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The fibrinolytic system is critical during the onset of fibrinolysis, a fundamental
mechanism for fibrin degradation. Both tissue plasminogen activator (tPA) and urokinase
plasminogen activator (uPA) trigger fibrinolysis, leading to proteolytic activation of
plasminogen to plasmin and subsequently fibrin proteolysis. This system is regulated by
several inhibitors; plasminogen activator inhibitor-1 (PAI-1), the most studied, binds to
and inactivates both tPA and uPA. Through the action of plasmin, this system regulates
several physiological processes: embryogenesis, activation of inflammatory cells, cell
proliferation and death, synaptic plasticity, wound healing, and others. The deregulated
intervention of fibrinolysis in the pathophysiology of various diseases has been widely
studied; findings of altered functioning have been reported in different chronic non-
communicable diseases (NCD), reinforcing its pleiotropic character and the importance
of its physiology and regulation. The evidence indicates that fundamental elements of
the fibrinolytic system, such as tPA and PAI-1, show a circadian rhythm in their plasmatic
levels and their gene expression are regulated by circadian system elements, known as
clock genes — Bmal, Clock, Cry-, and accessory clock genes such as Rev-Erb and
Ror. The disturbance in the molecular machinery of the clock by exposure to light
during the night alters the natural light/dark cycle and causes disruption of the circadian
rhythm. Such exposure affects the synchronization and functioning of peripheral clocks
responsible for the expression of the components of the fibrinolytic system. So, this
circadian disturbance could be critical in the pathophysiology of chronic diseases where
this system has been found to be deregulated.

Keywords: non-communicable diseases, fibrinolytic system, PAI-1, clock genes, chronodisruption, prothrombotic
phenotype
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CIRCADIAN RHYTHMS, CLOCK GENES,
AND THEIR CLOSE RELATIONSHIP
WITH HEMOSTASIS AND FIBRINOLYSIS

The temporal organization of a living being is influenced
by environmental stimuli and by internal biological clocks
that are endogenously regulated in all living things. From an
evolutionary point of view, events such as day and night,
represented by light/dark cycles, were incorporated as a relevant
time mark to predict environmental changes and as an
anticipatory mechanism to perform and optimize activity/rest
cycles (Mohawk et al., 2013). Circadian rhythms are intrinsic
biological oscillations with a period close to 24 h; in mammals,
they are driven by the circadian synchronization system
(Albrecht, 2012). This system has a hierarchical organization;
it is composed of the pacemaker or central clock, located in
the suprachiasmatic nucleus, which is synchronized through
the environmental light signals that proceed from the retina
and are transported by the retinohypothalamic tract (Golombek
and Rosenstein, 2010). The central clock, in turn, synchronizes
peripheral clocks located in virtually all tissues and organs
through nerve and/or endocrine signals (Schibler et al,
2015). Circadian rhythms are generated at cell level through
transcriptional/translational loops (central and accessories loop).
Interconnected and self-regulated by positive and negative
feedback, these loops are composed for transcription factors
collectively referred to as clock genes (Mohawk et al., 2013). The
central loop is composed of the CLOCK:BMALI heterodimer,
which promotes the rhythmic expression of the repressor
proteins PER1-3 and CRY1-2 through E-box sites. Subsequently,
PER and CRY translocate to the nucleus once they have been
modified post-translationally, feeding back and limiting their
own expression by displacing the CLOCK:BMALI from their
promoter site. A cycle of this negative and positive feedback
lasts approximately 24 h, thus generating circadian rhythmicity
(Curtis et al., 2014; Takahashi, 2016).

The CLOCK:BMALL also promotes rhythmic transcription of
the accessory loop components, such as the REV-ERBa/f nuclear
receptor, which represses the transcription of the Bmall gene by
binding to the retinoid-related orphan receptor response element
(RORE) in the promoter site of Bmall (Partch et al, 2014;
Honma, 2018). Other genes that structure the accessory loop
are retinoid-related orphan receptors (RORs); Rora/B/y have
been shown to activate the transcription of Bmall through the
binding of their respective proteins to RORE sites (Guillaumond
et al., 2005). In addition, RORs modulate the expression of
important components of the central loop such as CLOCK and
CRY (Ueda et al., 2005; Takeda et al., 2012), which indicates that
they are strongly involved in the regulation of the expression
of clock genes and therefore of molecular machinery functions
(Mazzoccoli et al., 2012a). The clock genes of the central and
accessory loop regulate the rhythmic expression of other target

Abbreviations: CCG, clock-controlled gene; CVD, cardiovascular disease; NCD,
non-communicable disease; PAI-1, plasminogen activator inhibitor-1; ROR,
retinoid-related orphan receptor; RORE, ROR-response elements; tPA, tissue
plasminogen activator.

genes called clock-controlled genes (CCGs), which in turn are
related to multiple physiological functions such as behavior,
metabolism, hemostasis, and immunity (Liu et al., 2008; Jetten,
2009; Shimba et al., 2011; Mavroudis et al., 2018). The central
loop is also regulated by another accessory pathway, which
includes the D-box albumin transcriptional activator binding
protein (DBP), transcriptionally regulated through an E-box
site, and the binding protein NFIL3, transcriptionally regulated
through a RORE site. The DBP and NFIL3 proteins regulate
positively and negatively, respectively the expression of genes
that have D-box sites at their promoter site, such as Per, Cry,
or Rev-Erb and other CCGs (Ueda et al., 2005; Curtis et al.,
2014; Man et al., 2016; Mavroudis et al., 2018). Other data
indicate that the mechanisms by which CLOCK:BMALI regulates
the transcription of core clock genes do not apply to CCGs
and suggest that the primary function of CLOCK:BMALL is to
regulate the chromatin landscape at its enhancers to facilitate
the binding of other transcription factors. This implies that CCG
expression would be indirect, based on the interaction between
the circadian clock and other signaling pathways (Trott and
Menet, 2018; Beytebiere et al., 2019).

The circadian clock literally affects all physiological functions
and behaviors, contributing significantly to the production
and maintenance of endocrine rhythms modulating the levels
of endocrine factors as well as the ability of the tissues to
respond to these stimuli throughout the day (Richards and
Gumz, 2013; Gamble et al., 2014; Challet, 2015). The evidence
suggests that specific clock genes regulate different functions
of the physiology of innate and adaptive immune cells (Silver
et al., 2012; Casanova-Acebes et al., 2013; Pritchett and Reddy,
2015; Scheiermann et al., 2018), indicating that the regulation
of immune response is under circadian control. Furthermore,
the overall evidence shows that there is a mutual relationship:
The clock controls some crucial metabolic pathways, and the
metabolism feeds back to the clock machinery, synchronizing
functions such as the production and expenditure of energy with
the circadian patterns of the expression of metabolic genes in
synchrony with the light/dark cycles, replenishing the proteins
and enzymes during the resting phase that are needed to perform
physiological functions in optimal conditions during the activity
phase (Bellet and Sassone-Corsi, 2010; Mazzoccoli et al., 2012b;
Masri et al., 2014). Moreover, circadian rhythms are important
regulators of cardiovascular physiology; peripheral clocks are
present in each of the types of cardiovascular cells, regulating
various physiological functions such as endothelial function,
blood pressure, and heart rate (Crnko et al., 2019). In relation
to hemostasis, robust circadian oscillations in the number of
circulating platelets and in the markers of platelet-endothelial
aggregation and adhesion have been demonstrated (Scheer et al.,
2011). A clear circadian expression of prothrombotic factors
such as von Willebrand factor has also been shown, displaying
maximum expression during the activity phase in humans and
rodents, while on the other hand demonstrating a clear regulation
of fibrinogen expression through clock genes (Somanath et al.,
2011). Also, parameters of the coagulation system, such as
prothrombin time (PT) and activated partial thromboplastin time
(APTT), displayed a circadian rhythm, with the shortest PT being
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recorded late at night and early in the morning (Budkowska
et al., 2019). All the expression profiles of circadian hemostasis
previously described favor a prothrombotic phenotype when the
circadian function of the molecular clock is deregulated.
Practically all tissues and organs have peripheral clocks,
synchronized by powerful environmental signals such as
light/dark cycles. Nowadays, modern society is further exposed
to interruption of the synchrony of circadian rhythms through
activities such as shift work, work at night, or chronic jet-lag,
promoting a chronodisruption that has proven consequences
for human health (Erren and Reiter, 2009, 2013). Therefore,
it is not surprising to see that alterations in the circadian
rhythm are involved in an increasing number of various
chronic diseases, such as diabetes, obesity, chronic respiratory
diseases, cardiovascular diseases (CVDs), and cancer (Haus and
Smolensky, 2006; Scheer et al,, 2009; Pietroiusti et al., 2010;
Stevens et al., 2011; Plano et al., 2017). Interestingly, in several of
these chronic diseases, the deregulation of the fibrinolytic system
is also demonstrated in some of its components (Medcalf, 2007;
Oishi, 2009; Godier and Hunt, 2013; Draxler and Medcalf, 2015;
Svenningsen et al., 2017). In particular, an association between
CVDs and an alteration in the levels of tissue plasminogen
activator (tPA) expression and mainly plasminogen activator
inhibitor-1 (PAI-1) has been demonstrated, the latter being
studied as a possible marker of cardiovascular risk (Declerck and
Gils, 2013; Tofler et al., 2016; Jung et al., 2018) and senescence
(Eren et al., 2014; Yamamoto et al., 2014; Vaughan et al., 2017).

FIBRINOLYTIC ACTIVITY AND ITS
REGULATION THROUGH CLOCK GENES

Thus far, we know that tPA and PAI-1 plasma levels oscillate
robustly in circadian form in humans and rodents, decreasing
and increasing, respectively, during the activity phase in both
species, contributing to a state of hypofibrinolysis during this
period (Angleton et al., 1989; Andreotti and Kluft, 1991; Ohkura
et al., 2007; Scheer and Shea, 2014; Budkowska et al., 2019). This
feature allows rodent models to be used for investigating the
mechanisms that regulate fibrinolysis and its possible damage
(see Figure 1). The rise in plasma PAI-1 levels during the
beginning of the activity phase could explain the higher incidence
of myocardial infarctions and strokes in humans in the morning
(Pavlov and Celap, 2019). Experimental animal and cell models
have shown that the expression of the Pai-1 gene is directly
regulated by clock proteins, which act as transcription factors
either by stimulating or repressing its expression. In cell models,
it has been shown that both heterodimers - CLOCK/BMALI1
and CLOCK/BMAL2 - promote the expression of the Pai-I
gene through two E-box elements, located at its promoter site
(Maemura et al., 2000; Schoenhard et al., 2003; Oishi et al.,
2007). Moreover, CLOCK seems to be a positive regulator for
the expression of the Pai-I mRNA because it has been found
to decrease its expression levels and have no circadian rhythm
when the Clock gene has been silenced by a small interfering RNA
(siRNA) in endothelial cell culture and in mice (Cheng et al.,
2011). The same occurs in a mutant mouse model for CLOCK
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FIGURE 1 | Oscillations in the circulating levels of PAI-1 are directed by an
endogenous circadian synchronization system. (A) Circadian rhythm of PAI-1
in humans. An increase in circulating levels is observed leaving the resting
phase (nocturnal), showing a maximum amplitude entering the activity phase
(diurnal) during the first hours of the morning. (B) Circadian rhythm of PAI-1 in
rodents. An increase in circulating levels is observed leaving the resting phase
(diurnal), showing a maximum amplitude in the activity phase (nocturnal).
Similarity is noted in the oscillation profile of circulating PAI-1 in the phase of
activity/rest of both species; thus, a rodent model is useful for the study of key

components of the fibrinolytic system.

(Ohkura et al., 2006) or when PER2 is overexpressed (Oishi et al.,
2009). Regulation through other clock genes such as CRY1/2 has
shown that they act as negative regulators in the expression of
the Pai-1 mRNA and also determine the characteristic plasma
oscillatory pattern of PAI-1, because an increased and arrhythmic
plasmatic expression have been observed in CRY1/CRY27/~
mice (N. Ohkura et al., 2006). In addition, the Pai-1 transcript
is promoted by RORa and repressed by REV-ERBa by binding
to response elements related to the orphan receptor (RORE
sites) at its promoter site (Wang et al., 2006). These clock genes
(through their proteins RORa and REV-ERBa) regulate the
expression of CLOCK:BMALI1 and other CCGs (Mohawk et al.,
2013; Curtis et al., 2014; Takahashi, 2016). In fact, the evidence
described above demonstrates that Pai-1 is a CCG (see Figure 2).
There are other important transcriptional regulations, such as the
sirtuins (SIRTs), which modulate the expression of various clock
genes in a circadian manner, repressing transcription through
their histone deacetylase (HDAC) activity and counteracting the
CLOCK histone acetylase (HAT) protein activity, which in turn
promotes the expression of clock genes and CCGs (Bellet and
Sassone-Corsi, 2010), thus balancing the transcriptional activity
of the circadian system. There is also evidence to suggest that
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FIGURE 2 | The current regulatory mechanism proposed for the expression of PAI-1 as a CCG. The expression of the Pai-1 gene is positively regulated by the
CLOCK/BMAL1 dimer that binds to E-box elements and by RORa that binds to RORE sites in its promoter site. Expression is repressed by displacing the

CLOCK/BMALT1 dimer by PER/CRY and by REV-ERBa, which competes with RORa for the RORE sites in the PAI-1 promoter.

Pai-1 may be epigenetically modified through a mechanism
that involves SIRT1, a class III chromatin histone deacetylase
(SIRTUIN1), promoting heterochromatin formation and Pai-1
gene silencing, specifically by direct acetylation of histone 4 lysine
16 (H4K16) at its promoter site (Lopez-Legarrea et al., 2013;
Wan et al., 2014).

DISCUSSION

Disturbance in the Molecular Machinery
of the Clock: Its Effect on
Thrombogenesis and Fibrinolysis
Through PAI-1

As described above, the fibrinolytic system is an important
endogenous defense system against intravascular thrombosis.
The evidence indicates that its main modulator is the PAI-1
inhibitor, which is currently classified as an independent risk
factor for CVD (Tofler et al., 2016; Jung et al., 2018). On the
other hand, the circadian expression of PAI-1 is regulated by
the molecular machinery of peripheral clocks; various clock
genes determine both their level of expression and circadian
rhythmicity. This suggests that an alteration in the expression of
the clock genes, by means of genetic ablations DNA mutations
or by circadian disruption by alterations of the dark/light

cycles, could promote a decrease in fibrinolytic activity or
hypofibrinolysis, thereby increasing the predisposition to the
development of CVD.

In recent years, it has been reported that disruption models
of the Bmall clock gene in mice develop various characteristics
that combined describe a prothrombotic phenotype. One study
that used mice deficient in Bmall (Bmall~/~) showed significant
differences from the control group: shorter times of cessation of
tail bleeding, significantly shorter arterial occlusion times after
an injury, increased plasma fibrinogen levels and a significant
increase in plasma levels, and an absence of a circadian pattern
for PAI-1 (Somanath et al., 2011). Other models have confirmed
the progression of a prothrombotic state in knockout mice (KO)
for Bmall during the development of aging: The results showed
shorter prothrombin times, increased platelet count, decreased
endothelial production of nitric oxide and thrombomodulin
expression (Hemmeryckx et al, 2011), confirming a close
functional relationship between the central loop of the clock and
the regulation of the hemostasis. Later studies also showed that
Bmall deficiencies (Bmall~/~ mice) clearly disrupt the daily
rhythm in the expression of relevant coagulation and fibrinolysis
factors. Specifically in the liver, an increase in the gene expression
of fibrinogen, tissue factor, protein C, and Pai-1 have been
observed while tPA is decreased; however, plasma levels of PAI-1
are reduced, which disagrees with reports by Somanath et al,,
where they were found to be increased. This discrepancy may be
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related to differences in the light/dark protocols in which the mice
were kept (Somanath et al., 2011; Hemmeryckx et al., 2019).

The effects found in the liver are interesting because this
organ is the most important in the synthesis of coagulation and
fibrinolysis factors (Dimova and Kietzmann, 2008; Leebeek and
Rijken, 2015). Furthermore, it has often been described as an
important peripheral circadian clock (Reinke and Asher, 2016;
Tahara and Shibata, 2016; Zwighaft et al., 2016); therefore, any
desynchronization or disruption of its circadian rhythm could
have side effects on the physiological functions it performs.

On the other hand, CLOCK is also important for maintaining
the diurnal variation of thrombogenesis. The mutation of
CLOCK in mice (CLOCK™") alters the fibrinolytic system;
total and active plasma levels of PAI-1 are elevated and tPA is
reduced. In addition, these effects would be related to the small
but significant increase in vascular occlusion time observed in
this experimental model (Westgate et al., 2008). Interestingly, in
patients with acute coronary syndrome, CLOCK and PAI-1 were
overexpressed in peripheral blood macrophage cells, suggesting
that CLOCK might play an important role in the progression
of atherosclerotic plaques (Jiang et al., 2018). Taken together,
these results show that clock genes control the expression of
key components in hemostatic function and the fibrinolysis
system, which leads to an increased risk of developing a
prothrombotic phenotype and thus an increased risk of harmful
cardiovascular events.

Update on Unusual Exposure to Artificial
Light and Its Impact on Fibrinolytic

Activity

A reduced fibrinolytic activity due to an increase in the expression
of PAI-1 is a characteristic risk factor for CVD due to its role
in vascular homeostasis (Mavri et al., 2004; Oishi, 2009). In
addition, as described above, its plasma levels have a typical
circadian rhythm and its gene expression is regulated by clock
genes; therefore, PAI-1 is a component capable of being disturbed
through a circadian disruption. It is known that the light is a
dominant stimulus for training circadian rhythms in mammals,
and exposure to light at inappropriate times such as during the
resting stage could alter the physiology of tissues, organs and
systems (Roenneberg et al., 2013; Plano et al., 2017), including
the fibrinolytic system. To date, the studies that are known have
examined the experimental effect of a chronic alteration of the
photoperiod on the expression of PAI-1. For this, mouse models
have been used (rodents and humans have the same circadian
profile for PAI-1 and tPA in the rest/activity cycle), exposed to a
temporary desynchronization of the endogenous circadian clock,
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