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LEP is a pleiotropic gene and the actions of leptin extend well beyond simply acting
as the signal of the size of adipose tissue stores originally proposed. This is a
discussion of the multi-system interactions of leptin with the development of the neural
systems regulating energy stores, and the subsequent maintenance of energy stores
throughout the lifespan. The prenatal, perinatal, and later postnatal effects of leptin on
systems regulating body energy stores and on the energy stores themselves are heavily
influenced by the nutritional environment which leptin exposure occurs. This review
discusses the prenatal and perinatal roles of leptin in establishing the neuronal circuitry
and other systems relevant to the adiposity set-point (or “threshold”) and the role of
leptin in maintaining weight homeostasis in adulthood. Therapeutic manipulation of the
intrauterine environment, use of leptin sensitizing agents, and identification of specific
cohorts who may be more responsive to leptin or other means of activating the leptin
signaling pathway are ripe areas for future research.
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INTRODUCTION

In 1973, Coleman (1973) demonstrated that parabiosis of the obese (later Lepob) mice with diabetes
(later Leprdb) mice and wild type mice resulted in hypophagia and starvation of the Lepob mice
while not affecting the phenotype of the Leprdb mice. He postulated that “the obese mouse is able
to produce sufficient satiety factor to regulate its food consumption, whereas the diabetes mouse
produces satiety factor, but cannot respond to it”. Subsequently, Leibel and Hirsch (1984) and
others (Welle et al., 1984) found that reduced body weight maintenance was accompanied by a
decline in energy expenditure and an increase in hunger disproportionate to changes in body weight
and composition that strongly resembled the metabolic state of the Lepob and Leprdb mice. These
observations were consistent with the so called “lipostatic” theory of body weight maintenance in
which a “signal” reflecting adipose tissue mass affected hypothalamic neural circuitry regulating
energy intake and expenditure (Kennedy, 1953; Mayer, 1955; Hetherington and Ranson, 1983).

The advent of large-scale genome-wide association studies (GWAS) combined with polygenic
risk scoring has facilitated the identification of aggregate genetic factors determining body weight
and the underlying energy homeostatic mechanisms that regulate it. By calculating an obesity
propensity score from 2.1 million SNPs, individuals can be categorized into “obesity risk” deciles
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(Khera et al., 2019) with an overall correlation of genetic
propensity score (GPS) and body mass index (BMI) of 0.29.

Needing 2.1 million SNPs to determine an obesity propensity
score indicates that there are an almost uncountable number of
minute genetic contributors that act in concert to determine a
person’s genetic predisposition to adiposity. Mendelian breeding
strategies, which can be employed in rodents, facilitate the
identification of critical genetic variants. It is not surprising
that the most important genes affecting energy homeostasis,
including those first postulated by Coleman, are involved in the
leptin-melanocortin pathway [including Lep, Lepr, melanocortin
4 receptor (Mc4r), pro-opiomelanocortin (Pomc)] were all first
discovered in rodent models of extreme obesity and only
subsequently identified in humans. Other critical feeding circuit
genes in the same pathway were also first identified in animal
models. Npy was discovered due to peptide abundance in
porcine intestine extract, its co-localization in the murine brain
(Tatemoto et al., 1982), and potent stimulation of energy
intake following intracerebroventricular (i.c.v.) administration to
rats (Clark et al., 1984). The orexigenic and thyroid releasing
hormone (TRH) suppressive effects of agouti-related peptide
(Agrp) were first recognized primarily because Agrp expression
increased 10-fold in Lepob mice (Manne et al., 1995).

It is now understood that LEP is a pleiotropic gene and that the
actions of leptin extend well beyond simply acting as the signal of
the size of adipose tissue stores originally proposed by Coleman.
This is a discussion of the multi-system interactions of leptin with
the development of the neural systems regulating energy stores,
and the subsequent maintenance of energy stores throughout
the lifespan. This review will attempt to show predominantly
animal data regarding the prenatal and perinatal roles of leptin
in establishing the neuronal circuitry of the adiposity set-point
(or “threshold”) and the role of leptin as the signal regulating the
“deployment” of those systems to maintain energy homeostasis
in both humans and rodents.

LEPTIN AND THE ONTOGENY OF
SYSTEMS REGULATING BODY WEIGHT

Overview
The developmental environment of mice can be manipulated
for prospective studies of weight regulation whereas human
studies of the effects of obesogenic gene exposure are, of
necessity, observational and epidemiological. Though data from
rodent experiments are the most informative in elucidating the
mechanistic developmental impact of leptin, there is compelling
evidence indicating that both the development and regulation
of body weight in humans reflects both pre- and post- natal
gene× environment interactions.

The Intrauterine Environment
The interactions between leptin and the developing
neurocircuitry in rodents are dependent upon the nutritional
environment in which they occur. The impact of maternal
metabolic status and nutritional status of the pups in the prenatal
and perinatal periods on body weight in adulthood can be

directly investigated in rodents, and there have been numerous
studies to this effect. Both maternal under- and over- nutrition
during gestation affect these systems in a manner that favors the
development of obesity (Breton, 2013). In general, offspring of
dams who were malnourished during pregnancy show structural
disorganization of the hypothalamic systems regulating appetite
(Breton et al., 2009). Prenatal maternal undernutrition reduces
the response of POMC neurons to energy status and food intake
rhythm (Breton et al., 2009). Maternal overfeeding, especially
with a high fat diet (see below), results in altered brain appetite
regulators in the offspring (Rajia et al., 2010).

Rodent models of perinatal undernutrition include maternal
caloric or protein restriction during gestation and/or lactation
(Vickers et al., 2000; Yura et al., 2005; Delahaye et al., 2008;
Cripps et al., 2009) and increasing litter size to lower milk
availability per pup in a litter (Aubert et al., 1980; Marangon
et al., 2020). Perinatal maternal undernutrition drastically
reduces the postnatal surge of plasma leptin, disturbing
particularly the hypothalamic wiring as well as the gene
expression of the anorexigenic POMC neurons in male rat pups
(Delahaye et al., 2008).

The macronutrient composition of gestational undernutrition
and the perinatal environment interact in their effects on
adult rodent adiposity. While the association of gestational
undernutrition by caloric restriction induces only a small degree
of increased weight gain in the adult offspring (Lagisz et al., 2014),
the evidence is stronger that specifically restricting protein in
pregnant dams results in increased body weight of the offspring
which is exacerbated by HFD exposure (Ozanne et al., 2004;
Lagisz et al., 2014; Juan De Solis et al., 2016). Caloric or
protein restriction during the suckling period and rearing in
large litters has an opposite effect in that the offspring gain less
weight during the first postnatal weeks and this lower weight
persists in these pups throughout lifetime (Ozanne et al., 2004;
Patterson et al., 2010).

There is strong evidence that maternal HFD feeding during
perinatal period as well as overnutrition of sucking pups (by
decreasing litter size) increases body weight and predisposes
the offspring to greater weight gain when exposed to HFD in
adulthood (Ainge et al., 2011; Lagisz et al., 2015; Ribaroff et al.,
2017). Some of the leptin-related consequences of overfeeding
in rodents are related to the magnitude of the postnatal leptin
surge (Marangon et al., 2020; Skowronski et al., 2021), leptin
sensitivity in the CNS (Kirk et al., 2009), neuroanatomy of the
leptin-dependent feeding circuits (Kirk et al., 2009; Vogt et al.,
2014), and epigenetic changes—specifically hypermethylation of
the hypothalamic POMC promoter (Plagemann et al., 2009;
Marco et al., 2014).

In humans, epigenetic studies have examined the effects of
the intrauterine environment, primarily in the form of factors
affecting DNA methylation, histone acetylation, and expression
of microRNAs, on gene expression relevant to obesity and
its co-morbidities. Increased DNA methylation decreases the
transcription of relevant genes and is affected by parental obesity,
maternal diet (e.g., nutrition, folic acid content, and other methyl
donors), gestational diabetes (see below), maternal medications
(antibiotics and antipsychotics), smoking, and exposure to
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chemicals such as bisphenol (Inadera, 2013; Reynolds et al.,
2013). Major intrauterine environmental influences on the risk of
subsequent obesity in the offspring via these processes and others
include maternal adiposity and gestational weight gain, under-
and over- nutrition, maternal stress, and various chemicals,
pharmaceuticals, etc. to which the mother and fetus may be
exposed to during pregnancy are summarized in Table 1.

Leptin and its signaling pathways figure prominently in these
intrauterine and perinatal systems affecting the development
and maintenance of energy stored as adipose tissue. Leptin is
an adipocyte-derived hormone providing a long-term signal to
the CNS regarding quantity of stored body adiposity, largely by
binding to the long form of leptin receptor, LepRb, in POMC
and AgRP/NPY) neurons. These first order neurons are primarily
located in the arcuate nucleus of the hypothalamus (ARH)
and are well described in mediating neuroendocrine systems
related to energy homeostasis (Schwartz et al., 2000). Activation
of the Jak2/STAT3 pathway by leptin signaling increases the
activity of POMC neurons and the expression of Pomc and Cart
(Cocaine and amphetamine-related transcript) while inhibiting
the orexigenic AgRP/NPY neurons and decreasing the expression
of Agrp and Npy (Hahn et al., 1998; Cowley et al., 2001).
POMC is posttranslationally cleaved by proconvertases (PC1 and
PC2) and other peptidases to create several smaller peptides

including β-endorphin and α-melanocyte stimulating hormone
(α-MSH) (Benjannet et al., 1991). α-MSH inhibits energy intake
and stimulates energy expenditure via melanocortin 4 receptors
(MC4R) and, to a lesser degree, melanocortin 3 receptors (MC3R)
located on second order neurons (Seeley et al., 1997; Sweeney
et al., 2021). AgRP is an antagonist of MC4R (Ollmann et al.,
1997) and opposes the effects of POMC. NPY is an agonist
of the NPY receptors which mediates additional orexigenic
effects (Schwartz et al., 2000). Mutations in the POMC gene
lead to severe human obesity (Krude et al., 1998) while rodent
Pomc knockouts are obese and less sensitive to leptin (Challis
et al., 2004). While congenital mouse AgRP knockouts have a
limited metabolic phenotype (Qian et al., 2002) with normal
body weight, adiposity, and food intake, conditional ablation of
AgRP neurons in adulthood induces an ultimately lethal anorexia
(Luquet et al., 2005).

In addition to adipose tissue, leptin is produced by the placenta
(Hassink et al., 1997) and stomach (Mix et al., 1999) in humans.
In embryonic mice, leptin is also produced by hair follicles,
liver, heart, bone, and cartilage (with both protein and mRNA
detected) (Hoggard et al., 2000). During pregnancy in humans,
circulating leptin is increased by 1.5–3 fold in the second and
third trimesters of pregnancy (Butte et al., 1997; Hardie et al.,
1997; Highman et al., 1998; Sattar et al., 1998), followed by a

TABLE 1 | Overview of intrauterine epigenetic factors relevant to subsequent adiposity.

Prenatal variable Effect

Maternal pre-partum weight and weight gain during pregnancy In studies comparing siblings born to the same mothers before and after bariatric surgery, the
infants developing in the weight reduced, post-bariatric surgery environment show lower adiposity,
blood pressure, circulating concentrations of insulin, gene expression relevant to diabetes,
autoimmune disease, and vascular disease risk (Guenard et al., 2013). Weight gain during
pregnancy has a strong positive correlation with birthweight and the incidence of subsequent
childhood obesity (Oken et al., 2009). These correlations are augmented 2–5 fold in mothers with
pre-partum obesity compared to those who were neither overweight nor obese prior to pregnancy

Intrauterine nutritional and chemical environment Maternal diet (overall nutrition, low folate, and low amounts of other methyl donors), diabetes
mellitus, use of steroids, antipsychotics or antibiotics, smoking, exposure to chemicals such as
bisphenol all alter DNA methylation of genes that favor increased subsequent adiposity (Inadera,
2013)

Prenatal undernutrition Maternal undernutrition or compromised fuel delivery to the fetus [e.g., placental dysfunction) are all
associated with increased risk of intrauterine growth retardation (small for gestational age, SGA)]
and with subsequent obesity and acquisition of co-morbidities at lower levels of body fatness
(Barker, 1997; Ravelli et al., 1998; Yarbrough et al., 1998; Hattersley and Tooke, 1999; Moore et al.,
1999; Godfrey and Barker, 2000) depending upon the timing of intrauterine undernutrition (Ravelli
et al., 1976). It has been hypothesized that early intrauterine malnutrition might affect development
of hypothalamic feeding circuits while the anti-obesity effects of perinatal malnutrition might be due
to suppression of adipocyte formation

Prenatal overnutrition Prenatal overnutrition is exemplified by the infant of the mother with diabetes (usually gestational)
with high ambient glucose. It is difficult to separate the metabolic effects of gestational diabetes and
those of maternal adiposity in this population. Gestational diabetes is associated with an increased
risk of obesity in the offspring, independent of the degree of maternal obesity (Pettitt et al., 1983,
1987, 1988).

Maternal stress during pregnancy Metabolic (e.g., obesity, diabetes, undernutrition, and illness), psychiatric (e.g., depression, anxiety,
and bereavement), or pharmacological (e.g., steroids, antidepressants, and antibiotics) maternal
stressors have all been associated with increased risk of offspring obesity via effects on developing
neural systems regulating energy homeostasis, endocrine systems affecting risk of
diabetes–including increased activity of the hypothalamic-pituitary-adrenal (HPA) axis, immune
system alterations resulting in increased circulating concentrations of pro-inflammatory cytokines,
decreased concentrations of adiponectin relative to fat mass, and increased risk of hypertension
(Entringer et al., 2012; Entringer and Wadhwa, 2013)
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significant drop in the early postpartum period, as early as 24 h
after delivery (Sivan et al., 1998; Lage et al., 1999). Leptin is
detected in fetal circulation as early as 19 weeks of gestation with
a rapid increase in fetal leptin between weeks 33 and 41 and
correlates with fetal size (Butte et al., 1997). At delivery, newborn
plasma leptin correlates with gestational age and birthweight
(Cetin et al., 2000) with subsequent decreases to low levels within
the first few days after parturition (Schubring et al., 1999).

Leptin and Development of the Neural
Circuitry Regulating Body Weight
The changing functions of leptin with regards to neurogenesis
and adipose tissue from conception to adulthood in rodents are
illustrated in Figure 1. Since the fetal intrauterine environment
receives a continuous transplacental supply of glucose and
other nutrients necessary for growth, leptin does not regulate
“appetite” in the traditional sense in utero, but such wide
expression of Lep could have other functions. The complete
impact of prenatal leptin on energy homeostatic and other
systems is not fully understood, but there is clear evidence
that it acts as a neurogenic factor in utero. Compared to wild
type mice, mice that lack leptin have brains that are both
smaller by weight and have reduced cortical volume (Bereiter and
Jeanrenaud, 1979), have fewer cells at embryonic day 16 (E16)
and E18, and fewer recently born cells at E14 and E16 in the
neuroepithelium. Intracerebroventricular leptin injection of E14
Lepob embryos normalized the number of neuroepithelium cells
at E16 (Udagawa et al., 2006). The neurogenic effects of leptin are
still evident postnatally. Intraperitoneal administration of leptin
daily for 2 to 4-week-old Lepob mice resulted in increased dry
brain weight due, at least partially, to an increase in cell number
as indicated by total brain DNA which increased at a greater rate
than brain weight (Steppan and Swick, 1999).

Deficiency of leptin during development impairs the
formation of the feeding circuits; the density of projections
originating from the ARH to other hypothalamic regions critical
in energy homeostasis [including the paraventricular nucleus
(PVH), the dorsomedial hypothalamic nucleus (DMH), and
the lateral hypothalamic area (LHA)] is decreased (Bouret
et al., 2004). Ahima et al. (1998) first demonstrated that mice
undergo a postnatal leptin surge during which the circulating
leptin concentration is significantly higher than predicted by
fat mass and is unrelated to amount of stored energy (Bouret
et al., 2004). The timing of the leptin surge is critical; it
overlaps temporally with the generation of homeostatic feeding
circuits in the hypothalamus and brain stem (Bouret et al.,
2004; Biddinger et al., 2020). Studies in Lepob mice directly
indicate that leptin acts as a neurotrophic factor during the
perinatal period. Administration of exogenous leptin to Lepob
mice to mimic the naturally occurring leptin surge (P4–P12)
rescues the axonal density of feeding circuit neurons while
supplementation of leptin in adult Lepob mice fails to restore
these hypothalamic projection densities (Bouret et al., 2004). In
addition to the hypothalamus, the nucleus of the solitary tract
(NTS) within the brain stem is critical in energy homeostasis,
especially for the integration of the viscerosensory signals. The

majority of Glp-1 expressing neurons within the NTS express
LepRb and project primarily to the PVH. The density of GLP-1
innervation from the NTS to the PVH is augmented in Lepob
mice indicating leptin’s role in the development of this circuit
(Biddinger et al., 2020).

Leptin influences astrocyte development. There is a marked
increase in glia cell number between postnatal weeks 2 and 3 in
rodents (Bandeira et al., 2009) coinciding with the natural leptin
surge (Ahima et al., 1998). Astrocytes express the long form of
the leptin receptor (LepRb) (Pan et al., 2008; Kim et al., 2014).
Exogenous leptin administration between P8 and P12 increases
the proliferation of astrocytes in the hypothalamus. This is a
direct effect of leptin since proliferation is decreased when LepRb
is conditionally removed from these cells (Rottkamp et al., 2015).
Conditional deletion of LepRb in adult mouse astrocytes leads to
glial morphological changes and increased synaptic inputs onto
hypothalamic POMC and AgRP neurons (Kim et al., 2014). These
mice also show diminished leptin-regulated feeding suppression,
suggesting a direct impact of leptin on astrocyte development and
function in adult mice (Kim et al., 2014) which is supported by
studies demonstrating leptin-mediated neurogenesis post-stroke
(Avraham et al., 2013) as well as a model of Alzheimer’s disease
(Calio et al., 2021) in rodents.

Effects of Perinatal Leptin on
Subsequent Adiposity
In rats and mice (Marangon et al., 2020; Skowronski et al.,
2021), maternal high fat diet (HFD) feeding during gestation
and/or lactation, or overfeeding the pups via reduced litter size
augments the postnatal leptin surge (see below) and subsequent
weight in the offspring. Caloric or protein restriction of dams
or underfeeding the pups by increased litter size reduces and
delays the leptin surge with a reduction in weight into adulthood
(Delahaye et al., 2008). Skowronski et al. (2021) demonstrated
that all pups undergo a postnatal leptin surge, but in the underfed
state, the surge is delayed and transitory. Excess or deficiency in
leptin does not affect body weight and adiposity of pups prior to
the second week of life. There is no difference in body weight
or composition between Lepob mice, hyperleptinemic, and wild
type mice at postnatal day 10 (Mistry et al., 1999). Unlike adult
mice with mature feeding circuits, in the first 2 weeks of mouse
life, leptin does not influence feeding, instead, it is critical in the
proper formation of these circuits.

In addition to changes in magnitude and timing of the leptin
surge, maternal diet influences the development of neurocircuitry
relevant to energy intake. HFD feeding during pregnancy in
rodents is associated with disruptions in the normal patterns
of projections in the hypothalamic feeding circuits, including
decreased AgRP immunoreactive fibers in the PVH (Kirk
et al., 2009; Vogt et al., 2014) and reduced density of α-MSH
projections from the ARH to PVH, DMH and LHA in 8-week
old progeny (Vogt et al., 2014). These are the same projections
disrupted in congenitally leptin deficient mice suggesting that
effects of maternal diet on the weight of the offspring may be
mediated through effects on the postnatal leptin surge which, in
turn, alters the development of the feeding circuitry.
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FIGURE 1 | Leptin functions in mice during gestation, lactation, and adulthood. (A) In the gestational period, leptin mediates neurogenesis and proliferation of other
brain cells (not limited to gestation). (B) During the immediate postnatal (lactational) period, mice undergo a leptin surge that is critical for the outgrowth of projections
from feeding circuit essential neurons. (C) In adult mice, leptin is produced in rough proportion to stable fat mass, informs the CNS about energy stores, and
protects against fat loss (Figure created with BioRender.com).

Elevated circulating leptin concentrations during the rodent
suckling period leads to increased adiposity and weight gain
in adult offspring when exposed to obesogenic diets (Vickers
et al., 2008; Skowronski et al., 2020). In leptin transgenic TET-
ON mice, oral doxycycline (DOX) causes leptin overexpression
in proportion to the concentration of DOX, allowing for the
transient elevation of leptin without increasing fat mass and
consequently avoiding any obesity co-morbidities. These leptin
transgenic mice were transiently exposed to elevated leptin
during the first 3 weeks of life (to mimic the augmented leptin
surge induced by postnatal overfeeding) and in adulthood were
metabolically identical to control littermates which were not
postnatally supplemented with excess leptin. However, when the
adult mice were exposed to a HFD challenge, the postnatally
hyperleptinemic mice gained more fat mass and weight than
littermate controls and the difference in body weight gain was
statistically significant within 3 days (Skowronski et al., 2020).
Since this experiment isolated the augmented leptin surge from
the other confounds of postnatally overfeeding pups, it suggests
that leptin, in isolation, can reprogram the body weight set point
such that mice are less sensitive to future increases in leptin.
Male rat offspring given exogenous leptin IP during the first
2 weeks of life resulted in increased diet-induced weight and
fat gain in adulthood (de Oliveira Cravo et al., 2002; Vickers
et al., 2008). Interestingly, Sanchez et al. (2005) administered
leptin orally to postnatal pups to investigate the role of leptin in
breastmilk. This oral leptin was absorbed by the immature gastric
epithelium of the neonate and down-regulated endogenous leptin
production in the pup, suggesting leptin’s potential role in the
short-term control on food intake during the lactation period.
Additionally, orally-fed leptin to postnatal pups (P0–P20) had the

opposite effect of IP leptin injections—the leptin-fed offspring
gained less weight in adulthood and had a lower preference
for fat-rich foods when exposed to HFD (Pico et al., 2007)
compared to their controls suggesting that postnatal oral leptin
may permanently reduce endogenous leptin production and lead
to increased responsiveness to leptin in adult rats.

LEPTIN AND THE PHYSIOLOGY
FEEDING BEHAVIOR, ENERGY
EXPENDITURE, NEUROENDOCRINE
FUNCTION, AND AUTONOMIC
FUNCTION IN ADULTHOOD

Overview
Humans and mice stably maintain body energy stores (fat)
without conscious effort to adjust food intake or energy
expenditure. Adult humans, regardless of adiposity, gain
weight at an average of approximately 0.3–0.5 kg/year (Zheng
et al., 2017) (∼3,000 kcal stored energy) between the ages
of 18–55 years in females and 21–55 years in males, while
ingesting over 800,000 kcal/year (Ford and Dietz, 2013)
thereby suggesting the operation of homeostatic mechanisms
for body weight regulation. Hyperphagia and hypometabolism
(including decreased circulating concentrations of bioactive
thyroid hormones and sympathetic nervous system tone and
increased parasympathetic nervous system tone) act together to
favor weight regain after successful weight reduction and oppose
efforts by most individuals to sustain weight loss (Leibel and
Rosenbaum, 2010; Thomas et al., 2014; Hall and Kahan, 2018).
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The level of body energy stores that are “defended” in a given
individual depends upon homeostatic systems—the structure and
function of which are, at least partially, determined by early leptin
exposure. As discussed above, the degree and timing of leptin
exposure reflects a number of key factors in the intrauterine
environment including maternal health and nutrition.

The effects of leptin on energy homeostasis are not limited to
the development of these systems. Leptin serves as a marker of
adipose tissue stores and energy balance and is a major signal
governing the extent to which individuals respond to attempts to
lose weight and keep it off.

Energy Homeostasis and Weight Loss
There are changes in energy intake and expenditure which
act concordantly to oppose weight loss and the maintenance
of reduced body weight. Changes related to energy intake
include increased, hunger, delayed satiation, increased neuronal
responses to food in the orbital frontal cortex and areas related
to food reward and decreased responses in the prefrontal cortex
and areas related to food restraint. Homeostatic changes in
energy expenditure are due, at least in part, to changes in
skeletal muscle via increased work efficiency due to increased
expression of the more efficient myosin heavy chain I (MHC) and
sarcoplasmic endoplasmic reticulum Ca++-dependent ATPase 2
(SERCA2). This hypometabolic state is augmented by changes in
neuroendocrine function (decreased circulating concentrations
of bioactive thyroid hormones and leptin) and, at least during
reduced weight maintenance, increased parasympathetic and
decreased sympathetic nervous tone (Larrouy et al., 2008; Leibel
and Rosenbaum, 2010; Rosenbaum and Leibel, 2014; Dulloo
and Schutz, 2015). The multi-system interactions that oppose
the maintenance of a reduced body weight are summarized in
Figure 2.

Leptin and the Activity of Energy
Homeostatic Systems
As noted above, body fat stores, are regulated by multiple
systems that conspire to defend energy stores (fat) against energy
imbalance by adjusting energy intake and output to maintain
a relatively constant level of available energy over time. Leptin
provides a signal to the brain regarding the quantity of fat stores
as well as energy balance (weight loss in particular). The result is
that the intensity of the leptin signal, and the energy homeostatic
responses to changes in that intensity, are determined by both
the ambient leptin concentration (Myers et al., 2008) and by the
nutritional state of the organism. It is notable that leptin mediates
the development of the same brain regions that ultimately
influence neuroendocrine functions, autonomic efferents, and
food-related behaviors (Korner et al., 1999, 2001; Korner and
Aronne, 2003).

Leptin-mediated signals regulate a complex neural system
that mediates what is physiologically apparent as the regulation
of body weight via the integration of short- (e.g., gut-derived
hormones and glucose) and longer- (e.g., leptin, insulin, and
free fatty acids) term signals related to energy homeostasis
(Korner et al., 1999, 2001; Schwartz et al., 2000; Korner and

Aronne, 2003). Teleologically, these body weight regulatory
systems should be biased toward “defending” against sustained
weight loss which could threaten reproductive capacity/fertility
and/or survival (Rosenbaum and Leibel, 1998). It is not surprising
that the effects of leptin administration show a strong functional
bias in favor of the preservation of body fat stores versus their
reduction as discussed below.

Shortly after leptin was cloned from the Lepob mouse (Zhang
et al., 1994), humans with the nonsense mutations in the LEP
gene were reported (Montague et al., 1997). Similar to mice,
humans that are leptin deficient have morbid obesity and reduced
muscle mass, are hyperphagic, and hypometabolic. When leptin
deficient humans (Farooqi et al., 1999) or mice (Hwa et al., 1997)
are supplemented with leptin, they reverse these phenotypes.
Short term administration of leptin to lean, Lepob, or to diet-
induced obese mice reduces appetite, body weight, and adiposity
(Campfield et al., 1995; Halaas et al., 1995; Pelleymounter et al.,
1995). The treatment of leptin in these initial studies was
short (Pelleymounter et al., 1995) (from two successive 5-day
treatments to 28 days at the longest) but the effects were striking;
Lepob mice were normalized and lean mice reduced body fat from
12.2 to 0.7% (Halaas et al., 1995).

The leptin receptor is highly expressed in the cells of the
hypothalamic nuclei–the development of which is mediated by
leptin (discussed above). These nuclei play prominent roles in
homeostatic weight regulation (Pan and Mg Myers, 2018) as
well as communicate with other telencephalic and diencephalic
neurons that mediate behavioral responses to food. Many
neurons outside the hypothalamus also express the receptor,
though their functional roles in these cells remain unclear.

Leptin Signaling Is Dependent Upon the
Nutritional Environment
As discussed above, the interactions of leptin with the developing
neurocircuitry are dependent upon the nutritional environment
in which those circuits develop. Similarly, the effects of leptin on
energy homeostatic systems are dependent upon the nutritional
environment (fat mass and energy balance) in which leptin is
administered. Most of these systems are more sensitive to leptin
following weight loss (especially during maintenance of reduced
weight) compared to initiation of weight loss or during dynamic
weight loss; and these energy homeostatic responses are stronger
to leptin depletion than excess (Leibel, 2002; see Table 1).

The discovery of leptin was initially expected to ameliorate the
obesity epidemic; however, this expectation has never been met.
Unlike mice, administration of exogenous leptin to humans with
or without obesity has little or no effect on body weight even at
grossly supraphysiological doses (Heymsfield et al., 1999). Leptin
administration to individuals during caloric restriction (negative
energy balance), with concomitant declines in circulating leptin
concentrations, results in a small reduction in appetite but no
significant changes in energy expenditure or neuroendocrine
function (Hukshorn et al., 2000, 2002, 2003).

Leptin administration does not seem to induce or perpetuate
weight loss in humans. Heymsfield et al. (1999) administered
leptin in placebo, physiological, and supraphysiological doses
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FIGURE 2 | Changes from baseline in energy balance and homeostatic systems during maintenance of a 10% or greater reduced body weight and their
responsiveness to exogenous leptin in individuals who initially had obesity or never had obesity (Rosenbaum and Leibel, 2014). Energy expenditure due to physical
activity is calculated as the difference between direct measurement of 24-h energy expenditure and measurement of resting energy expenditure plus diet-induced
thermogenesis. Eating behavior, including energy intake, is examined by visual analog scales during a fixed liquid formula meal, kcal of the liquid formula consumed
to reach satiation, and by fMRI studies of brain responses to food. Assessments of autonomic nervous system activity were made by analyses of heart rate variability
during sequential blockade of the parasympathetic and sympathetic nervous systems with atropine and esmolol, respectively, and by 24-h urine catecholamine
excretion. Skeletal muscle contractile efficiency was measured by graded bicycle ergometry. Myosin heavy chain (MHC) and sarcoplasmic endoplasmic reticulum
Ca++-dependent ATPase (SERCA) muscle gene expression studies were done by mRNA quantification in biopsies of vastus lateralis muscle. All phenotypes
opposing sustained weight loss are responsive to leptin repletion except for PNS tone and TSH which are underlined in blue. SNS, sympathetic nervous system;
PNS, parasympathetic nervous system; T3, triiodothyronine; T4, thyroxine; rT3, reverse T3; TSH, thyroid stimulating hormone; MHC, myosin heavy chain; SERCA,
sarcoplasmic endoplasmic reticulum Ca++-dependent ATPase (Figure created with BioRender.com).

to 54 lean and 73 obese subjects for 4 weeks; and to 47 obese
subjects for 24 weeks. Participants with obesity were placed
on diets restricting caloric intake to about 500 kcal/day below
usual, but dietary compliance was not assessed and there was no
significant weight loss in the placebo group. After 4 weeks, overall
weight reduction in leptin-treated subjects with or without
obesity was not different from placebo-treated. Participants with
obesity, not those without obesity, who received the highest
doses of exogenous leptin (sufficient to raise circulating leptin
concentrations more than 20-fold above initial) for a period
of 24 weeks showed a small significant weight loss (2.3 kg
more than placebo) and a small but statistically insignificant
decrease in daily energy intake. The high circulating leptin
concentrations and low levels of weight loss in participants with
obesity following exogenous leptin administration have been
interpreted to indicate “leptin resistance” (Friedman and Halaas,
1998; Kalra, 2001; Lee et al., 2001; Scarpace and Zhang, 2007).
This conclusion that leptin resistance at usual weight reflects

leptin resistance only in individuals with obesity is not supported
by the data since individuals without obesity were not more
responsive to leptin. If anything, these data would suggest that
any individual at usual weight is likely to be leptin resistant.

Similarly, Moon et al. (2011), found no significant effects of
10 mg BID of subcutaneous leptin administration to 71 weight
stable participants with obesity and type 2 diabetes managed by
diet alone. Mackintosh and Hirsch (2001) reported no effects
of high dose (0.3 mg/kg/day) leptin administration—the highest
dose used by Heymsfield et al. (1999)—on autonomic nervous
system (ANS) tone in weight-stable lean subjects which is
significant compared to the significant effect of leptin repletion
on sympathetic tone noted following weight loss.

The lack of effects of leptin on weight loss induction or
potentiation, even in supraphysiological doses, are in stark
contrast to the potent effects of leptin in weight-reduced
individuals who are weight stable (i.e., in energy balance) (see
Figure 2). Simple leptin repletion to levels present prior to weight
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loss in this population “reverses” most, if not all, of the metabolic
and behavioral phenotypes that oppose the reduction of energy
stores. These include the increased hunger and delayed satiation
as well as the hypometabolism and its components (increased
muscle efficiency, decreased sympathetic nervous system tone
and circulating concentration of bioactive thyroid hormones)
that favor weight regain (Rosenbaum et al., 2005, 2008b, 2018a;
Kissileff et al., 2012; Hinkle et al., 2013). Taken together, these data
suggest that the major function of leptin in energy homeostasis
is to signal the organism that energy stores are low and/or that
energy intake is inadequate to maintain weight. The individual
is much more responsive to a drop in circulating concentrations
of leptin below a personalized leptin threshold than to a rise in
leptin above that threshold.

Leptin Signaling Is Non-linear
Circulating leptin concentrations are determined by fat mass
(cell number x size) but the relationship is modified downward
(decreased leptin per unit of fat mass) at reduced weight and
even more so during negative energy balance during weight
loss (Halle et al., 1999). The actions of some hormones, such
as the effects of insulin on glucose utilization, are linear within
a physiological range (Rizza et al., 1981). However, leptin
actions are non-linear and most consistent with a “threshold
model” wherein leptin effects are triggered when leptin levels fall
below a certain individualized “set-point” and leptin response
is attenuated if administered when circulating concentrations
are above that point. The “threshold” for sufficiency of leptin
action for any individual is determined by genetic, developmental
and environmental factors that influence both the structure of
relevant parts of the CNS as well as the acute responses of those
cells to ambient leptin. Individuals who have been obese have
higher thresholds and more leptin (fat mass) is needed to create
a state of sufficiency in the CNS. Once that level is achieved,
further increases in circulating leptin concentrations have little
physiological effect.

When fat mass is reduced by caloric restriction, a fall in
circulating leptin concentrations below the threshold “informs”
specific neurons that invoke behavioral (hunger) and metabolic
(reduced energy expenditure) changes that act coordinately to
restore body fat (leptin). This individual molecular-cellular leptin
threshold does not decrease with weight loss or with prolonged
maintenance of reduced weight (Rosenbaum et al., 2008a);
hence, the metabolic/behavioral response to reduced leptin does
not abate. The threshold is an individualized molecular-cellular
phenotype such that response to declines in leptin below the
threshold are similar regardless of initial adiposity. What differs
between individuals with and without obesity is the threshold.
Therefore leptin signal transduction is dependent upon an
individual’s “usual weight” and any ongoing or previous negative
energy balance (Morabito et al., 2017).

Response to exogenous leptin is also dependent on energy
stores and balance. When leptin concentrations are raised above
an individual “threshold” (which is higher in individuals with
obesity), the relevant neuronal tracts are less sensitive (LeDuc and
Leibel, 2019; Zhao et al., 2019) and further leptin administration
evokes little if any response in humans (Rosenbaum et al., 2018b).

For reasons not yet understood, when leptin concentrations are
reduced below the threshold and the individual is in negative
energy balance (caloric restriction) the effect of leptin repletion
is small (Hukshorn et al., 2000, 2002, 2003). However, in low
leptin states where there is little energy imbalance, such as
reduced weight maintenance, congenital leptin deficiency, or
lipodystrophy, most, if not all, of the metabolic and behavioral
effects of low leptin are at least partially relieved (Farooqi et al.,
1999; Oral et al., 2002; McDuffie et al., 2004; Rosenbaum et al.,
2005, 2008b, 2018b; Park et al., 2007; Kissileff et al., 2012; Hinkle
et al., 2013; Brown et al., 2018).

The threshold model described above presumes that the
primary function of leptin is to preserve fat mass in times of
perceived undernutrition in defense of preserving reproductive
integrity and survival of a species. This is supported by the
effects of leptin repletion in states of hypothalamic amenorrhea
which can be caused by excessive exercise or decreased food
intake and leads to infertility and bone loss. Short term treatment
with leptin from 3 months to 36 weeks recovers menstruation
and corrects the abnormalities in the gonadal, thyroid, growth
hormone, and adrenal axes (Welt et al., 2004; Chou et al., 2011).
This is consistent with the role of leptin acting as a starvation
signal; the drop in circulating leptin concentration signals the
gonadal system to decrease procreation when energy stores are
scarce to prevent pregnancy that would be overly challenging to
both the mother and fetus.

Implications for Future Research
The critical roles played by leptin in the early development
of systems regulating body weight and its subsequent actions
within those symptoms has implications for the prevention and
treatment of obesity. Obesity risk could theoretically be altered
via modification of the development of leptin-mediated neuronal
circuitry regulating body weight toward the defense of a lower
body weight in those at risk. Manipulation of the intrauterine
environment by diet or other means to reduce fetal overnutrition
or undernutrition may reduce the propensity toward later obesity
(Delahaye et al., 2008; Breton et al., 2009; Breton, 2013). Though
it is unlikely that leptin will be effective as a weight loss
medication – its efficacy might be increased in the setting of leptin
sensitizing agent (Ravussin et al., 2009) or in individuals with
disproportionately low levels of leptin (Ahima, 2008). The potent
effects of leptin after weight loss indicates the need for longer
term studies of the effects of leptin on the likelihood of successful
reduced weight maintenance.

A critical question is whether the leptin threshold is
changeable, particularly in a downward direction. While there
are clearly genetic effects on human adiposity, and while the
majority of these genes are expressed in the central nervous
system, the precise manner(s) in which these effects are integrated
is not yet clear (Loos, 2018). The threshold model is consistent
with the phenomenology of the similarity of responses to
weight loss among obese and non-obese individuals. In humans
the phenotypes associated with increased metabolic efficiency
and drive to eat do not abate with time (Shick et al., 1998;
DelParigi et al., 2007; Rosenbaum et al., 2008a), suggesting
that prolonged maintenance of reduced body weight can only
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be achieved by indefinite attention to both food intake and
exercise (Wing and Hill, 2001). However, it is possible that, in
addition to the effects of allelic variants, there are developmental
effects on energy homeostatic circuits that can influence an
individual’s apparent threshold for minimum body fat that could
potentially be modified through earlier intervention in those
“at-risk” for subsequent adiposity. An example of this potential
to manipulate the “set-point” prenatally is the reduction in
fatness, blood pressure, circulating concentrations of insulin and
gene expression relevant to diabetes, autoimmune disease, and
vascular disease in children who develop in a post-bariatric
surgery intrauterine environment compared to their siblings
who were gestated prior to surgical weight loss in the mother
(Guenard et al., 2013).

CONCLUSION

Leptin is a highly pleiotropic molecule that influences the
prenatal and perinatal development of the major neuronal tracts
that determine the body weight that is “defended” over a lifetime.
Subsequently, it provides the primary signal that determines the
activity of the same regulatory systems.

Leptin, importantly, functions primarily as a signal of
decreased energy stores and/or negative energy balance from
the periphery to the CNS. In the state of negative energy
balance, the resulting rapid decrease in circulating leptin
concentration is sensed by the CNS and, in response, drives
hunger, suppresses energy expenditure, and reduces reproductive
competence; despite potentially underlying obesity (Boden et al.,
1996). Similar effects are seen as a result of a lesser degree
of relative hypoleptinemia following weight loss at which time
most individuals are quite responsive to leptin repletion. This
“predictive” characteristic of leptin production by adipose stores

acts to increase fat mass, and thereby protect reproductive
integrity in times of undernutrition, is arguably the leptin
function that is most important in an evolutionary context.
Going forward, leptin therapy during adulthood is likely to be
a factor in the maintenance of reduced weight after successful
treatment by weight loss.
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