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A B S T R A C T

Purpose: We aim to develop an MRI-based radiomics model to improve the accuracy of differentiating non-ccRCC 
from benign renal tumors preoperatively.
Methods: The retrospective study included 195 patients with pathologically confirmed renal tumors (134 non- 
ccRCCs and 61 benign renal tumors) who underwent preoperative renal mass protocol MRI examinations. The 
patients were divided into a training set (n = 136) and test set (n = 59). Simple t-test and the Least Absolute 
Shrink and Selection Operator (LASSO) were used to select the most valuable features and the rad-scores of them 
were calculated. The clinicoradiologic models, single-sequence radiomics models, multi-sequence radiomics 
models and combined models for differentiation were constructed with 2 classifiers (support vector machine 
(SVM), logistic regression (LR)) in the training set and used for differentiation in the test set. Ten-fold cross 
validation was applied to obtain the optimal hyperparameters of the models. The performances of the models 
were evaluated by the area under the receiver operating characteristic (ROC) curve (AUC). Delong’s test was 
performed to compare the performances of models.
Results: After univariate and multivariate logistic regression analysis, the independent risk factors to differentiate 
non-ccRCC from benign renal tumors were selected as follows: age, tumor region, hemorrhage, pseudocapsule 
and enhancement degree. Among the 14 machine learning classification models constructed, the combined 
model with LR has the highest efficiency in differentiating non-ccRCC from benign renal tumors. The AUC in the 
training set is 0.964, and the accuracy is 0.919. The AUC in the test set is 0.936, and the accuracy is 0.864.
Conclusion: The MRI-based radiomics machine learning is feasible to differentiate non-ccRCC from benign renal 
tumors, which could improve the accuracy of clinical diagnosis.

1. Introduction

As the use of various imaging methods continues increasing, the 
incidental detection of renal masses has also continued rising [1–3]. 
Among them, renal cell carcinomas (RCCs) are the most common. Clear 
cell renal cell carcinoma (ccRCC), papillary renal cell carcinoma (pRCC) 

and chromophobe renal cell carcinoma (chRCC) are the three most 
common subtypes of RCC. Angiomyolipoma (AML) and renal oncocy-
toma (RO) are the most common solid benign renal tumors [4]. Percu-
taneous renal biopsy could provide preoperative pathology diagnosis, 
whose accuracy is reported ranging from 70 % to 90 % [5]. However, the 
histologic and molecular heterogeneity limit the accuracy of biopsy 
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results [6,7]. As an invasive method, biopsy can lead to some compli-
cations. The differential diagnosis on benign and malignant renal tumors 
by computed tomography (CT) and magnetic resonance imaging (MRI), 
which can provide qualitative and comprehensive assessment 
non-invasively, has always been a research hot spot. Accurate preoper-
ative differential diagnosis has a great impact on clinical management as 
benign renal tumors could be treated conservatively to avoid physical 
and economic burden caused by surgery, while RCCs need to be treated 
by partial or radical nephrectomy due to the potential to metastasis and 
death [8]. Because of the high morbidity, there have been many imaging 
studies on ccRCCs. In addition to the typical imaging manifestations, 
they are easier to be differentiated from other renal tumors. Owing to 
the lower incidence and uncertainty in preoperative diagnosis, it is 
difficult to differentiate non-ccRCC from benign renal tumors. In the 
most cases, classic AMLs can be diagnosed by identifying the intra-
tumoral macroscopic fat component in the images [9]. However, AML 
without visible fat (AMLwvf) is typically shows homogeneous 
enhancement and prolonged enhancement pattern, which are similar to 
pRCC and chRCC [10]. Due to the similar origination from the collecting 
duct system, RO and chromophobe renal cell carcinoma (chRCC) over-
lap in morphological and radiologic manifestations [11]. Although 
central scar and segmental enhancement inversion are the typical im-
aging features of oncocytoma, they are lack of specificity because some 
chRCCs also have the similar features [12]. Due to the high preoperative 
misdiagnosis rate, many benign renal tumors tend to be over treated [13, 
14].

As an emerging field in image analysis, radiomics can extract huge 
amounts of high-throughput quantitative features from images beyond 
what naked eyes are capable of detecting and characterize more global 
intratumoral heterogeneity non-invasively [15–17]. These features are 
able to be applied in machine learning (ML) algorithms and contribute 
to lesion detection, diagnosis, assessment of prognosis and prediction of 
therapeutic effects [18]. In general, ML uses a training set to perform 
tasks such as feature selection and tuning hyperparameter, while a 
validation or testing set to evaluate the performance of the model [5]. 
Many studies have shown that MRI-based radiomics had desirable per-
formance in distinguishing renal tumors [19–21]. In this study, we 
aimed at developing an MRI-based radiomics ML model to differentiate 
the most common non-ccRCCs (pRCC and chRCC) from benign renal 
tumors (AMLwvf and RO).

2. Methods

2.1. Patient cohort

We screened the clinical records of patients with postoperative 
pathologically confirmed with non-ccRCCs and renal benign tumors 
between January 2009 and January 2021, which were retrieved from 
electronic medical record (EMR) system of Zhongshan hospital, Fudan 
University. The hospital ethic committee approved this retrospective 
study and waived patient informed consent. The inclusion criteria were 
as follows: (1) patients had been pathologically proven as non-ccRCCs 
(including pRCC and chRCC) and benign renal tumors (including 
AMLwvf and RO); (2) patients had undergone contrast-enhanced MRI 
renal mass scans, including T2-weighted imaging (T2), T1-weighted 
imaging at unenhanced phase (UP), corticomedullary phase (CMP) 
and nephrographic phase (NP); (3) No visible fat component could be 
found in the renal tumors on all MRI scans; (4) patients underwent 
surgery within 1 months after MRI examinations. The exclusion criteria 
were as follows: (1) patients had renal surgery or treatment before MRI 
scans; (2) poor image quality such as prominent artifacts; (3) tumors 
smaller than 1.0 cm in diameter. The 1.0 cm lower threshold was 
selected to avoid potential confounding from partial volume averaging 
in smaller renal lesions. In total, 195 patients including 134 cases of non- 
ccRCCs (79 pRCCs and 55 chRCCs) and 61 cases of benign renal tumors 
without visible fat component (46 AMLwvfs and 15 ROs) were enrolled 

in this study according to the inclusion and exclusion criteria. All the 
patients were randomly assigned to the training set (n = 136) and test set 
(n = 59) by a ratio of 7:3.

2.2. MRI acquisition protocols

All patients were examined with the 3.0 T MRI scanners (Magnetom 
Aera; Siemens Healthineers) in our hospital. The routine MRI scan se-
quences included axial three-dimensional chemical shift in- and 
opposed-phase T1-weighted interpolated breath-hold examination, 
diffusion weighted imaging (DWI) with two b values (0, 500 sec/mm2) 
or three b values (0, 50, 500 sec/mm2), T2-weighted turbo spin-echo 
pulse sequence with fat suppression (T2), dynamic three-dimensional 
T1-weighted volumetric interpolated breath-hold examination at 
unenhanced phase (UP), corticomedullary phase (30–35 s) (CMP), 
nephrographic phase (80–90 s) (NP), and excretory phase (180 s) after 
injection of 0.1 mmol/kg gadopentetate dimeglumine (Magnevist; Bayer 
Schering Pharma AG) at a rate of 2 ML/s.

2.3. Clinicoradiologic features

We obtained the clinical data of the patients (age, gender, patho-
logical reports, surgery records, etc) from the EMR system. The radio-
logic features were respectively reviewed by two radiologists (R.T.W. 
and Y.Q.D., 2 years and 10 years of abdominal MRI experience, 
respectively) who were blind to the pathological results. In case of any 
discrepancies, a consensus was reached after discussion. All the 
continuous variables were converted to categorical variables. The 
following qualitative radiologic features were evaluated: (1) tumor 
diameter (≤ 4 cm, >4 cm and ≤ 7, >7 cm); (2) tumor region (left, right; 
upper, middle, lower; extra, mixed, intra); (3) tumor shape (round, 
irregular); (4) hemorrhage (yes, no); (5) necrosis (no, <50 %, ≥50 %); 
(6) cystic degeneration (no, <50 %, ≥50 %); (7) scar (yes, no); (8) 
Angular interface with renal parenchyma (yes, no); (9) capsule (yes, no); 
(10) boundary (well-defined, ill-defined) and (11) Signal intensity on 
T2WI image (high, not high). The dynamic enhancement radiologic 
features were as follows: (1) enhancement degree (obvious, moderate, 
mild); (2) enhancement pattern (wash-in and wash-out, persistent, 
delayed) and (3) uniformity on NP image (heterogeneous, 
homogeneous).

2.4. Radiomics analysis

Radiomics workflow (Fig. 2) comprised manual tumor segmentation, 
feature extraction and selection, ML model construction and evaluation. 
All the MRI images were anonymized and stored in DICOM format. The 
tumor boundaries of each slice were manually delineated on the four 
sequences to obtain the tailored volumetric area of interests (VOIs) by R. 
T.W. (2 years of abdominal MRI experience) with 3D Slicer software v. 
4.11 (https://www.slicer.org/). Subsequently, the VOIs were reviewed 
and approved by Y.Q.D. (10 years of abdominal MRI experience). To 
extract robust features and assure reproducibility, 20 patients were 
randomly selected and the VOIs of them were delineated again by R.T. 
W. after 1 month to assess the inter-observer intraclass correlation co-
efficients (ICC).

Radiomics features were extracted with PyRadiomics (https: 
//pyradiomics.readthedocs.io/en/v3.0.1/) embedded in the uAI 
Research Portal (Version: 20210730). A set of 2600 features were 
respectively extracted from each of the four sequences, mainly including 
3 categories: shape, first-order statistics (histogram analysis) and 
second-order statistics (grey-level distribution of the image, including 
gray level co-occurrence matrix (GLCM), gray level size zone matrix 
(GLSZM), gray level run length matrix (GLRLM), neighbouring gray tone 
difference matrix (NGTDM) and gray level dependence matrix (GLDM)). 
A total of 104 original image radiomics features were processed through 
24 filters, resulting in 2496 high-dimensional image omics features. The 
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24 filters adopted were as follows: Additive Gaussian noise Filter, 
Bilateral Filter, Binomial Blur Image Filter, Box Mean Filter, Box Sigma 
Image Filter, Curvature Flow Filter, Discrete Gaussian Filter, Laplacian 
Sharpening Filter, Mean Filter, Median Filter, Normalize Filter, 

Recursive Gaussian Filter, Shot Noise Filter, Smoothing Recursive 
Gaussian Filter, Speckle Noise Filter, LoG Filter, Wavelet Filter (LLH、 
LHL、LHH、HLL、HLH、HHL、HHH、LLL). Z-scores normalization 
was applied in these quantitative features before feature selection. 
Features with ICC ≥ 0.75 % suggested good consistency and were 
selected for further analysis [22]. Because feature numbers should be 
controlled less than 10 % of the sample size to avoid overfitting [23], 
these features were firstly selected by simple t-tests. Then, the Least 
Absolute Shrink and Selection Operator (LASSO) was adopted, a model 
which is most commonly used to analyze small samples with 
high-dimensional features and can select the features with strong rele-
vance [24,25]. Ten-fold cross validation was applied to obtain the 
optimal hyperparameter λ by 10000 iterations. The LASSO method 
based on the optimal λ was used to select the features with non-zero 
coefficients. Finally, the selected features of single sequence were 
combined and selected by LASSO again to obtained an optimal 
multi-sequence radiomics model. The greater absolute value of feature 
correlation coefficient is, the stronger relevance between tumor and 
feature is. To compare these single- and multi-sequence models 
unbiasedly, the features of which absolute value of the coefficient 
ranking in the top eight were selected for each model considering the 
sample size and feature numbers. Finally, the radiomics score (rad--
score) of the optimal sequence combination for each patient were 
calculated with the formula generated by a linear combination of the 
selected features, which were weighted by their coefficients. The 
Methodological Radiomics Score (METRICS) is made available by a 
large group of international domain experts, aiming at evaluating and 
improving the research quality in radiomics and machine learning [26]. 
Guideline suggested that a web application has been developed to 
calculate of the METRICS score (https://metricsscore.github.io/metr 
ics/METRICS.html). The METRICS score of our study is 80.3 % with 
excellent quality category.

Fig. 1. The flow chart of the patient enrollment process.

Fig. 2. Flowchart of radiomics analysis.
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2.5. Model construction and evaluation

In this analysis, the models were constructed by support vector 
machine (SVM) and logistic regression (LR) classifiers with the selected 
features in the training set. The Radial Basis Function (RBF) kernel 
function, most widely used in SVM, was adopted in our study. There 
were two parameters in this function: the penalty parameter C and the 
kernel parameter γ. A 10-fold cross validation strategy was adopted to 

find the optimal combinations of the hyperparameters (Table S1) and 
the ROC curves were calculated in the test set to evaluated the models.

2.6. Statistical analysis

Statistical analysis was performed with IBM SPSS (v. 26) and R 
software (v. 4.1.3). Categorical variables were compared using chi- 
square test or Fisher’s exact test. R software packages and Python v. 

Table 1 
Univariate and multivariate logistic regression analysis.

Variable Univariate analysis Multivariate analysis

OR 95 %CI p value OR 95 %CI p value

Age (years)       
≤50 1.000    1.000  
>50 3.004 1.413–6.386 0.004*  6.019 1.527–23.729 0.010*
Gender       
Male 3.697 1.714–7.975 0.001*  2.901 0.869–9.686 0.083
Female 1.000    1.000  
Diameter (cm)       
≤4 1.000      
>4, ≤7 1.303 0.499–3.401 0.589    
>7 0.684 0.180–2.597 0.577    
Region1       
Left 1.250 0.603–2.590 0.548    
Right 1.000      
Region2       
Upper 1.000    1.000  
Middle 2.942 1.108–7.815 0.030*  2.825 0.659–12.104 0.162
Lower 1.471 0.632–3.425 0.371  2.154 0.488–9.501 0.311
Region3       
Extra 1.000    1.000  
Mixed 1.131 0.487–2.626 0.774  1.335 0.345–5.168 0.676
Intra 5.793 1.955–17.164 0.002*  6.232 1.291–30.083 0.023*
Shape       
Round 1.000      
Irregular 0.968 0.467–2.006 0.930    
Hemorrhage       
Yes 9.913 3.277–29.983 <0.001*  16.859 2.206–128.840 0.006*
No 1.000    1.000  
Necrosis       
No 1.000    1.000  
＜50 % 2.826 1.174–6.803 0.020*  0.507 0.107–2.406 0.392
≥50 % 1.833 0.183–18.364 0.606  0.631 0.006–63.817 0.845
Cystic degeneration       
No 1.000      
＜50 % 0.333 0.084–1.315 0.333    
≥50 % 1.250 0.241–6.497 1.250    
Scar       
No 1.000      
Yes 0.688 0.211–2.245 0.536    
Angular interface with renal parenchyma       
No 1.000      
Yes 0.437 0.163–1.171 0.100    
Capsule       
No 1.000    1.000  
Yes 3.642 1.701–7.797 0.001*  8.371 2.126–32.963 0.002*
Boundary       
Well-defined 1.000      
Ill-defined 2.381 0.498–11.378 0.277    
Signal intensity on T2WI image       
High 0.981 0.318–3.024 0.973    
Not high 1.000      
Enhancement degree       
Mild 29.469 6.216–139.695 <0.001*  74.115 6.017–912.929 0.001*
Moderate 3.129 1.326–7.382 0.009*  1.696 0.450–6.389 0.435
Obvious 1.000    1.000  
Enhancement pattern       
Wash-in and wash-out 1.000    1.000  
Persistent 2.800 0.877–8.944 0.082  2.015 0.301–13.502 0.470
Delayed 6.581 2.719–15.932 <0.001*  0.961 0.214–4.319 0.959
Uniformity on NP image       
Heterogeneous 1.581 0.759–3.293 0.221    
Homogeneous 1.000      

* Represents p < 0.05. T2WI: T2-weighted image; NP: Enhanced T1-weighted image in nephrographic phase; OR: odds ratio; CI: confidence interval;
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3.7.7 (https://www.python.org) scikit-learn package v. 1.0.2 (htt 
ps://scikit-learn.org/stable/index.html) were used to construct the 
models and evaluate the performances. Statistical comparisons of AUCs 
among different models were performed by the Delong’s test. P < 0.05 
was considered to be statistically significant.

3. Results

3.1. The performances of clinicoradiologic models

A total of 195 patients (134 non-ccRCCs (79 pRCCs and 55 chRCCs) 
and 61 benign renal tumors without visible fat (46 AMLwvfs, 15 ROs)) 
were recruited, including 136 patients in the training set and 59 in the 
test set. The preoperative clinicoradiologic features of the enrolled pa-
tients were shown in Table S2. As shown in Table 1, univariate and 
multivariate logistic regression analysis results indicated that age > 50- 
year-old (p = 0.010, OR = 6.019, 95 %CI: 1.527–23.729), intra region (p 
= 0.023, OR = 6.232, 95 %CI: 1.291–30.083), hemorrhage (p = 0.006, 
OR = 16.859, 95 %CI: 2.206–128.840), capsule (p = 0.002, OR = 8.371, 
95 %CI: 2.126–32.963) and mild enhancement (p = 0.001, OR =
74.115, 95 %CI: 6.017–912.929), were the independent risk factors for 
non-ccRCCs. These clinicoradiologic features were used to construct 

classification models with SVM and LR. The performances of the clin-
icoradiologic models were shown in Table 3 and Fig. 3. The AUC of LR 
model was higher than SVM model but with no statistical difference in 
the test set (0.853 vs 0.802, p = 0.153, Delong’s test).

3.2. Performances of single-sequence radiomics models for discrimination

The selected radiomics features of each single-sequence were shown 
in Table 2 and the performances of each model were shown in Table 3
and Fig. 3. For the AUC results of the vast models, they had good clas-
sification abilities. In the training set and test set, the AUCs of CMP were 
superior to other sequences and UP ranked second, while NP ranked the 
third and T2 performed the worst. The AUCs of CMP and UP in the test 
set were respectively 0.815 (95 % CI:0.706–0.923) and 0.754 (95 % 
CI:0.609–0.899) with SVM, and 0.797 (95 % CI:0.686–0.909) and 0.745 
(95 % CI:0.600–0.890) with LR. For the two classifiers, the vast models 
based on SVM had higher AUCs than LR. For the SVM models, the 
Delong’s test showed no statistical differences between CMP and UP, 
and between NP and T2 (p = 0.514, 0.119), but there were statistical 
differences between UP and T2, and between CMP and T2 (p = 0.038, 
0.004).

Fig. 3. The ROC curves of different models for differentiating non-ccRCC from benign renal tumors in training set and test set.
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3.3. Performances of multi-sequence radiomics models for discrimination

The selected radiomics features of the multi-sequence models were 
shown in Table 4. The performances of the multi-sequence models were 
displayed in Table 3 and Fig. 3. The AUCs of multi-sequence radiomics 
models were higher than the AUCs of single-sequence radiomics models. 
In the training set, the AUC of SVM model was a bit higher than LR 
model (0.944 vs 0.934, p = 0.215, Delong’s test), while in the test set, 
the AUC of LR model was higher than SVM model (0.870 vs 0.829, p =
0.065, Delong’s test). The Delong’s test showed no statistical differences 
between SVM models and LR models.

3.4. Performances of combined model for discrimination

In order to further improve the classification performances of the 
models, we combined the clinicoradiologic features with the rad-scores 
of multi-sequence radiomics features to build an optimal model. The 
performances of the combined models were displayed in Table 3 and 
Fig. 3. In the training and test set, the AUCs of the combined models 
were higher than the other models. The LR-combined model achieved 
the best performance, of which AUC is 0.936 in the test set. Its perfor-
mance was significantly better than SVM-multi-sequence radiomics 
model (AUC = 0.829, p = 0.028, Delong’s test), and its AUC was higher 

Table 2 
The selected radiomics features extracted from each single-sequence.

Sequence Features Coefficients

UP wavelet_firstorder_wavelet-HHH-Mean 0.084
binomialblurimage_glszm_SizeZoneNonUniformityNormalized − 0.050
normalize_firstorder_90Percentile 0.048
wavelet_gldm_wavelet-LLL-DependenceVariance − 0.043
wavelet_glszm_wavelet-LHH-SmallAreaLowGrayLevelEmphasis 0.034
normalize_firstorder_RootMeanSquared 0.034
normalize_firstorder_Mean 0.028
wavelet_ngtdm_wavelet-LHL-Contrast − 0.023

CMP discretegaussian_firstorder_Skewness 0.056
log_firstorder_log-sigma− 0–5-mm− 3D-Skewness 0.052
original_glcm_Idmn 0.047
normalize_firstorder_RootMeanSquared − 0.044
normalize_glszm_GrayLevelVariance 0.044
wavelet_glcm_wavelet-HHL-ClusterShade − 0.037
log_glszm_log-sigma− 0–5-mm− 3D-SmallAreaEmphasis 0.037
wavelet_glszm_wavelet-HLH-SizeZoneNonUniformityNormalized − 0.026

NP log_firstorder_log-sigma− 0–5-mm− 3D-Skewness 0.134
wavelet_glcm_wavelet-LHH-Imc1 0.063
wavelet_glszm_wavelet-HHL-SmallAreaLowGrayLevelEmphasis 0.062
wavelet_firstorder_wavelet-HLH-Mean − 0.059
wavelet_gldm_wavelet-LHH-DependenceNonUniformityNormalized − 0.048
binomialblurimage_glcm_ClusterShade 0.040
laplaciansharpening_firstorder_Skewness 0.037
laplaciansharpening_gldm_LargeDependenceHighGrayLevelEmphasis − 0.027

T2 boxmean_firstorder_Skewness − 0.092
log_glrlm_log-sigma− 1–0-mm− 3D-LongRunLowGrayLevelEmphasis − 0.074
boxsigmaimage_glszm_SmallAreaEmphasis − 0.072
log_glszm_log-sigma− 1–5-mm− 3D-SmallAreaLowGrayLevelEmphasis − 0.045
wavelet_firstorder_wavelet-HLH-Skewness 0.045
mean_glszm_SizeZoneNonUniformityNormalized − 0.044
wavelet_firstorder_wavelet-HLL-Skewness 0.025
wavelet_glcm_wavelet-LHH-Correlation − 0.020

UP: unenhanced T1-weighted image; CMP: enhanced T1-weighted image in corticomedullary phase; NP: enhanced T1-weighted image in 
nephrographic phase; T2: T2-weighted image; glcm: gray level cooccurrence matrix; gldm: gray level dependence matrix; glszm: gray level 
size zone matrix; ngtdm: neighbouring gray tone difference matrix; glrlm: gray level run length matrix.

Table 3 
The performance of each model in training set and test set.

Features Classifier Training set (n=136) Test set (n=59)

 AUC (95 %CI) Acc Spe Sen  AUC (95 %CI) Acc Spe Sen
UP SVM 0.911(0.852–0.970) 0.853 0.929 0.819  0.754(0.609–0.899) 0.746 0.737 0.750

LR 0.847(0.778–0.915) 0.743 0.857 0.691  0.745(0.600–0.890) 0.729 0.789 0.700
CMP SVM 0.914(0.867–0.961) 0.846 0.905 0.819  0.815(0.706–0.923) 0.763 0.947 0.675

LR 0.891(0.838–0.944) 0.809 0.833 0.798  0.797(0.686–0.909) 0.712 1.000 0.575
NP SVM 0.902(0.838–0.965) 0.846 0.905 0.819  0.699(0.561–0.837) 0.695 0.579 0.750

LR 0.898(0.841–0.955) 0.831 0.905 0.798  0.697(0.557–0.838) 0.678 0.895 0.575
T2 SVM 0.796(0.711–0.881) 0.794 0.619 0.872  0.516(0.347–0.684) 0.661 0.316 0.825

LR 0.781(0.698–0.863) 0.662 0.833 0.585  0.686(0.529–0.842) 0.627 0.842 0.525
Multi-sequence SVM 0.944(0.910–0.979) 0.824 1.000 0.745  0.829(0.713–0.945) 0.763 0.842 0.725

LR 0.934(0.764–0.975) 0.831 0.952 0.777  0.870(0.764–0.975) 0.864 0.737 0.925
Clinicoradiologic SVM 0.915(0.863–0.967) 0.882 0.786 0.926  0.802(0.667–0.937) 0.814 0.684 0.875

LR 0.905(0.854–0.957) 0.838 0.881 0.819  0.853(0.753–0.954) 0.831 0.632 0.925
Combined SVM 0.979(0.958–1.000) 0.941 0.952 0.936  0.899(0.815–0.982) 0.881 0.737 0.950

LR 0.964(0.935–0.993) 0.919 0.976 0.894  0.936(0.870–1.000) 0.864 0.947 0.825

SVM: support vector machine; LR: logistic regression; AUC: area under the curve; CI: confidence interval; UP: unenhanced T1-weighted image; CMP: enhanced T1- 
weighted image in corticomedullary phase; NP: enhanced T1-weighted image in nephrographic phase; T2: T2-weighted image; Acc: accuracy; Spe: specificity; Sen: 
sensitivity.
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than the SVM-combined model (AUC = 0.899, p = 0.234, Delong’s test) 
with no statistically significant differences.

4. Discussion

In this study, we built 14 models for differentiating non-ccRCCs from 
benign renal tumors with the features of 4 categories (clinicoradiologic 
features, MRI radiomics features from single-sequence and multi- 
sequence, combined features) and 2 kinds of classifiers (SVM, LR). Our 
results suggested that most models had good performances. Compared 
with the single-sequence radiomics models, both the multi-sequence 
models and the combined models had performance improvement. The 
combined models could optimally distinguish between non-ccRCCs and 
renal benign tumors.

As an advanced computational technology, previous studies 
addressed radiomics could extracted quantitative features from images 
of tumors [27]. It could more comprehensively show the heterogeneity 
of tumors than morphological visual analysis and cast off the de-
ficiencies of traditional imaging diagnosis methods [28]. Because of the 
excellent soft tissue resolution, MRI is commonly applied to tumor 
detection [29]. Among the four single-sequence models in our study, the 
result showed that CMP models achieved the highest AUCs, while T2 
models achieved the lowest AUCs. Categories of all the radiomics fea-
tures selected from the four sequences were first-order statistics and 
second-order statistics, which both reflected the heterogeneity of the 
mass. The best feature of CMP is discretegaussian_firstorder_Skewness, 
which showed the positive relation with non-ccRCCs. Skewness repre-
sents the degree of skewness in the distribution of voxel intensity values 
in an image. The higher the skewness is, the more unevenly the data 
distributes. Yuki Arita et al. [30] also reported that GLZLM_LZHGE, 
indicating high signal homogeneity, was the dominant feature for 
fpAMLs to be distinguished from non-ccRCCs. Therefore, we consider 
that image heterogeneity is an important characteristic of malignant 
tumors. As previous studies referred, pRCC and chRCC often show mild 
to moderate progressive enhancement on CMP image, while AMLwvf 
and RO often show early moderate to obvious enhancement [4,31,32]. 
RO often show high signal intensity on T2 image, while pRCC, chRCC 
often show low signal intensity [4]. Due to the abundant smooth muscle, 
AMLwvf often show low signal intensity on T2 image as well [4,33]. 
What’s more, our multivariate logistic regression analysis result of the 
clinicoradiologic features also showed that mild enhancement was the 
independent risk factors of non-ccRCCs (p = 0.001). These evidences 
might explain why the radiomics models based on CMP performed 
better than T2 for discriminating non-ccRCCs from benign renal tu-
mors，which was consistent with previous study [34,35].

Wang et al. [35] selected the significant radiomics features extracted 
from MRI to fit the multivariate logistic model for the discrimination of 
ccRCC, pRCC, chRCC and achieved excellent AUCs for T2, CMP, NP and 
the combined three sequences (0.631, 0.790, 0.959, and 0.959 between 
ccRCC and chRCC; 0.688, 0.854, 0.909, and 0.955 between pRCC and 

chRCC; 0.747, 0.810, 0.814, and 0.890 between ccRCC and pRCC). The 
results showed that the combination of three MRI sequences performed 
better than single sequence for discrimination. Our result also showed 
that the AUCs of the multi-sequence models were indeed improved 
compared with the four single-sequence models. We speculated that the 
combination of multi-sequences could contain more valuable tumor 
heterogeneity information. However, we also found that the selected 
features of multi-sequence models were extracted from three sequences 
(UP, CMP, T2) but not four. Yang et al. [36] fed fifteen combinations of 
four-phasic CT features into 224 classification models, which were built 
with 8 classifiers and 28 feature selection methods. They achieved the 
best AUC of 0.90 with the models of “SVM-t_score-UP” and “SVM-re-
lief-UP+NP” on the differentiation of AMLwvf and RCC less than 4 cm. It 
suggested that multi-sequence combination did not mean the perfor-
mance of model must be improved. Although our study suggested that 
“UP+CMP+T2” scanning might be sufficient for radiomics analysis for 
differentiating non-ccRCCs from benign renal tumors, standard MRI 
renal mass scanning protocol is recommended to avoid diagnosis error.

Some studies referred that the combination of imaging and clinical 
features was beneficial to improve the diagnosis performance [37–41]. 
Chong et al. [42] reported that the performances of the models built on 
the independent risk factors from clinic, image and rad-scores with LR 
and RF had been improved, which were compared with the vast models 
built on the single kind of features. In our study, the combined models 
indeed performed best because the high-dimensional information of 
radiomics compensated for the shortcomings of subjective diagnosis by 
radiologists. Michail E Klontzas et al. [43] reported that the combined 
SPECT/radiomics model achieved higher accuracy (95 %) with an AUC 
of 98.3 % than the radiomics-only model (71.67 %) with an AUC of 
75 % and visual evaluation of 99mTc Sestamibi SPECT/CT alone 
(90.8 %) with an AUC of 90.8 % to differentiate ROs from RCCs. In 
addition, they also reported that the combined radiometabolomics 
model achieved an AUC of 86.4 %, whereas metabolomics-only and 
radiomics-only classifiers achieved AUC of 72.7 % and 68.2 % [44]. 
Consistent with our conclusion， radiomics alone did not sufficiently for 
tumor differentiation. Some clinical features, including proteomics and 
metabolomics, are worth exploring in combination with radiomics.

Our study had some innovations. We analyzed the traditional im-
aging and clinical features of non-ccRCCs and benign renal tumors in 
detail, which can provide doctors with more key points for diagnosis. 
Moreover, we extracted radiomics features of 3D tumors as full as 
possible, while some previous study analyzed the maximum cross- 
section of tumors, which would lose much information. Finally, we 
adopted the methods of multi-sequence, multi-classifier and multi- 
combination, while many previous studies only used single classifier 
or fewer sequences and combinations [5,45]. Comparing the 14 models 
constructed in this study, the most models built with LR performed 
better. Miskin et al. [46] implemented three CT texture-based classifiers 
(SVM, RF, LR) to distinguish benign from potentially malignant cystic 
renal masses and reported that LR was the best with the highest AUC 
value of 0.90. It was speculated that complex models such as SVM may 
require more samples [47]. Although we used multiple MRI sequences 
and classifiers to build models, other powerful AI techniques such as DP 
and radiomics features of other functional imaging deserve exploration 
in further study.

There were several limitations in our study. Firstly, our study was 
retrospectively implemented in single institution with a small sample 
size which might lead to selection bias and lack of external validation. 
Secondly, the data were relatively imbalanced. A larger sample size and 
multi-center data is needed in future research to validate the model. 
Thirdly, manual delineation of VOI can ensure accuracy, but the time- 
consuming problem cannot be avoided. In addition, it is subjective 
and may not guarantee complete consistency of VOIs delineated from 
each sequence. In the future, more accurate semi-automatic or fully 
automatic delineation technology is needed to improve efficiency and 
reproducibility.

Table 4 
The selected radiomics features extracted from multi-sequence.

Features Coefficients

wavelet_firstorder_wavelet-HHH-Mean_UP 0.100
boxmean_firstorder_Skewness_T2 − 0.100
wavelet_glszm_wavelet-LHH-SmallAreaLowGrayLevelEmphasis_UP 0.087
discretegaussian_firstorder_Skewness_CMP 0.087
normalize_glszm_GrayLevelVariance_CMP 0.076
wavelet_ngtdm_wavelet-LHL-Contrast_UP − 0.071
boxsigmaimage_glszm_SmallAreaEmphasis_T2 − 0.057
original_glcm_Idmn_CMP 0.057

UP: unenhanced T1-weighted image; CMP: enhanced T1-weighted image in 
corticomedullary phase; NP: enhanced T1-weighted image in nephrographic 
phase; T2: T2-weighted image; glcm: gray level cooccurrence matrix; glszm: 
gray level size zone matrix; ngtdm: neighbouring gray tone difference matrix.
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5. Conclusions

The MRI-based radiomics machine learning model showed a favor-
able performance in differentiating non-ccRCCs from benign renal tu-
mors. Before clinical practice, multi-center and prospective studies 
involving larger datasets should be performed to validate the model.
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