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Abstract—Goal: In light of the COVID-19 pandemic, the
early diagnosis of respiratory diseases has become in-
creasingly crucial. Traditional diagnostic methods such as
computed tomography (CT) and magnetic resonance imag-
ing (MRI), while accurate, often face accessibility chal-
lenges. Lung auscultation, a simpler alternative, is sub-
jective and highly dependent on the clinician’s expertise.
The pandemic has further exacerbated these challenges
by restricting face-to-face consultations. This study aims
to overcome these limitations by developing an automated
respiratory sound classification system using deep learn-
ing, facilitating remote and accurate diagnoses. Methods:
We developed a deep convolutional neural network (CNN)
model that utilizes spectrographic representations of res-
piratory sounds within an image classification framework.
Our model is enhanced with attention feature fusion of
low-to-high-level information based on a knowledge propa-
gation mechanism to increase classification effectiveness.
This novel approach was evaluated using the ICBHI bench-
mark dataset and a larger, self-collected Pediatric dataset
comprising outpatient children aged 1 to 6 years. Results:
The proposed CNN model with knowledge propagation
demonstrated superior performance compared to exist-
ing state-of-the-art models. Specifically, our model showed
higher sensitivity in detecting abnormalities in the Pediatric
dataset, indicating its potential for improving the accuracy
of respiratory disease diagnosis. Conclusions: The integra-
tion of a knowledge propagation mechanism into a CNN
model marks a significant advancement in the field of au-
tomated diagnosis of respiratory disease. This study paves
the way for more accessible and precise healthcare solu-
tions, which is especially crucial in pandemic scenarios.

Index Terms—Classification, deep learning, feature fu-
sion, knowledge propagation, respiratory sound.
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I. INTRODUCTION

A S INTERNET of Things (IoT) applications advance, so-
phisticated personal healthcare systems have emerged and

continue to evolve. These systems are designed to enable early
diagnosis of disease and continuous health monitoring even in
the absence of trained medical staff. One key area of these
systems is the automated classification of respiratory sounds
for the early detection of abnormalities. Chronic respiratory
disease (CRD), including chronic obstructive pulmonary disease
(COPD), asthma, occupational lung diseases, and pulmonary hy-
pertension, is the third leading cause of death globally, account-
ing for approximately 4 million deaths worldwide in 2019 [1].
While these diseases are not curable, various therapeutic in-
terventions can significantly alleviate symptoms and enhance
the quality of life for affected individuals [1]. Consequently,
early detection of respiratory abnormalities is of paramount
importance [2].

CRDs affect the airways and various structures within the
lungs, resulting in abnormal breathing sounds [3]. Therefore,
lung auscultation through respiratory sound analysis remains
an indispensable method for the early detection of breathing
irregularities. Although sophisticated diagnostic modalities such
as X-ray imaging, ultrasonography, computed tomography (CT),
and magnetic resonance imaging (MRI) are available, the stetho-
scope has been considered an invaluable tool for early-stage
monitoring of CRDs [4], [5]. While auscultation is both non-
invasive and cost-effective, it is limited by its inherent subjectiv-
ity and the specialized expertise required for the interpretation of
abnormal respiratory sounds such as crackles and wheezing [6].
Furthermore, the recent COVID-19 pandemic has highlighted
the importance of reliable telemedicine methods that allow re-
mote diagnosis, thereby mitigating the risk of viral transmission
through face-to-face consultations.

The inherent complexity associated with subtle differences
between normal and abnormal respiratory sounds in a low-power
spectrum presents challenges to clinicians. Given this complex-
ity, machine learning (ML) and deep learning (DL) algorithms
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have increasingly attracted attention for their capacity to inter-
pret intricate patterns in lung auscultation data recorded through
advanced digital stethoscopes [7], [8], [9], [10], [11]. Automated
respiratory sound analysis using ML and DL models can provide
an early diagnosis of respiratory disease to individuals lack-
ing specialized medical knowledge. Moreover, these automated
systems offer more standardized measurements and consistent
monitoring of preliminary symptoms, thereby expediting the
initiation of preventative treatments [7], [12].

Various feature extraction techniques, such as Mel-
Spectrograms, Mel-Frequency Cepstral Coefficients (MFCCs),
and scalograms, have been employed in ML and DL algo-
rithms for respiratory sound detection [13], [14], [15], [16].
However, the efficacy of traditional ML-based methods depends
substantially on the quality of the hand-crafted features. DL
approaches, particularly convolutional neural networks (CNNs),
offer a notable advantage through automated feature learning in
the identification of anomalies from lung auscultation data [11],
[13], [14], [17], [18]. The CNN models utilize spectrograms
of respiratory sounds as input and demonstrate superior per-
formance. This is attributed to hierarchical feature extraction
occurring from the first convolutional layer through to deeper
layers, evolving from low-level to higher-level feature repre-
sentations [19]. These higher-level features represent global
attributes of the spectrograms, aiding the classification layer
in learning significant features from compressed information.
However, because the process executes multiple convolutional
filter operations, relevant information may be lost [20].

In this study, we developed a novel deep CNN model that
utilizes feature fusion via knowledge propagation from high-
to low-level features for respiratory sound classification. High-
level features are extracted from the deepest convolutional layer
to capture global representations, whereas low-level features en-
capsulate local information. The proposed hierarchical approach
synergistically fuses high- and low-level features to improve
classification performance. The process of knowledge propaga-
tion is performed iteratively by fusing a high-level feature with
its preceding layer’s local feature. This process culminates at
the layer immediately above the stem layer, which is mainly re-
sponsible for the initial downsampling of input images to reduce
computational cost [21]. Additionally, we introduce channel
average pooling as a means to reduce dimensionality during
feature fusion. In contrast with global average pooling, which
computes the average across the time-frequency map, channel
average pooling focuses only on the average of channels, thereby
preserving time-frequency information and summarizing the
information from multiple channels. Channel average pooling
is enriched by a self-attention layer that reweights the extracted
features to emphasize significant information. Employing a
key-query paradigm, the self-attention mechanism calculates the
attention scores for the respective weights of features [21]. This
knowledge propagation technique can mitigate information loss
by enriching global representations with significant localized
features.

Our experimental results validate the efficacy of our knowl-
edge propagation method in the form of enhanced perfor-
mance of the deep CNN architecture for respiratory sound
classification. Our approach established a new state-of-the-art

performance on the International Conference on Biomedical
Health Informatics (ICBHI) open dataset, achieving an im-
provement of approximately 1% in its score. Moreover, our
model achieves a significantly increased accuracy in identifying
abnormal samples, a crucial aspect in the detection of respiratory
abnormalities. Furthermore, we rigorously evaluated our model
on a self-collected dataset recorded from outpatient children
aged 1 to 6 years, reaffirming its effectiveness.

In this study, we have made the following significant
contributions:

1) We have developed a novel deep CNN model that in-
corporates knowledge propagation for feature fusion.
This model combines high-level features (which capture
global representations) with low-level features for local-
ized information to accommodate the complexity inherent
in the classification of respiratory sounds.

2) We have integrated channel average pooling as a dimen-
sionality reduction technique (that preserves significant
time-frequency information) with a self-attention layer
that reweights features to emphasize significant informa-
tion relevant to the classification.

3) We have validated the efficacy of our model using both the
ICBHI open dataset and a self-collected Pediatric dataset
of outpatient children aged 1 to 6 years. Through this
rigorous validation process, we have established a new
state-of-the-art performance.

The remainder of this paper is structured as follows: Section II
contains a review of related work in the field of automated clas-
sification techniques. Section III contains a detailed discussion
of our proposed method. In Section IV, experimental results
validating the efficacy of our approach are presented. Finally,
we conclude the paper in Section V.

II. RELATED WORK

Adventitious sounds serve as key markers for abnormal
respiratory conditions that overlap with normal breathing
sounds [22]. Adventitious sounds are generally categorized as
continuous (wheezes), discontinuous (crackles), or both [23],
[24]. Wheezes are characterized by periodic and constant wave-
forms with a pitch above 100 Hz and a short duration [22], [25].
These sounds usually originate from airflow restrictions engaged
by a narrow airway [3]. Wheezes are commonly associated with
respiratory diseases such as asthma and COPD. Conversely,
crackles indicate pathological abnormalities in the pulmonary
tissue or airways [26]. These sounds exhibit explosive and
discontinuous characteristics, known to occur during inspira-
tion [22], [25]. Crackles are further subcategorized as fine or
coarse, based on their duration [26]. Fine crackles, characterized
by a short duration, are produced in the peripheral bronchi as
a symptom of infection or pulmonary edema. Coarse crackles
manifest at the beginning of an inhalation phase and indicate
chronic bronchial diseases.

Recent studies have focused on the development of auto-
mated respiratory sound classification models that effectively
distinguish between normal and abnormal sounds. Deep neural
networks (DNNs), known for their exceptional performance in
various applications such as natural language processing, speech
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recognition, and image and video processing [27], [28], [29],
have been actively applied to the classification of respiratory
sounds. Initially, Kochetov et al. proposed a recurrent neural
network (RNN)-based architecture to capture the temporal dy-
namics of sound data. However, this approach does not always
fully extract the intrinsic time-frequency information of respira-
tory sound [10]. Therefore, respiratory sounds are transformed
into spectrogram images, and CNNs have been mainly used
as the backbone architecture [11], [17]. Kim et al. leveraged
the spatial locality properties of CNNs to classify the Mel-
Spectrogram of respiratory sounds [11]. Further enhancements
have been achieved through pre-training a deep CNN on large
audio datasets [30]. The CNN6 model was pre-trained on the Au-
dioSet dataset [31], which contains two million sounds, includ-
ing respiratory sounds like breathing, coughing, and sneezing.
This pre-training approach led to a performance enhancement
of almost 3% compared to models without pre-training [30].
Messner et al. combined the respective strengths of RNNs and
CNNs to exploit spectral, temporal, and spatial information from
respiratory sounds [32]. This approach fed spectrograms into a
convolutional recurrent neural network architecture to classify
normal and abnormal respiratory sounds. Long short-term mem-
ory (LSTM) was then leveraged as the RNN module to improve
feature memorization [33].

Recently, large CNN models pre-trained on the ImageNet
dataset, such as ResNet, have demonstrated promising perfor-
mance in respiratory sound classification. Gairola et al. proposed
a respiratory sound classifier called RespireNet by utilizing
ResNet34 as the backbone architecture and fine-tuning the final
fully-connected layer on the respiratory sound dataset [17].
To enhance the effectiveness of transfer learning with limited
task-specific data, data augmentation mechanisms were em-
ployed [17], [34]. In contrast with image data augmentation,
standard sound data augmentation techniques, including noise
addition, speed variation, random shifting, and pitch shift-
ing, were applied to audio signals before transformation [17].
ResNeSt [35] was also fine-tuned to improve its classification
performance, introducing circular padding as an augmentation
technique to address the challenge of the imbalanced dataset by
increasing the number of abnormal samples [34]. Rather than
focusing on augmentation techniques, Nguyen et al. proposed a
co-tuning method with a pre-trained ResNet50 model, enhanc-
ing the transfer learning process [36]. Co-tuning is a two-step
framework where the first step involves learning the relation-
ship between source and target categories from the pre-trained
model with calibrated predictions. In the second step, target
labels (one-hot labels) and source labels (probabilistic labels)
collaboratively supervise the fine-tuning process as translated
by the category relationship.

Although pre-trained models such as ResNet have demon-
strated excellent performance in general image classification,
they have predominantly been trained on datasets comprising
images of objects such as animals, humans, and household items.
The characteristics of these images differ from those of spectro-
grams transformed from audio signals. Spectrograms represent
complex time-frequency relationships inherent in sound data,

Fig. 1. Audio signal conversion to image representation as input for
deep learning models.

which may not be effectively captured by models pre-trained on
general image datasets. Therefore, we propose a specific archi-
tecture based on CNNs designed to accommodate the distinct
spectral patterns and temporal dynamics of respiratory sound
data, thereby potentially providing improved classification per-
formance compared to pre-trained models on general image
datasets.

III. METHODS

A. Sound-to-Image Transformation

To facilitate the classification of respiratory sounds using
CNNs, the respiratory sound data were transformed into a
particular feature representation suitable for image-based pro-
cessing. We evaluated three transformation techniques: Short-
Time Fourier Transform (STFT), Mel-Spectrogram, and Mel-
Frequency Cepstral Coefficients (MFCC), each providing a
unique visual representation of sound characteristics. The
STFT captures dynamic time-frequency information, the Mel-
Spectrogram emphasizes auditory perception by scaling fre-
quencies according to the Mel scale (which approximates human
hearing sensitivity), and the MFCC encapsulates the spectral en-
velope of sounds, which is essential for speech-related nuances.
Fig. 1 illustrates image representations of these transformations
as applied to a sample of respiratory audio recordings.

An audio signal is comprised of several single-frequency
sound waves, and the frequency of the information varies over
time. Consequently, the time-varying properties of the sound
spectrum need to be represented. The Fourier transform, a
fundamental tool in signal processing, is used to convert an
audio signal from its time domain into a frequency domain
representation, generating the signal’s spectrum. To compute a
spectrogram, which is a time-varying spectrum representation,
an STFT is applied, where the audio signal is first sliced into
N frames with overlapping windows, applying the Hamming
window to minimize edge effects. The STFT computes the
power spectrum, Pi, at each frequency bin i in accordance with
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the following equation:

Pi =
|S(i)|2
N

, (1)

where S(i) =
∑N−1

n=0 s(n) exp(−j 2π
N ni) are the Fourier coeffi-

cients of the windowed sound frame, s[n]. The resulting spec-
trogram visually represents the signal’s loudness or amplitude,
as it varies over time at different frequencies.

For the Mel-Spectrogram, the frequencies are converted to the
Mel scale, better reflecting human auditory perception. The Mel-
Spectrogram emphasizes finer resolution at lower frequencies
and coarser resolution at higher frequencies with conversion
formula m = 2595 log10(1 +

f
700 ), where f is the frequency

in Hertz and m is its Mel scale.
To obtain MFCCs, a discrete cosine transformation (DCT) is

applied to the logarithmic Mel-spectrum, S(m), extracting the
cepstral coefficient and effectively separating the pitch informa-
tion from the formants through the following formula:

Y (n) =

M−1∑
m=0

log(S(m)) cos
(
n (m+ 0.5)

π

M

)
, (2)

where M is the number of Mel frequency bands. This cepstral
representation is especially appropriate for speech recognition
applications because of its efficacy in capturing phonetically
significant features while being less susceptible to noise.

For the implementation of the sound preprocessing, we fol-
lowed the existing framework used in RespireNet [17], which
involves transforming sounds into Mel-Spectrograms. This pro-
cess uses a sampling rate of 4000 Hz, 64 Mel filterbanks,
and an FFT window of 256 points. We also performed blank
region clipping to remove unnecessary high-frequency regions,
ensuring the network focuses on the most relevant information
for improved performance [17]. In respiratory sound analy-
sis, transforming the one-dimensional audio signal into a two-
dimensional form is essential to take advantage of the advanced
pattern recognition capabilities of CNNs. The key rationale for
selecting an appropriate transformation method is to facilitate
the detection of subtle variations in respiratory sounds, ensuring
that the differences between normal and abnormal conditions,
which might be challenging to discern in their original form,
become more accessible and identifiable in the transformed
two-dimensional representation.

B. Feature Fusion Through Knowledge Propagation

In the proposed deep CNN-based architecture, we imple-
mented a feature fusion mechanism using our novel knowledge
propagation concept to enhance classification performance. This
mechanism strategically combines multi-level feature maps,
enabling the network to maintain essential spectral-temporal
information throughout layers, thereby enhancing the robustness
and discriminative power of the learned features for respiratory
sound classification.

The input to the model is the audio spectrogram, represented
as x ∈ RT×F×C , where T and F denote the time and frequency
dimensions, respectively. The number of channels, C, is equal

to three to accommodate the RGB representation of the spectro-
gram image. As depicted in Fig. 2, the architecture consists of
nine CNN blocks.

The three-channel RGB spectrogram image is fed into the first
convolutional layer, termed the stem layer, and the output of the
stem layer at each channel is given by:

fi,j =

k−1∑
a=0

k−1∑
b=0

wa,bxi+a−1,j+b−1, (3)

where k = 3 is the kernel size, ws are learnable weights of
the convolutional filter, and (i, j) is the index of the resulting
feature map after the convolutional operation. Subsequently,
batch normalization (BN) is performed and a rectified linear
unit (ReLU) activation function is applied, expressed as:

f̃i,j = ReLU(BN(fi,j)) = max (0, BN(fi,j)). (4)

The batch normalization incorporates the mean and standard de-
viation that are calculated per dimension over the mini-batches.
The stem layer’s primary role is spatial downsampling; its
feature is comprised of RGB pixels that are individually un-
informative and, therefore, exhibit high spatial correlation [21].
Because of these properties, the stem layer is not included in
the knowledge propagation process. Max pooling with a 2× 2
kernel and stride of 2 is applied at the end of the stem block
Bstem for further spatial downsampling:

ystem
p,q = MaxPooling(f̃p,q) =

1
max
a,b=0

f̃2p+a,2q+b. (5)

The stem block architecture is followed by two convolutional
blocks with two different filter sizes. The earlier block employs
a 1× 1 convolutional filter with a gradually increasing number
of output channels to capture various forms of information
in the images. This channel-enhancement (CE) block was de-
signed on the basis of studies that a large number of output
channels generate higher performance [37]. The subsequent
spatial-downsampling (SD) block is composed of a 3× 3 con-
volutional filter that performs simultaneous feature extraction
and spatial downsampling. The combined CE and SD blocks
extract significant spatial features for classification. Both blocks
incorporate batch normalization (for network regularization)
and the ReLU activation function (which is robust against sat-
uration and vanishing gradients, unlike the sigmoid and tanh
functions [38]). The CE and SD blocks are stacked four times
and the ith combined block is denoted as BCE-SD

i .
The output of the stem block, ystem, passes through the first

CE and SD blocks sequentially, resulting in the extracted feature
y1 = BCE-SD

1 (ystem). The feature y1 is repeatedly fed into the
next CE and SD blocks, and the global feature y4, extracted
from the final block, is represented as y4 = BCE-SD

4 (y3). The
global feature y4 contains a compressed form of the input,
distilling essential information into a compact representation
that includes general knowledge of the sound input, thereby
facilitating effective classification.

However, as the convolutional layers progress and reduce
dimensions to extract higher-level features, there is an inherent
risk of losing fine-grained details present in the initial layers. To
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Fig. 2. The overall architecture of the proposed method.

address this possible information loss and ensure the robustness
of features for sound classification, we developed a feature
fusion mechanism. This mechanism was designed to integrate
the global, high-level features with the detailed, lower-level
features retained from earlier layers. The mechanism assists in
preserving a comprehensive representation of input data and
enhances the classifier’s ability to distinguish between subtle
variations in respiratory sounds.

As shown in Fig. 2, our model initiates knowledge propa-
gation through feature fusion by integrating features from the
fourth and third SD blocks. This integration of global and
local features from successive levels of the network enables
the propagation of informative features across the network. The
fusion operation repeatedly combines features from the current
and preceding SD blocks, thus preserving knowledge throughout
the layers down to the first block.

Prior to the knowledge-propagation operation, the output of
the combined CE and SD blocks is fed to a self-attention layer,
Attn, to perform reweighting on relevant features, followed by
a channel average pooling, CAP , expressed as follows:

ỹn = CAP (Attn(BCE-SD
n (yn−1)). (6)

Details of the self-attention and channel average pooling are
elucidated in subsequent sections. Because of a series of convo-
lutional filter operations, ỹn and ỹn−1 have different dimensions.
Therefore, a linear projection is applied to ỹn via a dense layer
to align with the dimension of ỹn−1 before the fusion. The
2D feature ỹn is first flattened from R1×m×n to a 1D array
in R1×mn. Followed by a linear projection, the dimension is
enlarged to R1×pq where p and q are the dimensions of the
2D feature ỹn−1. The 1D feature output of the dense layer is
subsequently reshaped to the 2D feature ỹup

n ∈ R1×p×q for the

fusion operation. The fused features ỹ(n,n−1) are obtained by:

ỹn,n−1 = ỹup
n + ỹn−1. (7)

The final fused feature will contain both the global and the
local features from different depths of convolutional blocks. This
feature is then fed to a fully-connected layer for classification.
To mitigate the risk of overfitting, dropout layers are applied
following each dense layer in the model. The model is trained
using the cross-entropy loss function, expressed as follows:

loss = −
C∑

c=1

lci log(p
c
i ), (8)

where C is the number of classes, lci is a binary indicator (0 or
1) if class label c is the correct classification for sample i, and
pci is the predicted probability that sample i is of class c.

C. Self Attention

The self-attention mechanism is performed on the extracted
features obtained from different convolutional layers. The self-
attention layer is applied over a two-dimensional feature to
perform reweighting on the input where the keys and values
are the linear projection of the same features. This self-attention
operation follows the formulation introduced by Ramachandran
et al. [21]. Before the attention operation is performed over the
two-dimensional features, a zero pad with a width of 3 is added
along the input edges. After that, a 7× 7 attention window with
a single stride is applied to the two-dimensional features.

The center of the attended region is the query in the self-
attention operation. For xi,j as the center of an attended region
a× b, the output of Attn(xa,b) for an input channel can be
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Fig. 3. Channel average pooling process.

obtained by the following formula:

Attn(xa,b)i,j =
∑

a,b∈Nk(i,j)

softmaxa,b(qi,j · ka,b) · va,b (9)

where the query, qi,j = Wqxi,j , keys, ka,b = Wkxa,b, and val-
ues, va,b = Wvxa,b, are linear transformations of the attended
image features a× b.

D. Channel Average Pooling

Before knowledge propagation, channel average pooling is an
essential step in reducing feature dimensions while preserving
significant information about the audio data. After the self-
attention layer in our model produces reweighted 3D features,
channel average pooling is applied to transform these 3D fea-
tures into 2D features by summarizing channel information. In
contrast with global average pooling, which averages over the
entire time-frequency map, channel average pooling computes
the average over the channel dimension, as illustrated in Fig. 3.
This can be expressed as:

CAP (x)i,j =
1

C

C∑
k=1

xi,j,k (10)

where x represents the 3D input, (i, j) is the index of the
output, and k denotes the channel index. This method effectively
preserves the essential time-frequency information inherent in
audio data with reduced feature dimensions.

Our model was trained for 200 epochs with a batch size of 16
and a constant learning rate of 0.001. Hyperparameters were op-
timized through a grid search approach. The best model weights
for evaluation were chosen based on the highest performance on
the validation set during the training phase.

IV. RESULTS AND DISCUSSION

A. Dataset and Evaluation Metrics

To evaluate the performance of our proposed method, we
trained and tested the model on a self-collected Pediatric dataset
from Woorisoa Children’s Hospital in South Korea and the
publicly available ICBHI 2017 challenge dataset. The Pedi-
atric dataset consists of pediatric respiratory sounds recorded
by medical professionals from outpatient children aged 1 to
6 years at Woorisoa Children’s Hospital. This recording was
approved by the local institutional review board (Seoul National
University of Science and Technology, No. 2021-0017). Written
informed consent was obtained for the study. Two pediatricians

TABLE 1
CHARACTERISTICS OF THE PEDIATRIC DATASET COLLECTED BY

WOORISOA CHILDREN’S HOSPITAL

carefully labeled a large amount of respiratory sound data as
normal and abnormal. The characteristics of the hospital dataset
are presented in Table 1. The ICBHI dataset contains 3,642 audio
recordings classified as normal and 3,254 classified as abnormal,
mostly recorded from adults.

For the Pediatric dataset, a 5-fold cross-validation method was
used, ensuring that each fold has an equal distribution of normal
and abnormal samples in each fold while keeping subjects
between folds non-overlapping. This 5-fold cross-validation
process was performed with the optimized hyperparameters and
independently repeated five times to obtain a reliable perfor-
mance evaluation. For the ICBHI dataset, we used the official
split with a training set comprising 60% of the dataset and a
test set comprising the remaining 40% for fair comparison [36].
This training-testing scheme was also repeated five times, and
the average performance was obtained [30].

For a balanced performance evaluation, we evaluated the
performance of the models using four evaluation metrics: ac-
curacy, precision, recall, and F1-Score. In binary classification,
accuracy is the ratio of correctly classified samples to the total
number of samples. Precision is the ratio of correctly classified
abnormal samples to the total samples predicted as abnormal.
Recall is the ratio of correctly classified abnormal samples to the
actual total of abnormal samples. The F1-score is the harmonic
mean of precision and recall, providing a balance between them.
To maintain comparability with baseline algorithms, we also
presented sensitivity, specificity, and score. Specificity is the
ratio of correctly classified normal samples to the total number
of normal samples. Similarly, sensitivity is computed as the
ratio of correctly classified abnormal samples to the total number
of abnormal samples. As an overall measure of performance,
the score is derived by averaging the two metrics, providing a
balanced view of the classifier’s capabilities.

To assess the statistical significance of our results, we con-
ducted the Mann-Whitney U test. This non-parametric method
is used to compare differences between two independent groups
when the dependent variable is not normally distributed. As the
test makes no assumptions about the distribution of the data, it
is particularly well-suited for our study with small sample sizes.

B. Experimental Results

1) Sound Data Representation: In the respiratory sound
classification, the choice of sound data representation is cru-
cial to the overall performance of the classification model. To
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TABLE 2
PERFORMANCE COMPARISON OF DIFFERENT INPUT REPRESENTATIONS

ON ICBHI DATASET

determine the most effective input representation for our pro-
posed architecture, we conducted experiments using three dif-
ferent sound data representations: STFT, Mel-Spectrogram, and
MFCC. As indicated in Table 2, the Mel-Spectrogram emerged
as the superior representation, outperforming the other represen-
tations with a significant improvement of 23% in the F1-score.
This result confirms the effectiveness of the Mel-Spectrogram
in capturing essential features for the classification of respira-
tory sounds. Despite the fact that both the Mel-spectrogram
and the MFCC utilized the Mel scale conversion, the MFCC
demonstrated a comparatively lower performance. This may be
attributed to the fundamental nature of MFCC, which focuses
on emphasizing phonological information by discarding pitch
information from the formants. Such a feature is suitable for
speech processing tasks, but (as our results indicate) less ef-
fective for respiratory sound classification. The distinct acoustic
properties of respiratory sounds, which may rely heavily on pitch
information, probably contribute to the reduced effectiveness of
MFCC in this context.

2) Performance Comparison on ICBHI Dataset: We eval-
uated our proposed model using the ICBHI open dataset by
employing the Mel-Spectrogram as the input representation. To
validate our model’s superiority, we compared its performance
with the current state-of-the-art models. For fair comparison, we
re-evaluated the RespireNet models under the official 60:40 split
dataset, using the open-source code provided by the authors [17].
The results, as listed in Table 3, demonstrate that our proposed
method exhibits competitive performance, achieving an average
score of 0.6569 across five repeated experiments. Specifically,
the model displayed high sensitivity, a critical metric in medical
diagnosing applications, as it reflects the model’s efficacy in
accurately identifying abnormal respiratory sounds. Given that
the primary application of this study is to facilitate preliminary
screening for respiratory diseases, a high rate of detection of
abnormalities is paramount. With a 9% improvement in the
sensitivity and a higher overall performance score, the proposed
method achieved a record level of state-of-the-art performance
on the normal-abnormal respiratory sound classification for the
ICBHI dataset. As depicted in Fig. 4, the receiver operating
characteristic (ROC) curve corroborates the superiority of our
proposed method, compared to the RespireNet algorithms, by
achieving a value of 0.70 for the area under the curve (AUC).
Our model also shows remarkable enhancements in performance
compared to other pre-trained models, such as VGG16 and
DenseNet. The Mann-Whitney U test results between the pro-
posed method and each baseline model reveal a p-value of 0.004
(< 0.05), which confirms that our proposed method significantly
outperforms the baseline models.

Fig. 4. ROC plot of RespireNet and the proposed method applied to
ICBHI dataset.

3) Performance Comparison on Pediatric Dataset: In a
further evaluation of our proposed deep learning model, we
assessed its effectiveness using a self-collected Pediatric dataset;
the results are listed in Table 4. The model consistently achieved
an average sensitivity of 87.53%, confirming its robustness in
accurately identifying abnormal respiratory sounds. In parallel
with its high sensitivity, our model showed a higher overall
performance score compared to the baseline RespireNet model.
Notably, our model exhibited remarkably better performance
on the Pediatric dataset compared to the ICBHI dataset, which
includes data recorded from a wide age range across both old
and young patients and collected at multiple hospitals using
various recording devices. The diversity introduces a significant
variance in the dataset, leading to more complex differentiation
between normal and abnormal respiratory sounds. These vari-
ations present considerable challenges for the model’s ability
to generalize and accurately classify sounds. In contrast, the
Pediatric dataset is more homogeneous, comprising data from
children aged 1 to 6 years, all recorded using a single device.
This homogeneity simplifies the classification task, resulting in
better performance.

We trained the RespireNet using the Pediatric dataset with the
5-fold cross-validation, repeated five times. The results of each
5-fold cross-validation trial are presented in Table 4. These com-
prehensive tests reveal that our model consistently outperformed
RespireNet, scoring 1.13% higher. The ROC curve, depicted in
Fig. 5, further demonstrates that the proposed method effec-
tively discriminates between normal and abnormal respiratory
samples. In comparison to other pre-trained models, such as
VGG16 and DenseNet, our model demonstrates a substantial
superiority, achieving an F1-score improvement of over 14%.
To assess the statistical significance of these performance dif-
ferences, the Mann-Whitney U test was performed between the
proposed method and each baseline model. This test yielded a
p-value of 0.004 (< 0.05) across all comparisons, confirming
the enhancement provided by our approach in respiratory sound
classification.
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TABLE 3
PERFORMANCE COMPARISON WITH THE BASELINE MODELS ON ICBHI DATASET

TABLE 4
5-FOLD CROSS-VALIDATION RESULTS ON THE PEDIATRIC DATASET

Fig. 5. ROC plot of RespireNet and the proposed method applied to
the Pediatric dataset.

C. Ablation Study

1) Effect of Propagation Steps: In order to gain a com-
prehensive understanding of the contributions of the various
components in our proposed model, we conducted an ablation
study. This involved removing certain modules or operations
from the overall architecture and observing the resultant effects
on performance. The original architecture employed a three-step
knowledge propagation, where high-level information from the
deepest CNN layer was propagated to the preceding layers. The
model with 1-step knowledge propagation refers to propagation
occurring between the last two spatial downsampling blocks.
2-step and 3-step knowledge propagation extend this process by
incorporating features from additional preceding spatial down-
sampling blocks, following the backward direction illustrated in

TABLE 5
ABLATION STUDY ON THE DEPTH OF KNOWLEDGE PROPAGATION. (A) ICBHI

DATASET. (B) PEDIATRIC DATASET

Fig. 2. As described in Table 5, when testing our model on the
ICBHI dataset, reducing the number of knowledge propagation
steps decreased the accuracy, precision, recall, and F1-Score in
general. Consequently, the no-propagation model, which clas-
sifies features obtained from the last CNN layer, achieved the
lowest F1-score.

These results suggest that the depth of knowledge propagation
has a direct impact on the richness of the fused knowledge. The
integration of local features with global information becomes
more effective with deeper propagation. High-level features,
which encapsulate global information, are robust against noise
but may lack essential details due to oversimplification [20]. In
contrast, low-level features provide local, rich, detailed infor-
mation but are more sensitive to noise. By employing hierarchi-
cal knowledge propagation that leverages the complementary
strengths of both types of features, our model significantly
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TABLE 6
ABLATION STUDY ON THE EFFECT OF SELF-ATTENTION. (A) IDBHI DATASET.

(B) PEDIATRIC DATASET

enhances classification performance to differentiate between
normal and abnormal respiratory sounds [19]. To assess sta-
tistically significant improvements achieved by the proposed
model, the Mann-Whitney U test was utilized. For the ICBHI
dataset, the F1-score of the proposed model was significantly
higher than that of models with 2 steps, 1 step, and no knowl-
edge propagation, yielding p-values of 0.004 (< 0.05) for each
comparison. Similarly, analysis of the Pediatric dataset produced
p-values of 0.028 for both 2 steps and 1 step, and 0.004 (< 0.05)
for the model without knowledge propagation. As shown in
Table 5, the three-step propagation process achieved the highest
accuracy and F1-score, with a better balance between precision
and recall.

2) Effect of Self-Attention: In our model, we incorporated
a self-attention operation for each extracted local feature prior to
the knowledge propagation. As shown in Table 6, the omission
of the self-attention module is associated with a significant
degradation in performance. The statistical significance of our
findings is affirmed by the Mann-Whitney U test, which pro-
duced a p-value of 0.004 (< 0.05) for both the ICBHI and
Pediatric datasets. The absence of self-attention results in a
substantial 15.58% and 7.62% reduction in recall for ICBHI and
Pediatric dataset respectively. This result indicates the important
role of self-attention as it selectively emphasizes the important
information within each local feature by focusing on the most
relevant features, which is required to be distilled and fused
together for accurate classification. A lower value of recall is
not favorable because the recognition of abnormal samples is
crucial in the classification of respiratory sounds. Therefore,
the integration of the self-attention mechanism constitutes an
essential component of our proposed model, which enhances
the effectiveness of feature distillation.

V. CONCLUSION

In this study, we have proposed an advanced DNN architecture
specifically designed to automate respiratory sound classifica-
tion. This innovation is particularly significant for the early diag-
nosis of respiratory diseases. The key element of our architecture
is the knowledge propagation mechanism, which combines dif-
ferent levels of features to mitigate the potential information loss
during the deep learning process. This knowledge propagation
involves the strategic fusion of high-level information from
the deepest convolutional layer with features extracted from
previous layers. Through this process, the input knowledge is

effectively propagated from high-level to low-level features. In
addition, our model incorporates a self-attention mechanism to
re-weight crucial features and channel average pooling to reduce
feature dimensions while preserving essential time-frequency
information. The experimental results confirm the effective-
ness of our proposed model. The proposed method achieves
a new state-of-the-art performance on the ICBHI benchmark
dataset and also outperforms the RespireNet models on the self-
collected Pediatric dataset. A notable strength of our model is its
pronounced recall or sensitivity to accurately identify abnormal
respiratory sounds, a critical requirement for effective disease
diagnosis and management. These results confirm the potential
of our approach as a robust tool in the field of respiratory health
diagnostics.
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