying biological activities as well as a broad structural
diversity. In view of these important properties, these prod-
ucts are target of study in the areas of isolation, identification,
and synthesis [1–5]. Goniomitine (1) (Figure 1) is an indole
alkaloid that was isolated and identified by Randriambola
et al. [6] and Hashimoto and Husson [7]. The unique
structure and biological activity of goniomitine have attracted
the attention of several groups. This review describes the
isolation, biogenesis hypothesis, chemical transformations,
and syntheses of this alkaloid and analogs.

2. Isolation of Goniomitine

In the course of studies of the alkaloids of the genus
Gonioma, Randriambola et al. [6] isolated, from the root
bark of Gonioma malagasy, a crystalline compound named
goniomitine with melting point of 150∘C (ether-methanol),
[𝛼]D
20

−80∘ (c 0.9 in CHCl
3
), and molecular formula

C
19
H
26
N
2
O (HRMS, M+∙ 298.2080, calculated for 298.2045).

The structure of goniomitine was initially proposed as indi-
cated in Figure 1, with 20S, 21R configuration, based on its
NMR spectra. Its absolute structure was deduced through the
correlation with other alkaloids from Aspidosperma found in

the same plant from where goniomitine had been isolated.
The relative structure of goniomitine (1) was soon after con-
firmed by Takano et al. [8] through the total enantioselective
synthesis of the natural form of this alkaloid. It could be
evidenced that the absolute structure of the compound 1 is
enantiomeric to the one that had been initially proposed for
20S, 21R configuration.

3. Biogenesis of Goniomitine

Randriambola et al. [6] proposed that goniomitine (1) may be
derived from the Aspidosperma skeleton of vincadifformine
(2) by the successive steps depicted in Scheme 1.

4. Chemical Transformations and
Syntheses of Goniomitine and Analogs

4.1. Chemical Transformations of Goniomitine. For the occa-
sion of the structural determination of goniomitine (1) [6],
this compound was transformed into the N-acetyl derivative
5 upon treatment with Ac

2
O in MeOH and into the N,O-

diacetyl derivative 6 upon treatment with Ac
2
O in pyridine

(Scheme 2). The formation of the acetylated compounds 5
and 6 confirmed the presence of the groups OH and NH in
the structure of 1.
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Figure 1: Natural (−)- and unnatural (+)-goniomitine (1).
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Scheme 1: Biogenetic hypothesis of transformation of vincadifformine (2) into goniomitine (1): (a) oxidative fission of the C-5, N-4 bond; (b)
decarboxylation; (c) retro-Mannich reaction; (d) nucleophilic attack of the indole nitrogen on the iminium moiety.
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Scheme 2: Chemical transformations of goniomitine (1) into the acetyl derivatives 5 and 6.
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Scheme 3: Reagents and conditions: (a) (i) n-BuLi (2.2 equiv), hexane (reflux, 6 h) and (ii) methyl 3-(3-pyridyl)propanoate, THF (−78 to
15∘C); (b) MeMgI (10 equiv), ethylene oxide (10 equiv), Et

2

O (1 h), reflux (2 h); (c) MeI, CH
2

Cl
2

(reflux, 2 h); (d) H
2

, PtO
2

, MeOH (3 h); (e)
H
2

, PtO
2

, NaOMe, MeOH (3 h).

4.2. Synthesis of the Goniomitine Analog (+/−)-12. In order
to ascertain unambiguously the unprecedented structure of
the alkaloid goniomitine (1), Hashimoto and Husson [7]
synthesized the goniomitine analog (+/−)-12 by the sequence
of reactions depicted in Scheme 3.

4.3. Total Synthesis of (−)-Goniomitine by Takano. The first
enantiocontrolled total synthesis of natural (−)-goniomitine
(1) was published in 1991 by Takano et al. [8], who estab-
lished the absolute stereochemistry of this alkaloid. This
total synthesis, depicted in Scheme 4, starts with the chiral
cyclopentadienone synthon (−)-13.

4.4.The First Biomimetic Approach to the Skeleton of Goniomi-
tine from an Aspidosperma Alkaloid. The results from the
study of biomimetic transformation of an Aspidosperma
alkaloid (2) into the substances 39-40, with the skeleton
of goniomitine (1), were published in 1995 by Lewin et al.
[9]. The sequences of reactions for the discovery of a new
biomimetic in vitro rearrangement are depicted in Scheme 5.
Scheme 6 displays the proposed mechanism [9] for the
transformation of compound 36 into the alkaloids 39 and
40.

4.5. Semisynthesis of (+)-(16S,20S,21R)-16-Hydroxymethyl-
goniomitine from (−)-Vincadifformine. In continuation to
the studies of chemical transformations of vincadifformine
(2) into alkaloids analogs to goniomitine (1), Lewin and
Schaeffer [10] published in 1995 the semisynthesis of (+)-16-
hydroxymethyl-goniomitine (45).This alkaloid was obtained

as a result of the attempts to synthesize (+)-goniomitine
(1) from the compound 40, previously obtained from (−)-
vincadifformine (2) (Scheme 5) [9]. In Scheme 7 are depicted
the sequences of reactions that led to the synthesis of com-
pound 45 as well as other alkaloids with tetracyclic skeleton
of goniomitine (1).

4.6. Synthesis of the Goniomitine Analogs 52–55 by Cycload-
dition Reactions. In the year 1996, Gürtler et al. [11] pub-
lished the synthesis of the goniomitine analogs 52–55 by
[4 + 2] cycloaddition reactions between 2-vinylindoles
and substituted cyclic enamines, via anodic oxidation
(Scheme 8).

4.7. Proposal of Synthesis of Goniomitine by Alves. In the year
2000, Alves [12] presented his qualification exam of doctorate
about a plan of synthesis of the indole alkaloid goniomitine
(1). The convergent strategies and synthetic routes for the
synthesis of this alkaloid, idealized on that occasion, are
described in the supplementary material of this review,
available online at http://dx.doi.org/10.1155/2013/292396.

4.8. Syntheses of Cytotoxic Bisindole Alkaloids. In the year
2000, Lewin et al. [13] published an article about a slightmod-
ification of the Borch reductive amination method (delayed
addition of NaBH

3
CN) [14, 15], applied to compound 40,

analog of the natural alkaloid goniomitine (1). As a result of
this reaction, a series of new cytotoxic bisindole alkaloids was
prepared, as depicted in Scheme 9.

http://dx.doi.org/10.1155/2013/292396
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Scheme 4: Reagents and conditions: (a) Zn (5.0 equiv), AcOH-EtOH (1 : 3), reflux (4 h); (b) EtI (2.0 equiv), t-BuOK (1.2 equiv), THF (−70 to
−30∘C, 15min); (c) allyl bromide (2.0 equiv), t-BuOK (1.2 equiv), THF (−30∘C, 5min); (d) o-dichlorobenzene (reflux, 24 h); (e) LiAlH

4

(1.0
equiv), CuI (0.5 equiv), HMPA-THF (1 : 4), −75∘C (15min); (f) propane-1,3-diyldithiotosylate (1.5 equiv), t-BuOK (3.0 equiv), t-BuOH-THF
(1 : 4), 0∘C; (g) KOH (5.0 equiv), t-BuOH (70∘C, 12 h); (h) CH

2

N
2

, Et
2

O; (i) MeI (1.0 equiv), CaCO
3

(5.0 equiv), 10% aq. MeCN (reflux, 1 h);
(j) Ph

3

P (4.0 equiv), CBr
4

(2.0 equiv), Et
3

N (3.0 equiv), CH
2

Cl
2

(0∘C, 5min); (k) LDA (3.0 equiv), THF (−78∘C, 10min); (l) compound 20 (1.1
equiv), PdCl

2

(PPh
3

)
2

(2%), CuI (5%), Et
3

N (reflux, 30min); (m) NaOEt (10 equiv), Et
3

N (5%), EtOH (reflux, 3 h); (n) (i) dicyclohexylborane
(1.5 equiv), THF (0∘C, 30min), (ii) 10% NaOH (1.0 equiv), 30% H

2

O
2

(3.0 equiv), 0∘C (30min); (o) phthalimide (1.3 equiv), Ph
3

P (1.3 equiv),
(i-PrO

2

CN)
2

(1.3 equiv), THF (0∘C, 10min); (p) NH
2

NH
2

⋅H
2

O (4.0 equiv), EtOH (reflux, 2 h); (q) [Me
2

N=CH
2

]Cl (1.5 equiv), CH
2

Cl
2

(r.t.,
30min); (r) MeI, MeOH (r.t., 10min); (s) NaCN (1.3 equiv), DMF (100∘C, 10min); (t) POCl

3

(6.0 equiv), toluene (reflux, 2 h); (u) NaBH
4

,
MeOH, 0∘C; (v) DIBAL (1.5 equiv), CH

2

Cl
2

(−75∘C, 10min); (x) dil. H
2

SO
4

; (y) NaBH
4

; (z) 30% HCl-MeOH (1 : 10), reflux (30min).
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2
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2

(r.t., 3 h); (b) 0.2mol L−1 NaOH-MeOH (r.t., 5min); (c) NaI (3.0 equiv),
AcOH (r.t., 1.5 h); (d) 11 mol L−1 HCl (105∘C, 10min); (e) TFA (16 equiv), CH

2

Cl
2

(r.t., 20min); (f) TFA (r.t., 4 h); (g) TFA (16 equiv), CH
2

Cl
2

(r.t., 15 h); (h) TFA (12.5 equiv), CH
2

Cl
2

(r.t., 45 h).

In continuation to the studies of synthesis of cytotoxic
bisindole alkaloids, Raoul et al. [16] published, in the year
2001, an article with a novel series of these alkaloids pre-
pared by reductive amination of the compound 40 with
various anilines, using the modified Borch amination con-
ditions described in Scheme 9 (delayed addition (20min) of
NaBH

3
CN) [15]. The influence of substitution of the starting

aniline on the reaction and on cytotoxicity of produced
dimers is discussed in the paper.

4.9. Total Synthesis of (+/−)-Goniomitine by Pagenkopf. In the
year 2008, Morales and Pagenkopf [17] published the total

synthesis of racemic (+/−)-goniomitine (1), accomplished
in 17 linear steps with 5.2% overall yield starting from
commercially available 𝛿-valerolactam (65). Their synthetic
approach includes the application of a formal [3+2] cycload-
dition between the highly functionalized nitrile 68 and the
activated cyclopropane 69 to prepare the indole nucleus
(Scheme 10).

4.10. Total Synthesis of (+/−)-Goniomitine by Waser. De
Simone et al. [18] published the synthesis of racemic goniomi-
tine (1) with the first study of its bioactivity, revealing
significant cytotoxicity against several cancer cell lines [18,
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(d) H

2
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3

, current (20 to 2mA), 200min); (b) vinylindole 48 (1.0 equiv), enamine 49 (6.17 equiv), CH
3

CN, LiClO
4

(0.1mol
L−1), electrolysis (480mV versus Ag/AgNO

3

, current (20 to 2mA), 200min); (c) vinylindole 47 (1.0 equiv), enamine 50 (1.4 equiv), CH
3

CN,
LiClO

4

(0.1mol L−1), electrolysis (480mV versus Ag/AgNO
3

, current (20 to 2mA), 40min); (d) vinylindole 47 (1.0 equiv), enamine 51 (2.1
equiv), CH

3

CN, LiClO
4

(0.1mol L−1), electrolysis (480mV versus Ag/AgNO
3

, current (20 to 2mA), 200min).

19]. The strategy of this synthesis is based on cyclization
of aminocyclopropanes [20], applied to cyclopropyl ketone
83 to lead to compound 84 with tetracyclic skeleton of
goniomitine (Scheme 11).

4.11. Total Syntheses of (+/−)-, (−)-, and (+)-Goniomitine by
Mukay. In the year 2011, Mizutani et al. [21] published the
syntheses of both racemic and optically active goniomitine,
whose principal steps are the preparation of the indole skele-
ton by their own developed procedure [22] and alkene cross-
metathesis. The synthesis of racemic (+/−)-goniomitine (1)
was performed, as a preliminary study, by the sequence of
reactions depicted in Scheme 12.

The convergent total synthesis of the natural (−)-goni-
omitine (1) [21] was completed by the sequence of reactions
depicted in Scheme 13.

Using the synthetic route described in Scheme 13, but
starting from the enantiomer of the lactam 97 (ent-97)Mizu-
tani et al. [21] synthesized the unnatural (+)-goniomitine
(ent-1).With the racemic, natural, and unnatural goniomitine
in hand, the authors [21] executed the preliminary bioactive
assays, which revealed that natural (−)-goniomitine has
stronger antiproliferative activity inMock andMDCK/MDR1
cells than its enantiomer.

4.12. Total Synthesis of (+/−)-Goniomitine by Bach. In the
year 2012, Jiao et al. [23] published the total synthesis of
racemic goniomitine (1), using the strategy of C-2 alkyla-
tion of indoles catalyzed by palladium via a norbornene-
mediated C–H activation [24]. The steps for the synthesis
of (+/−)-goniomitine (1), by this strategy, are depicted in
Scheme 14.
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Ac
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2

O, NaBH
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CN, AcOH (r.t., 2 h); (g) LiAlH
4
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2

OTHP (1.1 equiv), r.t. (overnight); (c) TsOH (0.1 equiv), MeOH (ice-
brine bath, 4 h); (d) Et

3

N (2.1 equiv),MsCl (1.0 equiv), CH
2

Cl
2

(0∘C to r.t., 3 h); (e) NaCN (2.0 equiv),MeCN, 120∘C (𝜇w, 8 h, 900 rpm stirring);
(f) Nitrile 68 (1.0 equiv), cyclopropane 69 (2.9 equiv), TMSOTf (1.0 equiv), EtNO

2

(−30∘C, 24 h); (g) 5% Pd-C (0.03 equiv), mesitylene (reflux,
24 h); (h) NaOH (10 equiv), EtOH-H

2

O (1 : 1), 150∘C (𝜇w, 3 h, 900 rpm stirring); (i) Na (5.0 equiv), liq. NH
3

(0.042mol L−1), THF (−78∘C,
10min); (j) (i) [Me

2

N=CH
2

]Cl (1.5 equiv), CH
2

Cl
2

(r.t., 15min), (ii) MeI (40 equiv), MeOH (r.t., 10min), (iii) NaCN (1.3 equiv), DMF (100∘C,
10min); (k) (i) POCl

3

(6.0 equiv), toluene (reflux, 2 h), (ii) NaBH
4

(2.0 equiv), MeOH (0∘C, 30min); (l) (i) DIBAL (1.5 equiv), CH
2

Cl
2

(−78∘C,
10min), (ii) 0.75mol L−1 H

2

SO
4

, (iii) NaBH
4

(2.2 equiv), EtOH (0∘C, 30min); (m) TsOH (cat.), Et
3

N-MeOH (3 : 5, v/v), reflux (30min).

4.13. Synthesis of (+)- and (−)-Goniomitine by Lewin. In
the year 2013, Lewin et al. [25] have published the first
biomimetic semisynthesis of goniomitine (1), in nine steps
with 11% overall yield, starting from vincadifformine (2).
Natural (−)- and unnatural (+)-goniomitine were prepared
from (+)- and (−)-vincadifformine, respectively.The steps for
the synthesis of unnatural (+)-goniomitine (1) are depicted in
Scheme 15.

Lewin et al. [25] have synthesized the natural (−)-goni-
omitine (1), starting from (+)-vincadifformine (ent-2), using

the same conditions described in Scheme 15. The evaluation
of the antiproliferative effect of (+)- and (−)-goniomitine (1),
undertaken on five human cancer cell lines, has demonstrated
that unnatural (+)-goniomitine is more potent than its
enantiomer (−)-goniomitine [25], in opposition to Mizutani
et al.’s results on a canine kidney cell line (MDCK II) [21].

4.14. Synthesis of (+/−)-Goniomitine by Zhu. In the year
2013, Xu et al. [26] have published a seven-step total
synthesis of (+/−)-goniomitine (1) through two key steps:
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Scheme 11: Reagents and conditions: (a) (i) n-BuLi (2.2 equiv), THF (0∘C, 30min), (ii) EtI (1.5 equiv), 0∘C (20min), (iii) benzyl chloroformate
(1.05 equiv), 0∘C (20min); (b) (i) NaBH

4

(1.05 equiv), MeOH (0∘C, 15min), (ii) conc. H
2

SO
4

, Et
2

O (r.t., 1 h); (c) N
2

CH
2

COOEt (4.0 equiv),
(CuOTf)

2

⋅C
7

H
8

(0.02 equiv), CH
2

Cl
2

(18 h); (d) (i) BF
3

⋅OEt
2

(0.15 equiv), CH
2

Cl
2

(−20 to 0∘C), (ii) NaOH (9.0 equiv), H
2

O-THF-EtOH
(1 : 1 : 3), 0∘C to 60∘C (2 h); (e) (i) DMTMM (1.5 equiv), THF (r.t., 60min), (ii) MeNHOMe.HCl (1.0 equiv), NMM (2.0 equiv), r.t. (36 h); (f)
TIPSCl (1.05 equiv), imidazole (2.1 equiv), DMF (r.t., 1 h); (g) (i) n-BuLi (1.2 equiv), Et

2

O (0∘C then reflux, 2 h), (ii) CO
2

(0∘C, 30min), (iii)
H
3

O+ (pH 2); (h) (i) t-BuLi (3.0 equiv), compound 82 (1.5 equiv), TMEDA (2.0 equiv), THF (−78∘C, 3 h), (ii) amide 79 (1.0 equiv), THF (0∘C,
20min); (i) TsOH (0.2 equiv), CH

2

Cl
2

(r.t., 10min); (j) (i) NaBH
4

, MeOH (0∘C to r.t., 3 h), (ii) Ac
2

O, Py (r.t., overnight), (iii) H
2

, Pd-C (0.1
equiv), EtOH, (iv) TBAF (4.4 equiv), THF (r.t., 30min).

(i) a novel palladium-catalyzed decarboxylative coupling
reaction between the potassium nitrophenyl acetate 118
and the vinyl triflate 115 for a rapid production of the
functionalized cyclopentene 119; (ii) a late-stage construc-
tion of the whole tetracyclic scaffold of goniomitine (1)
from the functionalized cyclopentene 120 by a one-pot
integrated oxidation/reduction/cyclization (IORC) sequence
(Scheme 16).

5. Conclusions

In summary, it may be concluded that this brief survey
on the chemistry of goniomitine has covered the literature
relative to this alkaloid and analogs from 1987 to the first
semester of the year 2013. Taking into account the results
published in this period, a considerable progress on the
synthesis of this alkaloid has been verified in the last years
(2008–2013) with the publications of five racemic and two
enantiomeric syntheses. It is also important to emphasize the
recent pioneering works on the bioactive assays performed
with the racemic mixtures as well as both enantiomers of
goniomitine. In spite of these progresses, the development

of new efficient enantioselective synthetic strategies for this
indole alkaloid, with low operational costs, is still a target to
be reached.

Abbreviations
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3

N (2.0 equiv), CH
2

Cl
2

(0∘C to r.t., 20min); (c) (i) LDA (2.4 equiv), n-Bu
3

SnH (2.4 equiv), THF
(−78∘C, 1 h), (ii) CuBr⋅SMe

2

(2.7 equiv), −78∘C (40min), (iii) mesylate 88 (1.0 equiv), THF (−78∘C, 1 h); (d) (i) 2-I-PhNHBoc (1.28 equiv),
compound 89 (1.0 equiv), TBAC (3.29 equiv), TFP (0.25 equiv), Pd

2

(dba)
3

(0.03 equiv), CuI (0.11 equiv), DMF (r.t., 2 h); (e) (i) o-NO
2

PhSeCN
(1.54 equiv), n-Bu

3

P (1.55 equiv), THF (r.t., 5 h), (ii) 30% aq. H
2

O
2

(1.48mol L−1), THF (0∘C (20min), r.t. (17 h)); (f) compound 90 (1.0 equiv),
lactam 91 (9.44 equiv), Hoveyda-Grubbs-II cat. (0.3 equiv), neat (140∘C, 3 h); (g) H

2

, 5% Pd-C (0.1 equiv), AcOEt (r.t., 23 h); (h) DIBAL (3.4
equiv), THF (−78∘C to r.t.); (i) H

2

, 20% Pd (OH)
2

, AcOH-EtOH (5 : 2), r.t. (2 h); (j) TBAF (3.3 equiv), THF (r.t., 14 h).

Et: Ethyl
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TIPSCl: Triisopropylsilyl chloride (chlorotriisopro-
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TMEDA: 𝑁,𝑁,𝑁󸀠, 𝑁󸀠-Tetramethylethylenediamine
TMSCl: Trimethylsilylchloride
TMSOTf: Trimethylsilyl trifluoromethanesulfonate
Ts: Tosyl (𝑝-toluenesulfonyl)
X-Phos: 2-Dicyclohexylphosphino-2󸀠,4󸀠,6󸀠-

triisopropylbiphenyl.
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equiv), PdCl

2

(0.1 equiv), DMF-DMSO (9 : 1), H
2

O (0.5mol L−1), air (60∘C, 26 h); (c) (i) indole 104 (1.0 equiv), LiHMDS (3.0 equiv), THF
(−78∘C to r.t.), (ii) CH

2

=CHCH
2

Br (3.0 equiv) (−78∘C (40min), r.t. (30min)); (d) (i) lactam 105 (1.0 equiv), 9-BBN (1.39 equiv), (0∘C (15min),
r.t. (1 h)), (ii) aq. NaOH (1mol L−1), 35% aq. H

2

O
2

(0.18mol L−1), 0∘C (30min); (e) alcohol 106 (1.0 equiv), PPh
3

(2.08 equiv), DPPA (2.94
equiv), DIAD (2.8 equiv), 0∘C to r.t. (3.5 h); (f) azide 107 (1.0 equiv), LiAlH

4

(4.01 equiv), THF (0∘C to r.t., 2 h); (g) AcOH-THF-H
2

O (3 : 1 : 1,
v/v), 40∘C (24 h).
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P (2.1 equiv), DPPA (2.9 equiv), DIAD (2.8 equiv), THF (0∘C to r.t., 3.5 h); (i) (i) compound 120 (1.0 equiv),
NaHCO

3

(5.0 equiv), MeOH, O
3

(−78∘C, 20–30 seg), (ii) Me
2

S (50 equiv), −78∘C to r.t. (24 h), (iii) Zn (70 equiv), CaCl
2

(20 equiv), MeOH
(reflux, 2 h); (j) compound 121 (1.0 equiv), sodium naphthalenide (6.0 equiv), THF (−20∘C, 15min).
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