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Abstract Strong and consistent evidence exists that physical
activity reduces breast cancer risk by 10-25 %, and several
proposed biologic mechanisms have now been investigated in
randomized, controlled, exercise intervention trials. Leading
hypothesized mechanisms relating to postmenopausal breast
cancer include adiposity, endogenous sex hormones, insulin
resistance, and chronic low-grade inflammation. In addition,
other pathways are emerging as potentially important, including
those involving oxidative stress and telomere length, global
DNA hypomethylation, immune function, and vitamin D ex-
posure. Recent exercise trials in overweight/obese postmeno-
pausal women implicate weight loss as a mechanism whereby
exercise induces favorable changes in circulating estradiol
levels and other biomarkers as well. Still it is plausible that
some exercise-induced biomarker changes do not require loss
of body fat, whereas others depend on abdominal fat loss. We
highlight the latest findings from randomized, controlled trials
of healthy postmenopausal women, relating exercise to pro-
posed biomarkers for postmenopausal breast cancer risk.
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Biomechanisms

Introduction

There is convincing epidemiologic evidence that body fatness,
and probable evidence that adult weight gain, are associated
with an increased risk of postmenopausal breast cancer [1].
One meta-analysis demonstrated that every 5 kg/m2 increase
in body mass index (BMI) increases postmenopausal breast
cancer risk by 12 % on average [2] with possible variation by
tumor subtype [3]. In addition, after a breast cancer diagnosis,
survival rates are decreased with higher BMI [4] by as much
as 30 % [5].

It is of great interest, therefore, to prospectively study the
effects of weight control on breast cancer risk and survival in
overweight or obese postmenopausal women [6]. Yet first,
understanding the contributions of energetic factors—i.e.,
physical activity and diet—is needed to determine the optimal
weight control intervention. Regular physical activity is a
widely accepted health-promoting behavior that is recom-
mended for cancer prevention [1, 7], but the type and dose
of activity that is optimal for postmenopausal breast cancer
prevention remains unclear.

Physical activity and breast cancer

Convincing epidemiologic evidence suggests that physical
activity of moderate-to-vigorous intensity reduces breast can-
cer risk by 10-25 % on average relative to inactivity [8•, 9]
The dose of activity required for breast cancer prevention is
unclear, but across observational studies, risk generally de-
creases with higher physical activity duration [8•] and
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intensity [9]. For cancer prevention overall, public health
recommendations advise at least 30 minutes of moderate-
intensity activity equivalent to brisk walking every day [1]
or 30 minutes or more of moderate-to-vigorous activity at
least 5 days per week [7] for adults.

Biomarker studies in healthy women

Given clear inverse relations between physical activity and
future postmenopausal breast cancer risk, lifestyle modifica-
tion for inactive women holds promise for breast cancer
prevention. Whereas randomized, controlled trials (RCTs)
examining breast cancer outcomes would best inform an
exercise prescription, these trials have not been conducted
because of the large sample size and time required for a
prospective study. A more feasible approach is to study the
impact of lifestyle change on breast cancer biomarkers using a
RCT [10]. The number of exercise RCTs studying proposed
biomarkers for breast cancer has escalated during the past
10 years, shedding light on: 1) exercise prescriptions that
might impact breast cancer risk, and 2) underlying biologic
mechanisms.

We provide an update on the epidemiologic evidence re-
lating exercise to proposed biomarkers for postmenopausal
breast cancer risk, without dietary modification. This review
enhances our earlier reviews [8, 11] by focusing on the stron-
gest, most up-to-date epidemiologic evidence (from random-
ized trials) relating exercise to estrogens and adiposity, the two
most convincing biomarkers of postmenopausal breast cancer
risk. We also update our biologic model that relates physical
activity to breast cancer by incorporating newly hypothesized
biomarkers. Our goal is to guide future clinical and mecha-
nistic research surrounding physical activity and postmeno-
pausal breast cancer prevention. The focus of this review will
be on healthy women in whom biomarker profiles and the
types and effects of prescribed exercise may differ from breast
cancer survivors. Biomarker studies in breast cancer survivors
are reviewed elsewhere [12•, 13].

Epidemiologic evidence relating exercise to proposed
biomarkers

To simplify our discussion of the existing epidemiologic
evidence, we have classified proposed biomarkers of breast
cancer risk as “convincing” or “hypothesized.” Our classifi-
cation of estrogens and adiposity as convincing biomarkers is
based on the relatively strong and consistent body of epide-
miologic evidence relating these markers to postmenopausal
breast cancer risk. We summarize that evidence and describe
in more detail the effects of exercise on estrogen levels (by
systematically reviewing RCT evidence) and adiposity (citing
recent reviews and large RCTs), specif ical ly in

postmenopausal women. We then provide a high-level over-
view of other, hypothesized biomarkers of postmenopausal
breast cancer risk and possible relations with exercise.

Systematic review of RCTs relating exercise to estrogens

In September 2013, we searched the published literature
(PubMed-NIH) for RCTs that studied the impact of exercise
on estrogens. In brief, we identified all RCTs of long-term
exercise (≥4 weeks) that compared exercise-only to a
nonexercise control group in healthy postmenopausal
women. Studies exclusive to hormone replacement ther-
apy users were excluded as were studies in morbidly obese
women (BMI >40 kg/m2) and trained athletes.

Convincing biomarkers for postmenopausal breast cancer risk

Adiposity

Body fatness is an accepted, convincing biomarker for in-
creased postmenopausal breast cancer risk in healthy women
[1, 2]. Multiple interrelated biologic pathways could mediate
the association between adiposity and postmenopausal breast
cancer, with sex hormones, insulin resistance, and low-grade
chronic inflammation as leading hypotheses [14•, 15]. Fur-
thermore, central adiposity may be particularly important.
Recently in postmenopausal women, independently of BMI,
waist circumference was positively associated with breast
cancer risk [16] and abdominal fat was related to sex hormone
bioavailability [17•], which is a strong biomarker of breast
cancer risk. Therefore, with respect to postmenopausal breast
cancer, there may be more benefit from exercise prescriptions
that can effectively lower abdominal fat.

Exercise is publicly recommended for modest weight loss,
for prevention of weight gain in overweight and obese adults,
and for prevention of weight regain after weight loss [18, 19].
Exercise trials typically produce <3 % weight loss in adults,
although more might be achieved with higher volumes of
exercise, e.g., the American College of Sports Medicine re-
cently proposed >250 minutes per week at moderate intensity
[18]. However exercise-induced weight loss could vary by
age. In a prospective, observational study of 58,610
postmenopausal women, whether body weight was lost,
maintained, or gained with high levels of physical ac-
tivity generally depended on the age of the women at
baseline [20]. Also, exercise type could be relevant,
e.g., aerobic may be preferable to resistance exercise
with respect to weight loss [18] and lowering total
abdominal fat [21•] in overweight adults. Indeed, the
largest exercise RCTs of moderate-vigorous aerobic exercise
in healthy postmenopausal women all showed decreases in
intra-abdominal fat [22, 23] or waist circumference [24•, 25,
26] and overall body fat [22, 23, 24•, 25].
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Sex hormones

Higher levels of endogenous estrogens and androgens and
lower levels of circulating sex hormone binding globulin
(SHBG) are related to an increased risk of postmenopausal
breast cancer [27]. In addition, associations between postmen-
opausal breast cancer risk and hormone replacement therapy
use [28] and effective use of antiestrogenic drugs to prevent
breast cancer [29] firmly support a causal role for estrogens.
Estrogens can decrease apoptosis and act as mitogens in the
breast via estrogen receptor binding; moreover, oxidative
estrogen metabolites act as mutagenic, genotoxic agents pos-
sibly contributing to breast cancer initiation [30].

A total of nine exercise-only RCTs in postmenopausal
women that studied changes in estrogen-related biomarkers
for breast cancer were identified in our systematic review of
published literature (Table 1). The number of non-HRT users
assigned to exercise-only or control groups ranged from 16
[31] to 320 [32]. All study populations were overweight or
obese on average, and all but one RCT of women 65+ years
[33] studied younger postmenopausal women with mean ages
from 54–61 years. Roughly half of the trials, comprising the
four largest RCTs [32, 34, 35, 36••] and one smaller RCT [37],
involved 12-month interventions, whereas the remainder were
12 [31, 33] or 16 [38, 39] weeks duration. Most interventions
were aerobic [32, 33, 35, 36••, 38] or combined aerobic/
resistance training [34, 37]; two small RCTs focused on resis-
tance training [31, 39]. Exercise prescriptions ranged from
150–225 minutes/week (except [31] where minutes per week
were not reported) and were generally moderate-vigorous
intensity (i.e., 60-85 % maximum heart rate).

Table 2 summarizes results for estradiol, the most biolog-
ically potent estrogen [15], and also for estrone and SHBG
from RCTs in Table 1. Findings on other estrogen-related
biomarkers are described below. Nearly all of the reports in
our systematic review described circulating hormone levels
[31–35, 36••, 37–39] with single articles describing analysis
of urine [40] and adipose tissue [41]. Results across RCTs
were remarkably consistent, generally showing average de-
creases in sex hormones and increases in SHBG levels in
exercise groups, typically <10 % in magnitude. Yet only a
few primary analyses demonstrated statistically significant
differences between exercise and control groups with respect
to change in total estradiol [32], free estradiol [32, 35], estrone
[35, 36••], or SHBG [32, 38]. No statistically significant group
differences were found in primary analyses of testosterone or
androstenedione [31–34, 36••, 37, 39, 42]. In the SHAPE trial,
however, a significant intervention effect was found for tes-
tosterone and androstenedione (decreased levels in exercisers
versus controls) for the subgroup who lost >2 % body fat [34].
The Physical Activity for Total Health study [40] showed no
significant differences after 12 months between exercise (n=
87) and control groups (n = 86) for changes in 2-

hydroxyestrone, 16α-hydroxyestrone, or their ratio in urine.
In an ancillary study of the NEW trial (n=45) [41], subcuta-
neous adipose tissue was analyzed for expression of 82 can-
didate genes related to adipokines, proinflammatory cyto-
kines, and sex hormones. Combining women from all four
trial arms, greater weight loss after 6 months was associated
with decreased gene expression related to estrogen biosynthe-
sis, e.g., 17β-hydroxysteriod dehydrogenase 1, which con-
verts estrone to estradiol.

A mediating role for weight loss in the causal pathway
between exercise and decreased estrogen levels is plausible
given that adipose tissue is the primary source of endogenous
estrogens post-menopause [15]. Evidence of mediation by
adiposity change, described in Table 2, generally supports this
hypothesis. Moreover, in the NEW trial, substantially greater
decreases in total and free estradiol levels occurred, on aver-
age, within the diet+exercise arm than with exercise-only
(−20.3 % vs. −4.9 % for estradiol; −26 % vs. −4.7 % for free
estradiol) [36••]. In a smaller weight loss trial of obese post-
menopausal women, a 14 % average decrease in total fat mass
was associated with a 24 % decrease in estradiol levels in
breast ductal fluid [43•]. In a recent prospective study, a
12.7 % decrease in total estradiol was estimated for every
1 kg/m2 decrease in BMI in 84 postmenopausal women who
lost weight [44]. Interestingly in another recent study of 1,180
postmenopausal women [17•], waist circumference and waist-
to-hip ratio—independently of BMI—were associated with
circulating SHBG, free estradiol, and free testosterone levels,
implicating abdominal fat as a specific target for breast cancer
prevention.

Hypothesized biomarkers of postmenopausal breast cancer
risk

Insulin resistance

Insulin resistance, characterized by hyperinsulinemia, is a
major predictor of diabetes risk and of possible etiologic
importance in breast cancer [45, 46]. Insulin receptor binding
promotes mitosis and antiapoptotic effects in breast cancer
cells, and also tumor cell migration and tumor-associated
angiogenesis [47]. In addition, chronically elevated insulin
can enhance estrogen bioactivity and promote activities of
breast cancer-related adipokines [47] and IGF-1 [14•]. Met-
formin, a pharmacologic agent that improves insulin sensitiv-
ity, is undergoing clinical testing for improved breast cancer
survival [14•, 48].

In the United States, at least 150 minutes per week of
moderate-vigorous aerobic and resistance exercise is recom-
mended for diabetes prevention in prediabetics [49]. In larger
RCTs of postmenopausal women, long-term aerobic exercise
groups experienced average decreases of approximately −4 %
to −10.3 % in insulin [50, 51, 52•, 53], −2 % to −11.4 % in

24 Curr Nutr Rep (2014) 3:22–34



T
ab

le
1

Su
m
m
ar
y
of

ra
nd
om

iz
ed

co
nt
ro
lle
d
tr
ia
ls
of

lo
ng
-t
er
m

ex
er
ci
se

th
at
st
ud
ie
d
es
tr
og
en

ch
an
ge
s
in

ca
nc
er
-f
re
e,
po
st
m
en
op
au
sa
lw

om
en

T
ri
al
na
m
e/
re
fe
re
nc
e,
co
un
tr
y

Sa
m
pl
e
si
ze

a
St
ud
y
pa
rt
ic
ip
an
ts

In
te
rv
en
tio

n
ar
m

pr
es
cr
ip
tio

n
C
om

pa
ri
so
n
gr
ou
p(
s)

F
ig
ue
ro
a
et
al
.,
20
03
,U

SA
[3
7]

n
=
24

E
X
;

n
=
28

C
T
L

•
M
ea
n
bo
dy

fa
t,
39

%
;m

ea
n
bo
dy

w
ei
gh
t,
67
–7
1
kg

•
In
ac
tiv

e
•
N
o
H
R
T
us
e
(H

R
T
us
er
s
an
al
yz
ed

se
pa
ra
te
ly
)

•
A
ge

40
–6
5
yr
;m

ea
n,
57

yr

•
12

m
o

•
60
–7
5
m
in
/d
ay
,3

da
ys
/w
k,
su
pe
rv
is
ed

•
R
es
is
ta
nc
e
an
d
w
ei
gh
t-
be
ar
in
g
ae
ro
bi
c
ex
er
ci
se

•
7
re
si
st
an
ce

ex
er
ci
se
s,
2
se
ts
@

70
-8
0
%

1-
R
M
+
25

m
in

ae
ro
bi
c

ex
er
ci
se

@
50
-8
0
%

H
R
m
ax

M
ai
nt
ai
ne
d
us
ua
ll
ev
el
of

ph
ys
ic
al
ac
tiv

ity

C
op
el
an
d
et
al
.,
20
04
,C

an
ad
a
[3
1]

n
=
8
E
X
;

n
=
8
C
T
L

•
M
ea
n
B
M
I
26

kg
/m

2
(E
X
);
32

kg
/m

2
(C
T
L
)

•
N
o
re
gu
la
r
ex
er
ci
se

in
pa
st
ye
ar

•
N
o
H
R
T
us
e
(H

R
T
us
er
s
an
al
yz
ed

se
pa
ra
te
ly
)

•
M
ea
n
ag
e,
54

yr

•
12

w
k

•
3
da
ys
/w
k,
su
pe
rv
is
ed

•
R
es
is
ta
nc
e
tr
ai
ni
ng

•
B
y
1
m
on
th
,p
ro
gr
es
se
d
to

8
ex
er
ci
se
s
@

3
se
ts
,1
0
re
pe
tit
io
ns

ea
ch

F
le
xi
bi
lit
y
ex
er
ci
se
s
3

da
ys
/w
k,
un
su
pe
rv
is
ed

P
hy
si
ca
lA

ct
iv
ity

fo
r
To

ta
lH

ea
lth

St
ud
y,
U
SA

[3
5]

n
=
87

E
X
;

n
=
86

C
T
L

•
B
M
I
25
–4
0
kg
/m

2
,m

ea
n
30

kg
/m

2 ;
bo
dy

fa
t>

33
%

•
Pr
ev
io
us
ly

<
60

m
in
/w
ee
k
ex
er
ci
se

th
at
ca
us
ed

sw
ea
tin

g
•
N
o
ho
rm

on
e
us
e
pa
st
6
m
o

•
A
ge

50
–7
5
yr
;m

ea
n,
61

yr
•
86

%
no
n-
H
is
pa
ni
c
w
hi
te

•
12

m
o

•
45

m
in
/d
ay
,5

da
ys
/w
k
(s
up
er
vi
se
d
an
d
ho
m
e-
ba
se
d)

•
A
er
ob
ic
ex
er
ci
se

•
60
-7
5
%

H
R
m
ax
by

w
k
8

S
tr
et
ch
in
g
co
nt
ro
ls

O
rs
at
ti
et
al
.,
20
08
,B

ra
zi
l[
39
]

n
=
22

E
X
;

n
=
21

C
T
L

•
M
ea
n
B
M
I
28
–2
9
kg
/m

2 ,
m
ea
n
bo
dy

fa
t3

3-
36

%
•
N
o
pr
ev
io
us

le
is
ur
e
ac
tiv

ity
be
si
de
s
ho
us
eh
ol
d

•
N
o
ho
rm

on
e
th
er
ap
y
pa
st
6
m
o

•
A
ge

40
–7
0
yr
;m

ea
n,
58
–5
9
yr

•
16

w
k
pr
ec
ed
ed

by
4-
w
k
lo
w
-l
oa
d
ad
ap
ta
tio

n
pe
ri
od

•
50
–6
0
m
in
/d
ay
,3

da
ys
/w
ee
k,
su
pe
rv
is
ed

•
R
es
is
ta
nc
e
tr
ai
ni
ng

•
8
ex
er
ci
se
s
@

3
se
ts
,8
–1
2
re
pe
tit
io
ns

ea
ch
,6
0-
80

%
1-
R
M

A
sk
ed

no
tt
o
ch
an
ge

ex
er
ci
se

ha
bi
ts

S
ex

H
or
m
on
es

an
d
Ph

ys
ic
al

E
xe
rc
is
e
(S
H
A
PE

)
st
ud
y,

th
e
N
et
he
rl
an
ds

[3
4]

n
=
96

E
X
;

n
=
93

C
T
L

•
B
M
I
22
–4
0
kg
/m

2
,m

ea
n
27

kg
/m

2 ;
m
ea
n
bo
dy

fa
t4

0-
41

%
•
<
2
hr
/w
k
m
od
er
at
e
sp
or
t/r
ec
re
at
io
na
la
ct
iv
ity

an
d
no
t

ad
he
re
nt

to
in
te
rn
at
io
na
lp

hy
si
ca
la
ct
iv
ity

re
co
m
m
en
da
tio

ns
•
N
o
H
R
T
us
e
pa
st
6
m
o

•
A
ge

50
–6
9
yr
;m

ea
n,
58
–5
9
yr

•
12

m
o

•
60

m
in
/d
ay
,2

da
ys
/w
k
su
pe
rv
is
ed

gr
ou
p
se
ss
io
n
+
30

m
in
/w
ee
k

ho
m
e-
ba
se
d
in
di
vi
du
al
se
ss
io
n

•
Su

pe
rv
is
ed

se
ss
io
ns
:a
er
ob
ic
(2
0
m
in

@
60
-8
5
%

H
R
m
ax
)
an
d

st
re
ng
th

tr
ai
ni
ng

(2
5
m
in
)+

w
ar
m
-u
p,
co
ol
-d
ow

n
•
H
om

e-
ba
se
d
se
ss
io
ns
:b

ri
sk

w
al
ki
ng

or
cy
cl
in
g
@

60
-8
0
%

H
R
m
ax

(3
0
m
in
)

A
sk
ed

to
re
ta
in

ha
bi
tu
al

ex
er
ci
se

pa
tte
rn
s

A
lb
er
ta
Ph

ys
ic
al
A
ct
iv
ity

an
d

B
re
as
tC

an
ce
r
Pr
ev
en
tio
n

(A
L
PH

A
)
tr
ia
l,
C
an
ad
a
[3
2]

n
=
16
0
E
X
;

n
=
16
0
C
T
L

•
B
M
I
22
–4
0
kg
/m

2
,m

ea
n
29

kg
/m

2

•
<
90

m
in
/w
k
re
cr
ea
tio

na
la
ct
iv
ity

or
if
be
tw
ee
n
90
–1
20

m
in
/w
k
ha
d
m
ax
im

al
ox
yg
en

up
ta
ke

<
34
.5

m
L
/k
g/
m
in

•
N
o
ho
rm

on
e
us
e

•
A
ge

50
–7
4
yr
;m

ea
n,
61

yr
•
91

%
w
hi
te
ra
ce

•
12

m
o

•
45

m
in
/d
ay
,5

da
ys
/w
k
(s
up
er
vi
se
d
an
d
ho
m
e-
ba
se
d)

•
A
er
ob
ic
ex
er
ci
se
,m

ai
nl
y
w
al
ki
ng

or
cy
cl
in
g

•
A
tl
ea
st
ha
lf
of

ea
ch

w
or
ko
ut

@
70
-8
0
%

he
ar
tr
at
e
re
se
rv
e;
ac
hi
ev
ed

by
w
k
12

M
ai
nt
ai
ne
d
us
ua
ll
ev
el

of
ac
tiv

ity

Y
oo

et
al
.,
20
10
,S

ou
th

K
or
ea

[3
3]

n
=
11

E
X
;

n
=
10

C
T
L

•
M
ea
n
B
M
I,
25
–2
7
kg
/m

2

•
N
o
ho
rm

on
e
us
e

•
A
ge

>
65

yr
;m

ea
n
ag
e
71

yr

•
12

w
k

•
60

m
in
/d
ay
,3

da
ys
/w
k,
su
pe
rv
is
ed

•
45
-m

in
w
al
ki
ng

w
ith

tw
o
1-
kg

an
kl
e
w
ei
gh
ts
;1

0-
m
in

w
ar
m
-u
p
+

5-
m
in

co
ol
-d
ow

n

A
sk
ed

to
m
ai
nt
ai
n
us
ua
l

ph
ys
ic
al
ac
tiv
ity

ro
ut
in
e

K
im

et
al
.,
20
12
,S

ou
th

K
or
ea

[3
8]

n
=
15

E
X
;

n
=
15

C
T
L

•
M
ea
n
B
M
I,
25

kg
/m

2
;>

32
%

bo
dy

fa
t,
m
ea
n
36

%
•
<
20

m
in

ex
er
ci
se

tw
ic
e
w
ee
kl
y

•
N
o
ho
rm

on
e
us
e

•
M
ea
n
ag
e
54

yr

•
16

w
k

•
60

m
in
/d
ay
,3

da
ys
/w
k,
su
pe
rv
is
ed

•
A
er
ob
ic
ex
er
ci
se

•
L
in
e
da
nc
in
g,
at
ta
in
ed

70
-8
0
%

H
R
m
ax
by

w
k
12

N
o
ex
er
ci
se

N
ut
ri
tio

n
an
d
E
xe
rc
is
e
fo
r
W
om

en
(N

E
W
)
T
ri
al
,U

SA
[3
6•
•]

n
=
11
7
E
X
;

n
=
87

C
T
L
;

n
=
11
8
D
IE
T;

n
=
11
7
D
IE
T
+
E
X

•
B
M
I
>
25
.0

kg
/m

2
,m

ea
n
30
.9

kg
/m

2
,m

ea
n
bo
dy

fa
t4

7.
2
%

•
M
od
er
at
e-
in
te
ns
ity

ph
ys
ic
al
ac
tiv

ity
<
10
0
m
in
/w
ee
k

•
N
o
ho
rm

on
e
us
e
pa
st
3
m
on
th
s

•
A
ge

50
–7
5
yr
;m

ea
n,
58

yr
•
85

%
no
n-
H
is
pa
ni
c
w
hi
te

•
12

m
o

•≥
45

m
in
/d
ay
,5

da
ys
/w
k
(3

su
pe
rv
is
ed

an
d
2
ho
m
e-
ba
se
d)

•
A
er
ob
ic
ex
er
ci
se

w
ith

m
et
ab
ol
ic
eq
ui
va
le
nt
≥4

•7
0-
85

%
H
R
m
ax
fo
r
45

m
in

by
w
k
7

1)
R
ed
uc
ed
-c
al
or
ie
w
ei
gh
t

lo
ss

di
et

2)
C
om

bi
ne
d
re
du
ce
d-

ca
lo
ri
e
w
ei
gh
tl
os
s

di
et
+
ae
ro
bi
c
ex
er
ci
se

3)
R
eq
ue
st
ed

no
tt
o
ch
an
ge

ex
er
ci
se

or
di
et
ar
y
ha
bi
ts

E
X
,e
xe
rc
is
e
gr
ou
p;

C
T
L
,c
on
tr
ol

gr
ou
p

a
Sa
m
pl
e
si
ze

at
ba
se
lin

e,
as

re
po
rt
ed

fo
r
es
tr
og
en

an
al
ys
is
[3
2,
34
,3
5,
36
••
]

Curr Nutr Rep (2014) 3:22–34 25



T
ab

le
2

E
vi
de
nc
e
fr
om

ra
nd
om

iz
ed

co
nt
ro
lle
d
tr
ia
ls
re
la
tin

g
ex
er
ci
se

to
es
tr
og
en
s
in

he
al
th
y
po
st
m
en
op
au
sa
lw

om
en

a

Pr
op
os
ed

bi
om

ar
ke
r

A
ve
ra
ge

bi
om

ar
ke
r
ch
an
ge

fo
r
ex
er
ci
se
-o
nl
y
gr
ou
pb

E
vi
de
nc
e
of

ad
ip
os
ity

ch
an
ge

as
a
po
te
nt
ia
lm

ed
ia
to
r
of

se
x
ho
rm

on
e
ch
an
ge

St
ud
y

re
fe
re
nc
e

C
ir
cu
la
tin
g
es
tr
ad
io
l

−9
.5
%

c ;
N
S
at
13

w
k

—
—
—

[3
1]

−7
.7

%
;N

S
at
3
m
o

−4
.4

%
;N

S
at
12

m
o

St
ro
ng
er

de
cr
ea
se
s
in

ex
er
ci
se
rs
w
ho

lo
st
0.
5
%
+
bo
dy

fa
t

[3
5]

N
o
ch
an
ge

at
12

m
o

—
—
—

[3
7]

−8
%
;N

S
ov
er

12
m
o

−1
1.
7
%

at
12

m
o
in

ex
er
ci
se

gr
ou
p
w
ho

lo
st
>
2
%

bo
dy

fa
t

C
ha
ng
e
in

es
tr
ad
io
lw

as
si
gn
if
ic
an
tly

as
so
ci
at
ed

w
ith

ch
an
ge

in
%

bo
dy

fa
t

[3
4]

−1
2
%

at
12

m
o;

p
=
0.
00
4
ov
er

12
m
o

E
xe
rc
is
e
ef
fe
ct
w
as

sl
ig
ht
ly

at
te
nu
at
ed

bu
tr
em

ai
ne
d
si
gn
if
ic
an
ta
ft
er

st
at
is
tic
al
ad
ju
st
m
en
tf
or

bo
dy

w
ei
gh
tc
ha
ng
e

St
at
is
tic
al
te
st
s
fo
r
m
ed
ia
tio

n
im

pl
ie
d
m
ed
ia
tio

n
by

ch
an
ge

in
%

bo
dy

fa
to

r
to
ta
lb

od
y
fa
t,
bu
tn

ot
in
tr
a-
ab
do
m
in
al
fa
t

[3
2,
54
•]

+
20
.5

%
c ;
N
S
at
3
m
o

—
—
—

[3
3]

−4
.9

%
,N

S
at
12

m
o

T
he

de
cr
ea
se

in
th
e
D
IE
T
+
E
X
gr
ou
p
(−
20
.3

%
)
w
as

si
gn
if
ic
an
tly

gr
ea
te
r
th
an

fo
r
th
e
E
X
gr
ou
p;

p
<
0.
00
1

Si
gn
if
ic
an
tly

gr
ea
te
r
di
ff
er
en
ce
s
be
tw
ee
n
ch
an
ge

in
E
X
ve
rs
us

C
T
L
ac
ro
ss

su
bg
ro
up
s
of

in
cr
ea
si
ng

w
ei
gh
tl
os
s
(p
-t
re
nd

<
0.
01
)

[3
6•
•]

C
ir
cu
la
tin
g
fr
ee

es
tr
ad
io
l

−8
.2

%
,p

=
0.
02

at
3
m
o

−6
.1

%
;N

S
at
12

m
o

St
ro
ng
er

de
cr
ea
se
s
in

ex
er
ci
se
rs
w
ho

lo
st
0.
5
%
+
bo
dy

fa
t

[3
5]

+
7.
9
%

c ;
N
S
at
16

w
k

—
—
—

[3
9]

−7
.3

%
;N

S
ov
er

12
m
o

−1
1.
4
%

at
12

m
o
in

ex
er
ci
se

gr
ou
p
w
ho

lo
st
>
2
%

bo
dy

fa
t

C
ha
ng
e
in

fr
ee

es
tr
ad
io
lw

as
si
gn
if
ic
an
tly

as
so
ci
at
ed

w
ith

ch
an
ge

in
%
bo
dy

fa
t

[3
4]

−1
2.
9
%

at
12

m
o;

p
=
0.
00
1
ov
er

12
m
o

E
xe
rc
is
e
ef
fe
ct
w
as

sl
ig
ht
ly

at
te
nu
at
ed

bu
tr
em

ai
ne
d
si
gn
if
ic
an
ta
ft
er

st
at
is
tic
al
ad
ju
st
m
en
tf
or

bo
dy

w
ei
gh
tc
ha
ng
e

St
at
is
tic
al
te
st
s
fo
r
m
ed
ia
tio

n
im

pl
ie
d
m
ed
ia
tio

n
by

ch
an
ge

in
%

bo
dy

fa
t,
to
ta
lb

od
y
fa
t,
in
tr
a-
ab
do
m
in
al
fa
t

[3
2,
54
•]

−4
.7

%
,N

S
at
12

m
o

T
he

de
cr
ea
se

in
th
e
D
IE
T
+
E
X
gr
ou
p
(−
26

%
)
w
as

si
gn
if
ic
an
tly

di
ff
er
en
tt
ha
n
fo
r
th
e
E
X
gr
ou
p;

p
<
0.
00
1

Si
gn
if
ic
an
tly

gr
ea
te
r
di
ff
er
en
ce
s
be
tw
ee
n
ch
an
ge

in
E
X
ve
rs
us

C
T
L
ac
ro
ss

su
bg
ro
up
s
of

in
cr
ea
si
ng

w
ei
gh
tl
os
s
(p
-t
re
nd

=
0.
00
1)

[3
6•
•]

C
ir
cu
la
tin
g
es
tr
on
e

−3
.8

%
,p

=
0.
03

at
3
m
o

−1
.8

%
;N

S
at
12

m
o

St
ro
ng
er

de
cr
ea
se
s
in

ex
er
ci
se
rs
w
ho

lo
st
0.
5
%
+
bo
dy

fa
t

[3
5]

N
o
ch
an
ge

at
12

m
o

—
—
—

[3
7]

−9
.7

%
;N

S
ov
er

12
m
o

−2
3.
7
%

at
12

m
o
in

ex
er
ci
se

gr
ou
p
w
ho

lo
st
>
2
%

bo
dy

fa
t

C
ha
ng
e
in

es
tr
on
e
w
as

si
gn
if
ic
an
tly

as
so
ci
at
ed

w
ith

ch
an
ge

in
%

bo
dy

fa
t

[3
4]

−5
.4

%
;N

S
ov
er

12
m
o

R
em

ai
ne
d
N
S
af
te
r
st
at
is
tic
al
ad
ju
st
m
en
tf
or

bo
dy

w
ei
gh
tc
ha
ng
e

[3
2]

−5
.5

%
,p

=
0.
01

at
12

m
o

T
he

de
cr
ea
se

in
th
e
D
IE
T
+
E
X
gr
ou
p
(−
11
.1

%
)
w
as

si
gn
if
ic
an
tly

gr
ea
te
r
th
an

fo
r
th
e
E
X
gr
ou
p;

p
=
0.
01

Si
gn
if
ic
an
tly

gr
ea
te
r
di
ff
er
en
ce
s
be
tw
ee
n
ch
an
ge

in
E
X
ve
rs
us

C
T
L
ac
ro
ss

su
bg
ro
up
s
of

in
cr
ea
si
ng

w
ei
gh
tl
os
s
(p
-t
re
nd

<
0.
01
)

[3
6•
•]

C
ir
cu
la
tin
g
se
x
ho
rm

on
e

bi
nd
in
g
gl
ob
ul
in

(S
H
B
G
)d

+
5.
7
%
;N

S
at
3
m
o

+
8.
8
%
;N

S
at
12

m
o

St
ro
ng
er

in
cr
ea
se
s
in

ex
er
ci
se
rs
w
ho

lo
st
0.
5
%
+
bo
dy

fa
t

[3
5]

−0
.7

%
;N

S
ov
er

12
m
o

+
2.
0
%

at
12

m
o
in

ex
er
ci
se

gr
ou
p
w
ho

lo
st
>
2
%

bo
dy

fa
t

[3
4]

+
3.
2
%

at
12

m
on
th
s;

p
=
0.
00
1
ov
er

12
m
o

E
ff
ec
to

f
ex
er
ci
se

w
as

no
lo
ng
er

st
at
is
tic
al
ly

di
ff
er
en
tf
ro
m

co
nt
ro
ls
af
te
r
st
at
is
tic
al
ad
ju
st
m
en
tf
or

bo
dy

w
ei
gh
tc
ha
ng
e

St
at
is
tic
al
te
st
s
fo
r
m
ed
ia
tio

n
im

pl
ie
d
m
ed
ia
tio

n
by

%
bo
dy

fa
t,
to
ta
lb

od
y
fa
t,
in
tr
a-
ab
do
m
in
al
fa
t

[3
2,
54
•]

+
6.
2%

c ;
p
<
0.
00
1
at
16

w
k

—
—
—

[3
8]

−0
.7

%
,N

S
at
12

m
o

T
he

ch
an
ge

in
th
e
D
IE
T
+
E
X
gr
ou
p
(+
25
.8

%
)
w
as

si
gn
if
ic
an
tly

di
ff
er
en
tt
ha
n
fo
r
th
e
E
X
gr
ou
p;

p
<
0.
00
1

G
re
at
er

di
ff
er
en
ce

be
tw
ee
n
ch
an
ge

in
E
X
ve
rs
us

C
T
L
gr
ou
ps

w
ith

m
or
e
w
ei
gh
tl
os
s,
bu
tp

-t
re
nd

N
S

[3
6•
•]

a
R
C
Ts

of
lo
ng
-t
er
m

ex
er
ci
se
-o
nl
y
in
te
rv
en
tio

ns
w
ith

re
su
lts

ex
cl
us
iv
el
y
fo
r
he
al
th
y
po
st
m
en
op
au
sa
lw

om
en

b
N
S
in
di
ca
te
s
a
no
ns
ta
tis
tic
al
ly

si
gn
if
ic
an
td

if
fe
re
nc
e
be
tw
ee
n
th
e
ch
an
ge

in
th
e
ex
er
ci
se

gr
ou
p
ve
rs
us

th
e
co
nt
ro
lg

ro
up

c
Pe
rc
en
tc
ha
ng
e
in

th
e
ex
er
ci
se

gr
ou
p
w
as

no
tr
ep
or
te
d
in

th
e
ar
tic
le
an
d
th
er
ef
or
e
w
as

ap
pr
ox
im

at
ed

fr
om

pu
bl
is
he
d
re
su
lts
,a
s
fo
llo

w
s:

[a
ve
ra
ge

se
x
ho
rm

on
e
le
ve
la
tf
ol
lo
w
-u
p
–
av
er
ag
e
se
x
ho
rm

on
e
le
ve
la
tb

as
el
in
e]

/[
av
er
ag
e
se
x
ho
rm

on
e
le
ve
la
tb

as
el
in
e]

x
10
0
%

d
SH

B
G
bi
nd
in
g
de
cr
ea
se
s
es
tr
ad
io
la
nd

te
st
os
te
ro
ne

bi
oa
va
ila
bi
lit
y

26 Curr Nutr Rep (2014) 3:22–34



homeostatic model of assessment for insulin resistance
(HOMA-IR) [50, 51, 52•], −3.7 % in C-peptide [52•], and a
small decrease [53] or negligible change in circulating glucose
[50, 51, 52•]. However, in the NEW trial [52•], HOMA-IR
decreased an average of −24 % and −26 % in the diet and
diet+exercise intervention groups, respectively, after
12 months, suggesting strongly that improved whole-body
insulin sensitivity in the exercise-only group (−8.6 % decrease
in HOMA-IR) resulted from weight loss and not exercise per
se . Secondary analyses of ALPHA trial data [54•] implied
partial mediation by change in intra-abdominal fat area, which
is of etiologic relevance to insulin resistance [55], and by total
(%) body fat but also mediation by other unidentified factors
as well.

Changes in insulin sensitivity could vary with different
exercise prescriptions. In large RCTs of postmenopausal
women, the greatest improvement in HOMA-IR was found
with aerobic exercise >225 minutes/week [50] and
>130 minutes/week [51]. In the NEW trial, 225 minutes/
week of prescribed aerobic exercise was associated with a
regression to normal fasting glucose levels for those with
impaired glucose tolerance at baseline [52•]. Resistance train-
ing could provide distinct benefits for glycemic control by
altering the quality and quantity of skeletal muscle [56].
However, in an RCT comparing 8 months of aerobic versus
resistance exercise in 155 overweight adults [21•], only aero-
bic exercise reduced HOMA and visceral fat. Similarly a RCT
of obese postmenopausal women showed essentially no
change in average insulin levels after 12 weeks of low-
intensity resistance training [57].

Adipokines

Adipose tissue is an active endocrine organ, secreting bioac-
tive factors known as adipokines [58] at abnormal levels in
obesity. Some adipokines (TNF-α, IL-6) are mediators of a
low-grade, systemic inflammatory state that is characteristic
of obesity [59]. Adipokines, such as leptin, TNF-α, and IL-6,
could mediate breast cancer development and progression
directly by acting as mitogens in the breast, inhibiting apopto-
sis, and influencing tumor cell migration and invasion [15,
60]. They also may act indirectly, e.g., by enhancing estrogen
bioactivity and promoting insulin resistance [15]. Conversely,
adiponectin is an adipokine that occurs at lower levels in
obesity and is anti-mitogenic, anti-inflammatory, and pro-
motes insulin sensitivity. Epidemiologic findings relating
adipokines in circulation to increased postmenopausal breast
cancer risk are generally mixed, but suggestive, for increased
leptin [61–63], decreased adiponectin [62–64], and a de-
creased adiponectin:leptin ratio [62]. There is weaker epide-
miologic evidence of etiologic roles for IL-6 [65], TNF-α [63,
66], and the inflammatory marker C-reactive protein (CRP)
[62, 65], produced in response to TNF-α and IL-6.

RCT findings overall imply that exercise in conjunction
with sufficient weight loss can decrease circulating leptin [50 ,
51, 67•] and perhaps IL-6 [43•, 68•] in postmenopausal wom-
en. Exercise-related decreases in CRP have been found in
some RCTs of postmenopausal women [69–71], but not all
[26], and in others, only with concurrent weight loss [68•, 72].
The Dose–response to Exercise in postmenopausal Women
(DREW) study compared three doses of aerobic exercise (4, 8,
or 12 kcal/kg/week at 50 % VO2max), but revealed no differ-
ence with respect to CRP change in exercisers versus controls
over 6 months [72]. Six RCTs of postmenopausal women
consistently showed no change in adiponectin levels, on av-
erage, with exercise alone [50, 53, 57, 67•, 69, 73]. Further-
more, in primary analyses from multiple RCTs there was no
reported effect of exercise-only on TNF-α [53, 69, 70] or IL-6
[53, 68•, 69–71, 73] levels in postmenopausal women.

Weight loss is a plausible mediator of exercise-induced
adipokine changes given strong biologic rationale and a grow-
ing body of RCT evidence, particularly for leptin. The NEW
trial, for example, demonstrated up to a 53% average decrease
in leptin concentrations in subgroups with ≥10 % weight loss,
which far exceeded changes in subgroups with <5 % weight
loss (e.g., 5.5 % average decrease, exercise-only) [67•]. The
mechanisms driving exercise-related inflammatory marker
changes (CRP, TNF-α, IL-6) are probably more complex,
relating not only to weight loss but potentially also to effects
on muscle tissue, endothelial cells, and immune cells [59].

Immune function

Evading immunological destruction is an emerging hallmark
of cancer and a diminished competence of the immune re-
sponse is a recognized predictor of cancer risk; however, there
is currently no consensus on which immune biomarkers are
causally related to cancer risk [74, 75].

Physical activity might impede carcinogenesis by moder-
ating the innate and adaptive immune systems [76] and, thus,
enhance immunosurveillance and the tumor suppression ca-
pacity of the immune system. Furthermore, exercise could
help to modulate obesity-related, proinflammatory immune
responses [59] and prevent age-related immunosenescence
[77]. To date, the acute, transient effects of exercise on im-
mune function have been studied extensively, supporting ben-
eficial effects with moderate-intensity but detrimental effects
with high-intensity activity [76]. Although some studies have
demonstrated altered number and function of circulating im-
mune cells (e.g., enhanced natural killer cell cytotoxicity and
T-lymphocyte proliferation capacity) with long-term exercise,
there is a lack of supportive evidence from RCTs [76–78]. For
example, the 12-month Physical Activity for Total Health
study found no effect of aerobic exercise on in vitro natural
killer cell cytotoxicity, T-lymphocyte proliferative response to
stimulation, or the relative proportion of immune cell counts
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(e.g., T-cells, helper T-cells, cytotoxic T-cells, B cells, natural
killer cells) [79].

Oxidative stress and telomere length

Oxidative stress results from an imbalance of increased sys-
temic reactive oxygen species (ROS) production and/or re-
duced antioxidant capacity, including the ability to neutralize
reactive intermediates and repair subsequent damage. It is
hypothesized to play a central role in breast carcinogenesis
[80] and in carcinogenic causal pathways linked to obesity
[81]. ROS-induced damage to macromolecules leads to ge-
netic alterations [82]. Because telomeres, nucleoprotein re-
peats at the ends of chromosomes that protect cells from
chromosomal instability, suffer disproportionately from oxi-
dative damage, an important etiologic pathway through which
oxidative stress might affect breast cancer risk is through
telomere attrition [83].

As part of a favourable biological adaptive response, regular
exercise enhances antioxidant and oxidative damage repairing
enzyme capacity and may subsequently reduce oxidative dam-
age [84]. The epidemiologic evidence supporting that regular
physical activity reduces oxidative damage to macromolecules
or telomere attrition is, thus far, limited but suggestive. In the
Physical Activity for Total Health study, there was decreased
oxidative damage to lipids asmeasured by F2-isoprostane levels
in exercisers compared to controls, with a more pronounced
statistically significant reduction in exercisers who increased
their physical fitness by >15 %; this effect occurred indepen-
dent of obesity status [85]. RCTs of Tai Chi exercise [86] and
resistance training [87] also showed reductions in oxidative
damage. Yet with respect to telomere length, the NEW trial
found no effect of dietary weight loss and/or aerobic exercise
[88•], nor did a diet-physical activity lifestyle intervention RCT
for diabetes prevention in high-risk adults [89].

Global DNA hypomethylation

The methylation of DNA is recognized as a key epigenetic
mechanism in the regulation of gene expression and chromo-
somal stability. Global DNA hypomethylation in peripheral
blood leukocytes represents a postulated biomarker for cancer
risk [90] and epidemiologic evidence of an association with
increased breast cancer risk is accumulating [91, 92]. Potential
epigenetic modifications induced by exercise have been de-
scribed [93•], and, to-date, two observational studies showed
positive associations between physical activity and prevalent
repetitive sequences (LINE-1) methylation, a surrogate mea-
sure of global methylation [94]. In middle-aged, white women
with a family history of breast cancer, higher self-reported
physical activity (≥9.8, 5.9, and 12.5 hours per week for
childhood, teenage years, and past 12 months, respectively)
was associated with a favorable 33 % increase of LINE-1

methylation [95]. Similarly, in another study, cancer-free
adults with 26–30 minutes per day of recent physical activity
(versus ≤10 minutes per day) as measured via accelerometer,
had higher LINE-1 methylation [96].

25-hydroxyvitamin D

A protective, inverse association between vitamin D exposure
and postmenopausal breast cancer risk is becoming increas-
ingly clear [97, 98]. For some individuals, outdoor physical
activity could improve vitamin D status by increasing cutane-
ous production of vitamin D3 when UV-B exposure is suffi-
ciently high. Another mechanism involves body composition,
because the metabolite 25-hydroxyvitamin D (25(OH)D), the
most common serum indicator of vitamin D status, might
sequester in body fat [99]. Evidence from the NEW trial
supports this hypothesis; in overweight/obese postmenopaus-
al women, sufficient weight loss (≥15 % body weight) over
12 months, whether induced with aerobic exercise or caloric
restriction, increased serum 25(OH)D concentrations signifi-
cantly relative to controls (p -trend=0.002) [100•]. Further-
more a 2-year weight loss trial of 383 overweight/obese
women revealed a clear dose–response relation between in-
creasing weight loss and increasing serum 25(OH)D concen-
trations (p -trend=0.005), and in multivariable models, weight
loss >10 % was identified as a significant predictor of
25(OH)D change [101].

Proposed Biologic Model

An updated model

Figure 1 depicts a proposed, updated [8•, 11], biologic model
relating physical activity to postmenopausal breast cancer risk
via interrelated pathways with common linkages to adiposity.
Notable exclusions from our model include mammographic
density, which is a strong risk factor for breast cancer [102];
however, evidence from observational studies andRCTs overall
do not support an association between long-term exercise and
breast density [103]. Similarly, while elevated circulating IGF-1
might signify an increased risk for postmenopausal breast can-
cer [104], it has not been shown to be decreased with physical
activity [50, 105, 106•]. Furthermore, we acknowledge that
DNA damage, e.g., resulting from oxidative stress or genotoxic
estrogen metabolites, could initiate breast cancer and that DNA
repair mechanisms might be enhanced with physical activity
[10]; however, this topic was beyond the scope of our review.

Role of body fat

Adiposity change could play a mediating role for any of the
biomarkers proposed in our model, or for some biomarkers,
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physical activity might act independently. The state of being
overweight or obese also could modify the effects of physical
activity on other biomarkers. Distinguishing the effects of “fat
and fit” on breast cancer biomarkers is methodologically
challenging and of interest [44, 54•, 107]. Four-armed ran-
domized trials, such as the NEW trial and the recent SHAPE-2
study [108••], were designed to address the fit-versus-fat
controversy directly and provide some of the clearest distinc-
tions between exercise and weight loss. Published findings
from the NEW trial and other RCTs in this review imply
particularly that exercise-related changes in estrogens, SHBG,
leptin, and 25-hydroxyvitamin D are mediated largely by
weight loss in healthy postmenopausal women.

Research Opportunities

While considerable advances have been made in our under-
standing of the biologic mechanisms relating physical activity
to postmenopausal breast cancer risk, opportunity remains for
future research. To begin, several newly hypothesized

biologic pathways require further study to better understand
their etiologic roles in postmenopausal breast cancer and
hence, their suitability as biomarkers. Second, although our
list of proposed biomarkers is fairly comprehensive,
encompassing our own areas of research, additional bio-
markers can be considered for our model, including, for
example, those related to DNA repair mechanisms, additional
epigenetic indicators, other adipokines, and anti-inflammatory
cytokines. Several of these mechanisms may be more inten-
sive to measure than what has been done previously, such as
genomic alterations, and may require a tissue-specific ap-
proach. Hypothesized biomarkers also could be removed from
the model as data becomes available; e.g., exercise-only trials
in older women thus far have not produced changes in circu-
lating adiponectin, TNF-α, or IL-6 levels. Third, biomarker-
exercise RCTs could be analyzed using a systems epidemiol-
ogy approach [109], quantifying the direct and indirect causal
effects of exercise on multiple biomarkers simultaneously
rather than on single biomarkers as in previous analyses.
Results would identify pivotal exercise-induced biomarker
changes and important mediators of those changes as targets

Fig. 1 Hypothesized biological model relating physical activity to post-
menopausal breast cancer risk. Strong epidemiologic evidence of an
association with breast cancer risk (solid black arrows); limited epidemi-
ologic evidence (irregular dashed arrows ); emerging epidemiologic

evidence (short dashed arrows). Grey arrows relating biomarkers to each
other are proposed in the literature; some of these relations are hypothe-
sized, whereas others are well-established. Adapted from [11]
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for future intervention research. Fourth, new RCTs in healthy
postmenopausal women are needed to compare different types
of physical activity (e.g., aerobic versus resistance) and dif-
ferent doses (i.e., frequency, duration and intensity) to clarify
the optimal prescription for breast cancer risk reduction. Stud-
ies exploring interindividual variability in exercise-induced
biomarker changes, e.g., due to common genetic polymor-
phisms, would help tailor exercise prescriptions.

One recently completed, noteworthy study is the Breast
Cancer and Exercise Trial in Alberta (BETATrial). This trial,
comprising 400 postmenopausal, previously inactive women
who were randomized to undertake either 150 or 300 minutes
per week of aerobic exercise for 1 year, was designed specif-
ically to determine the optimal activity dose for lowering
postmenopausal breast cancer risk. In secondary analyses of
the ALPHA trial data, higher exercise duration was associated
with desirable changes in adiposity and circulating sex steroid
hormone levels, HOMA-IR, leptin, and CRP levels, with the
greatest benefit observed for women undertaking >150 mi-
nutes per week [32] or >225minutes per week [50, 70, 110] of
aerobic exercise. Therefore, previous biomarker-exercise
RCTs that generated null findings in primary analyses may
have been limited by the relatively low dose of exercise that
was prescribed or attained by study participants. Furthermore,
it is possible that the current physical activity guidelines
recommended for cancer prevention are insufficient for post-
menopausal breast cancer. A recent prospective investigation
of 30,797 postmenopausal women [111•] found no significant
association between invasive breast cancer incidence and
near-achievement of the WCRF/AICR 2007 minimum phys-
ical activity recommendations [1] for cancer prevention.

Conclusions

Evidence from randomized exercise trials in healthy, over-
weight and obese postmenopausal women implies that
moderate-vigorous aerobic exercise prescriptions of 150–
225 minutes per week over 12 months can lower estradiol
levels by approximately 5-10% on average, primarily through
total body weight loss. Yet, there is biologic plausibility that
some exercise-induced biomarker changes do not require loss
of body fat, whereas others depend on abdominal fat loss. The
preventive effect of exercise is probably the culmination of
numerous interrelated biomarker changes that, when com-
bined, act additively or synergistically to impede carcinogen-
esis in the breast. The level of physical activity required to
induce these changes could be higher than the minimum level
currently advised for cancer prevention and might depend on
individual factors, e.g., genetic constitution. Identifying a
physical activity prescription that produces clinically mean-
ingful changes in key biomarkers and subgroups of women
who would benefit the most from physical activity is a priority

for future research. These recommendations will be used to
inform prevention strategies for breast cancer after
menopause.
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