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Abstract: Drilling of carbon fiber-reinforced plastics (CFRPs) is a challenging task in aviation and
aerospace field. Damages, which can reduce the strength of the structure, often occur during
secondary machining operations due to the applied cutting force and generated heat. The main
objective of this study was to investigate the drilling performance and the deformation resistance
of CFRPs subjected to cryogenic treatment based on glass transition temperature (Tg). Therefore,
a cryogenic machining approach was adopted by fixing the workpiece inside a cryogenic box to
drill CFRPs. The machining performance was briefly evaluated. Moreover, a through-hole drilling
method was promoted to analyze the mechanism of different deformation mechanical properties.
The results showed that the cryogenic machining approach improved the machining performance
of CFRPs. Nevertheless, the residual intensity of cryo-treated specimen decreased (about 7.14%)
due to the Tg-based viscoelasticity. These results demonstrate the great potential of this approach
in advanced industrial applications and further pave the way for efficient secondary machining
operation of CFRP components.

Keywords: carbon fiber-reinforced plastics; cryogenic machining; deformation resistance; glass
transition temperature; drilling; damage analysis

1. Introduction

Carbon fiber-reinforced plastic (CFRP), which consists of high-strength carbon fibers
and matrices, is an excellent structural composite material. CFRPs have high stiffness
and strength-to-weight ratio; thus, they have been widely used in many fields, such as
aerospace, marine industries and civil engineering, automobile, robotics, wind-turbines,
sport equipment, etc. [1–5] Nevertheless, despite their good mechanical properties, CFRPs
exhibit some limitations. During the manufacturing of components from CFRPs, a sec-
ondary machining operation (turning, milling, drilling, etc.) is usually carried out after
curing in order to meet the required tolerances and to manufacture fitting and joining
surfaces [6–8]. During these machining operations of CFRPs, several damages such as de-
lamination, fiber pull out, and matrix cracking may occur because of their non-homogenous
and anisotropic properties and low thermal conductivity [9,10]. Moreover, the reliability
of the assembling process may be reduced because of these damages. Furthermore, they
can also lead to potential threats during service process of CFRP components. Thus, it
is necessary to pay significant attention to the machining of CFRPs [11–14]. In addition
to these damages mentioned above, heat resistance of the polymer matrix is also limited;
thus, thermal damages and deterioration of the composite structure may occur due to the
generation of heat during machining. However, mechanical properties and dimensional
accuracy of the CFRP components may be affected by using conventional coolants [15–20].
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In order to enhance the machinability of hard-to-cut materials such as soft aluminum,
titanium, and abrasive composites, cryogenic machining has been adopted as an alternative
approach to conventional machining. The high temperature generated during machining of
CFRPs significantly affects the tool life, the machined surface quality, and the geometrical
accuracy [1]. Therefore, the main objective of adopting cryogenic machining is to attempt
to remove the effect of high temperatures generated during the machining process [21–24].
Moreover coolants can be extremely cold liquefied gases including oxygen, nitrogen, helium,
or hydrogen in cryogenic machining. Among these coolants, liquid nitrogen (LN2) is the most
used because of its environmental safety. In the literature, the majority of research employing
the cryogenic machining method focused on turning titanium and steel alloys. Nevertheless,
the investigation on cryogenic machining of CFRPs [25,26] has not been extensively reported
and requires significant research attention.

Basmaci et al. [27] investigated the effect of cryogenic treatment and drill diameter on
the drilling performance of CFRPs, for which the stacking sequence was 0◦/90◦ orientation.
CFRP laminate was fixed in a cryogenic bath filled with LN2 before and during the
drilling process. Rajkumar et al. [28] carried out a comprehensive investigation on the
delamination, thrust force, vibration, surface roughness, and fiber pull-out while drilling
CFRP laminate under different feed rates and cutting velocities with dry and chilled air.
Moreover, they proposed that the delamination factor could be reduced by the maximum
of about 19.49% under chilled air environment. Samuel Raj et al. [29] monitored the
wear of tools subjected to cryogenic treatment by measuring flank wear, peak flatting,
cutting edge flatting, and cutting edge surface roughness. Kumar et al. [30] compared
the machinability of conventional drilling of hybrid Ti/CFRP/Ti stack laminated in a
single shot with or without cryogenic treatment. A significant improvement in hole
quality under cryogenic condition was presented. However, the thrust force increased
in cryogenic cutting because of the increased hardness of the Ti sheet under cryogenic
treatment. Wang et al. [31] delivered the minimum quantity of lubrication coolants to
the desired location on secondary cutting edges for effectively reducing tool wear of the
secondary cutting edge corner. Ferreira Batista et al. [32] determined the effect of the
cryogenic-treated and dry-treated drilling as well as tool feed rate of thermoplastic and
thermoset CFRP on uncut fibers, delamination, roundness, and hole diameter. As a result,
uncut fibers at the hole entry and delamination factor at the hole exit were reduced during
cryogenic drilling for the thermoset CFRP [32].

However, the effect of cryogenic treatment on the mechanical properties of materials
has been little studied. During the hole-making process of CFRPs, cryogenic CFRPs lam-
inate cooling under cooled air was adopted in this study. Furthermore, the experiments
were carried out with or without cryogenic treatment by using the same cutting parame-
ters. Finally, the effect of cryogenic cooling on the deformation resistance properties was
investigated using a fatigue-testing machine.

2. Materials and Methods
2.1. CFRP Laminates Manufacturing

CFRP laminates were manufactured using carbon T300/epoxy unidirectional prepregs,
with ply thickness of 0.125 mm. The plate was manufactured by the vacuum-assisted resin
transfer molding method. Moreover, the stacking sequence of the CFRP laminate was
[45/0/−45/90]3s (totally 24 plies) with a total thickness of 3 mm. The manufacturing
process of CFRP laminate is illustrated in Figure 1. The woven fabric preform was first
cured at 80 ◦C for 30 min to complete the resin impregnation and then at 120 ◦C for 90 min.
The dimensions of the laminate were 300 mm × 300 mm × 3 mm. Furthermore, the cured
laminate was cut to meet the requirements of the American Society of Testing Materials
(ASTM) standard.
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Figure 1. Schematic illustration of the manufacturing process of a carbon fiber-reinforced plastic (CFRP) plate.

2.2. Glass Transition Temperature of CFRP

The glass transition temperature (Tg), which defines the point at which the glassy
polymers are transformed into flexible rubbers, determines the limited use temperature of
CFRP laminates [33]. To verify the correlation between the CFRP’s deformation resistance
property and drilling temperature, in this study, dynamic mechanical analysis (DMA) was
used to obtain the Tg due to the mechanical properties of matrix being different at different
temperatures. The DMA tests were conducted using a dynamic mechanical thermal
analyzer (DMA242E, Netzsch, Germany) with three-point bending modes according to
ASTM D7028. The dimensions of specimens are listed in Table 1.

Table 1. Dimensions of specimens.

Parameters Specimen 1 Specimen 2 Specimen 3

Length (mm) 60.4 60.3 59.62
Width (mm) 10.9 11.42 11.38

Thickness (mm) 3.34 3.3 3.28

In general, a lower heating rate yields more accurate results. In contrast, the drying
property of CFRP laminates is affected by extremely low heating rates. Therefore, an
appropriate heating rate of 5 ◦C min−1 was adopted to obtain accurate results. The heating
process began at room temperature and stopped at 160 ◦C with an oscillation frequency of
1 Hz. To ensure the ratio of strain amplitude to maximum strain amplitude being in the
range of linear viscoelasticity of CFRPs, the stress ratio was kept at 0.1%.

2.3. Experimental Design and Measurement

The backup support technique and the same cutting parameters (1000 rpm, 0.27 mm r−1)
were used to obtain low and consistent damage specimens with uncoated carbide con-
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ventional twist drills (diameter 8 mm, point angle 118◦) (Figure 2). To control the drilling
area temperature (DAT), the cryogenic box was used and the relationship between envi-
ronment temperature (ET) and DAT was investigated. The tensile/tensile and compres-
sive/compressive fatigue tests were performed according to ASTM D5766 standard. The
diameter of an open hole was 8 mm, and the width of the tested specimen was 48 mm
maintain the ratio between width and diameter at six. The lengths of the specimen for ten-
sile/tensile and compressive/compressive fatigue tests were 260 and 118 mm, respectively.
The fatigue-testing machine (EHF-EV101k2-040-01A, Servo pulser, Kyoto, Japan) was used
to obtain the results.
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Figure 2. Schematic illustration of the temperature-controlled drilling experiment setup.

3. Results and Discussion

The glass transition temperature of CFRPs was obtained by the DMA test. More-
over, the relationship between ET and DAT was investigated to control the DAT during
the hole-making process. Then, the drilled specimens were obtained by using consis-
tent drilling parameters and backup support. Furthermore, tensile/tensile and compres-
sive/compressive fatigue tests were performed. Finally, residual stress was measured to
analyze the difference among the deformation resistance properties.

3.1. Glass Transition Temperature of CFRP

A large amount of heat was produced due to the friction between the tool cutting edge
and an abrasive, which resulted in a decrease in the mechanical properties of the matrix.
As a result, the damages occurred during the drilling process of CFRP [34]. Therefore,
comprehensive understanding of the temperature-dependent mechanical properties of
CFRP is essential. The result of the DMA is shown in Figure 3, where E′ represents the
storage modulus and E′′ represents the loss modulus. Moreover, TA is a beginning point of
glass transition and TB is a mid-point of glass transition. Tg, the intersection of the tangent
lines to points TA and TB, is 117 ◦C.
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Figure 3. Representative curves of the loss modulus (right axis) and storage modulus (left axis)
versus temperature for CFRP laminates measured by the dynamic mechanical analysis (DMA) test.

3.2. Drilling Test under Tg

During cryogenic machining applied in this study, the DAT was controlled by adjust-
ing the ET in the cryogenic box. The effect of ET on DAT is shown in Figure 4. The result
shows that the mapping relationship between ET and DAT is approximately linear, and R2

for the trend line is 99.1%. The linear relationship is represented in Equation (1):

TD = 1.1266TE + 101.3957 (1)

where TD denotes the drilling area temperature (DAT) and TE represents the environment
temperature (ET).
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To investigate the mechanical properties of the CFPR specimen drilled at different
temperatures, the cryogenic ET was −30 ◦C when DAT was 67 ◦C and lower than Tg;
furthermore, a high ET was 40 ◦C, when the DAT was 146 ◦C and higher than Tg.

The surface roughness, burr damages, and microstructure of holes drilled with or
without cryogenic treatment are shown in Figure 5. The cryogenic treatment makes the
specimens more brittle; moreover, the bonding force between molecules becomes stronger
and the chemical bond between molecules shrinks [35]. Figure 5a,c demonstrate that Ra
of the surface roughness decreases; conversely, the matrix covered increased compared to
Figure 5b,d, which indicates an improvement in surface smoothness. Figure 5e,f show that
the green box in the upper right corner of the hole represents less burr damage and that
the red box in the upper right corner of the hole represents more burr damage; thus, burr
damage decreases with cryogenic treatment.
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Figure 5. (a) Surface roughness of the hole drilled without cryogenic treatment; (b) surface roughness of the hole drilled
with cryogenic treatment; (c) microstructure of the hole drilled without cryogenic treatment; (d) microstructure of the hole
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hole exit with cryogenic treatment.
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3.3. Analysis of Deformation Resistance Performance

To investigate the deformation resistance properties of a CFRP specimen drilled with or
without cryogenic treatment, at least three specimens were tested according to ASTM D5766.
The tensile/tensile fatigue test specimen dimensions were 260 mm × 48 mm × 3 mm.
Moreover, the compressive/compressive fatigue test specimen dimensions were
118 mm × 48 mm × 3 mm. First, tensile test and compressive test were carried out
(Figure 6a,b). Furthermore, load was applied during the fatigue test, which was the same
for the untreated and treated specimens, and it was 70% of the ultimate load, where the
applied loads during the tensile/tensile fatigue test and compressive/compressive fatigue
test (R = 0.1 at f = 10 Hz) were 45.5 and 14 KN, respectively (Figure 6).
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Figure 6. (a) Tensile test; (b) compressive test; (c) tensile/tensile fatigue experiment setup; and (d)
compressive/compressive fatigue experiment setup.

Furthermore, a three-coordinate measuring machine (CS100 2828-18, classic SR. Ger-
many) (Figure 7a) was used for measuring the deflection of a drilled hole after ten thousand
cycles when the difference of deformation between untreated and treated specimens could
be distinguished [36,37]. Notably, the roundness before fatigue tests remains the same. The
results of deflection are presented in Figure 7b,c.

After applying ten thousand cycles of loading, the roundness of the tensile/tensile
fatigue test specimen machined below Tg (−30 ◦C) decreased by 57% compared to the spec-
imen machined above Tg (40 ◦C); reversely, the roundness of the compressive/compressive
fatigue test specimen machined above Tg (40 ◦C) decreased by 76% compared to the
specimen machined below Tg (−30 ◦C), as presented in Table 2. The results verified
that the deformation resistance of a cryo-treated specimen is stronger than that of an
untreated specimen after tensile/tensile loads are applied; nevertheless, weaker after
compressive/compressive loads are applied.
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Table 2. Roundness of untreated and cryo-treated CFRP specimens.

Parameters Above Tg (40 ◦C) Below Tg (−30 ◦C)

Roundness (tensile/tensile fatigue test) 0.02525 0.01068
Roundness (compressive/compressive fatigue test) 0.01324 0.0233

Residual intensity is the ultimate tensile and compressive strength after ten thousand
cycles. For testing the residual intensity of untreated and cryo-treated specimens after
applying ten thousand cycles of loading, tensile tests and compressive tests were carried
out, as presented in Table 3. After ten thousand cycles of tensile/tensile loads were
applied, the residual intensity of specimens machined below Tg (−30 ◦C) slightly increased
compared to those of specimens machined above Tg (40 ◦C); therefore, cryogenic treatment
leads to a slight increase in the residual intensity. Nevertheless, residual intensity decreased
by 7.14% after ten thousand cycles of compressive/compressive loads were applied.

Table 3. Residual intensity of untreated and cryo-treated specimens.

Parameters Above
Tg Below Tg

Residual intensity (tensile/tensile fatigue test) (MPa) 485.91 486.05
Residual intensity (compressive/compressive fatigue test) (MPa) 161.65 150.1

3.4. Analysis of the Difference in Deformation Resistance Performance

Residual stress of untreated (above Tg) and cryo-treated (below Tg) specimens was
tested to demonstrate that the divergence of deformation resistance property is caused
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by dissimilar viscoelasticity at temperatures below Tg or above Tg. For the residual
stress analysis in orthotropic materials, the through-hole drilling method was applied in
this study [38]. First, the CFRP plate was machined through untreated and cryo-treated
methods. Second, a rosette gage (BF-120-2CA-K) was located onto the surface of the
machined CFRP plate, with a distance of 1 mm from the drilled hole. Third, a through-hole,
with diameter of 2 mm, was machined on the strain rosette (Figure 8). Finally, a data
acquisition system (HBM-MGCplus, Darmstadt, Germany) received electrical signals from
a rosette gage. Residual stress was obtained by calculating the strain acquired by breaking
the balance inside the tested specimen.
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Figure 8. Schematic illustration of the through-hole drilling method.

The mechanical properties of CFRPs with diverse layer directions are different be-
cause of the anisotropy feature. A plane coordinate system was established in this study
(Figure 9), where direction L presents the 0◦ laying direction and direction T presents the
90◦ laying direction.

Materials 2021, 14, 9 of 16 
 

 

Table 3. Residual intensity of untreated and cryo-treated specimens. 

Parameters Above Tg Below Tg 
Residual intensity (tensile/tensile fatigue test) (MPa) 485.91 486.05 

Residual intensity (compressive/compressive fatigue test) (MPa) 161.65 150.1 

3.4. Analysis of the Difference in Deformation Resistance Performance 
Residual stress of untreated (above Tg) and cryo-treated (below Tg) specimens was 

tested to demonstrate that the divergence of deformation resistance property is caused by 
dissimilar viscoelasticity at temperatures below Tg or above Tg. For the residual stress 
analysis in orthotropic materials, the through-hole drilling method was applied in this 
study [38]. First, the CFRP plate was machined through untreated and cryo-treated meth-
ods. Second, a rosette gage (BF-120-2CA-K) was located onto the surface of the machined 
CFRP plate, with a distance of 1 mm from the drilled hole. Third, a through-hole, with 
diameter of 2 mm, was machined on the strain rosette (Figure 8). Finally, a data acquisition 
system (HBM-MGCplus, Darmstadt, Germany) received electrical signals from a rosette 
gage. Residual stress was obtained by calculating the strain acquired by breaking the bal-
ance inside the tested specimen. 

 
Figure 8. Schematic illustration of the through-hole drilling method. 

The mechanical properties of CFRPs with diverse layer directions are different be-
cause of the anisotropy feature. A plane coordinate system was established in this study 
(Figure 9), where direction L presents the 0° laying direction and direction T presents the 
90° laying direction. 

 
Figure 9. Schematic illustration of the plane coordinate system. Figure 9. Schematic illustration of the plane coordinate system.

Therefore, the residual stresses of each layer are given by solving the following
Equation (2):  σx

σy
τxy

 =
[

Ẽ
]

k

[
E
]−1

[C]−1

 ε3
ε2
ε1

 (2)
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In Equation (2), [Ẽ]k is the stiffness matrix of the kth ply (MPa), [Ē] is the dimension-
less stiffness matrix, and [C] is the dimensionless influence coefficients matrix based on
mathematical methods. Moreover, [Ẽ]k can be calculated by solving Equation (3):

[
Ẽ
]

k
=



E(k)
L

1−ν
(k)
LT ν

(k)
TL

ν
(k)
LT E(k)

L

1−ν
(k)
LT ν

(k)
TL

η
(k)
L,LT

G(k)
LT

ν
(k)
LT E(k)

L

1−ν
(k)
LT ν

(k)
TL

E(k)
T

1−ν
(k)
LT ν

(k)
TL

η
(k)
T,LT

G(k)
LT

η
(k)
L,LT

G(k)
LT

η
(k)
T,LT

G(k)
LT

G(k)
LT

 (k = 1, 2 . . . n) (3)

where E(k)
L , E(k)

T , G(k)
LT , v(k)LT , and v(k)TL are the elastic properties of the kth ply in the principal

coordinate system L−T of the laminate; E(k)
L is the tensile modulus of the kth ply along the

direction L (MPa); E(k)
T is the tensile modulus of the kth ply along the direction T (MPa);

G(k)
LT is the shear modulus of plane LT (MPa); v(k)LT is Poisson’s ratio along the direction LT;

v(k)TL is Poisson’s ratio along the direction TL, and n(k)
T,LT is the dimensionless coefficient.

It is necessary to determine the unknown strain vector {ε3, ε1, ε2} to evaluate the
residual stress distribution in each ply according to Equation (2). Obviously, to this aim, the
actual laminate can be advantageously replaced by the equivalent homogenous orthotropic
material, which has the same in-plane elastic behavior as the actual laminate, for which the
elastic properties are related to those of each ply by the following relationships [38]:

EL =

n
∑
k

EL,ksk

h
(4)

ET =

n
∑
k

ET,ksk

h
(5)

GLT =

n
∑
k

GLT,ksk

h
(6)

νLT =

n
∑
k

νLT,ksk

h
(7)

where Sk is the thickness of the kth ply (mm), h is the total thickness of the CFRP plate
(mm), and n is the number of layers.

In Equation (2), [Ē], which is the dimensionless stiffness matrix, can be calculated by
using Equation (8):

[
E
]
=


E

E−ν2
ν

E−ν2 0
ν

E−ν2
1

E−ν2 0

0 0 G
E

 (8)

where Ē, G, and ν are the dimensionless elastic constant coefficients of the kth ply on plane
LT. Furthermore, E, G, and ν can be calculated by using the following equations:

E = EL/ET (9)

G = GLT/ET (10)

ν = νLT (11)

The mechanical properties of the CFRP plate are presented in Table 4.
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Table 4. Mechanical properties of the CFRP plate [39].

Elastic Property Value Damage Properties Value

E11(MPa) 137,000 XT(MPa) 2000
E22(MPa) 9000 XC(MPa) 1150
E33(MPa) 9000 YT(MPa) 60

υ12 0.28 YC(MPa) 152
υ13 0.28 SL(MPa) 75
υ23 0.4 ST(MPa) 76

G12(MPa) 3780 – –
G13(MPa) 6000 – –
G23(MPa) 6000 – –
ρ(t/mm3) 1.79 × 10−9 – –

The stiffness matrix of a typical lay-up direction with the principal coordinate system
L−T is calculated according to Equation (3), as shown in terms of the following equations:

[
Ẽ
]

0◦
=

 137.7 2.53 0
2.53 9.04 0

0 0 1.89

× 103MPa (12)

[
Ẽ
]

45◦
=

 3.98 3.6 −3.42
3.6 3.98 −3.22
−3.22 −3.22 3.54

× 104MPa (13)

[
Ẽ
]

90◦
=

 9.04 2.53 0
2.53 137.7 0

0 0 1.89

× 103MPa (14)

[
Ẽ
]

135◦
=

 3.98 3.6 3.42
3.6 3.98 3.22
3.22 3.22 3.54

× 104MPa (15)

Herein, the physical properties of EL, ET, GLT, and v are calculated as follows:
EL = 40118 MPa, ET = 40118 MPa, GLT = 18645 MPa, and v = 0.4. Therefore, the dimen-
sionless equivalent stiffness coefficient matrix and the dimensionless influence coefficients
matrix of orthotropic materials can be calculated using the following equations:

[
E
]
=

 1.19 0.47 0
0.47 1.19 0

0 0 0.46

 (16)

[C] =

 −0.2983 0.1777 0
1.8763 −1.4013 −9.0933
0.1777 −0.2983 0

 (17)

The results of the residual strain test are presented in Table 5. By substituting these
residual strains into Equation (2), the residual stresses (σx, σy, τxy) can be calculated.

Table 5. Residual strains tested by the through-hole drilling method.

Temperature ε1(µm) ε2(µm) ε3(µm)

40 ◦C −741 −554 −72
−30 ◦C −438 −234 −57
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Hereupon, the maximum primary stress can be obtained as shown in Figure 10,
according to the following equations:

σmax = (σx + σy)/2 +
√
((σx − σy)/2)2 + σ2

xy (18)

φ =
1
2

arctan(
2σxy

σx − σy
) (19)Materials 2021, 14, 13 of 16 
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residual stress decreases with the decrease in ET. Therefore, the hole-making process of 
CFRP (below Tg) is beneficial for the reduction of residual stress. 

Although the machinability of CFRP can be improved through cryogenic treatment, 
the compressive/compressive deformation resistance property of cryo-treated specimen 
decreases. Our analysis indicates that the matrix was compressed in the hole-making pro-
cess when drilled at low temperatures (below Tg), which could not be restored to its initial 
state due to the viscoelasticity of the matrix (Figure 11), where the relationship of the com-
pressive distance is d2 > d4 > d3 > d1 [40]. Thus, residual stress still remains inside the 
specimen, which can be proven through the results of the through-hole drilling test. 

Figure 10. Results of the through-hole drilling method: (a) residual stress of specimen drilled at
40 ◦C; (b) residual stress of specimen drilled at−30 ◦C; and (c) maximum primary stress of specimen.

Figure 10c demonstrates that the value of maximum residual stress is positive, which
proves that the residual stress near the hole is residual tensile stress. Furthermore, the
residual stress decreases with the decrease in ET. Therefore, the hole-making process of
CFRP (below Tg) is beneficial for the reduction of residual stress.

Although the machinability of CFRP can be improved through cryogenic treatment,
the compressive/compressive deformation resistance property of cryo-treated specimen
decreases. Our analysis indicates that the matrix was compressed in the hole-making
process when drilled at low temperatures (below Tg), which could not be restored to its
initial state due to the viscoelasticity of the matrix (Figure 11), where the relationship of the
compressive distance is d2 > d4 > d3 > d1 [40]. Thus, residual stress still remains inside the
specimen, which can be proven through the results of the through-hole drilling test.
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4. Conclusions

The machinability of CFRPs was experimentally investigated by using a cryogenic
machining approach with different cutting parameters. Furthermore, the effects of the
cryogenic machining method, with DAT lower than Tg and implemented in this study
on tensile/tensile and compressive/compressive deformation resistance properties, were
investigated, and the following conclusions were obtained from this study:

• Machinability of CFRPs improved when DAT was lower than Tg. The occurrence
of damages, such as burr, heat accumulation, etc., decreased due to the cryogenic
machining approach.

• Although higher tensile/tensile deformation resistance property was obtained in the
cryogenic machining, low compressive/compressive deformation resistance property
was obtained simultaneously.

• After ten thousand compressive/compressive fatigue loadings, the residual intensity of
specimens under cryogenic treatment was 7.14% lower than those of untreated specimens.

• The residual tensile stress of specimen subjected to cryogenic treatment was lower
than those of untreated specimens when using the through-hole drilling method.

First, the finding of this study indicates an improvement in machinability for CFRPs
drilled below Tg using the cryogenic treatment method. However, the slight changes in
CFRP properties that occur during processing as a result of cryogenic treatment are also
extremely important for later service of the component. These results demonstrate the great
potential of this study in advanced industrial applications and pave the way for secondary
machining operation of CFRP components.
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