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Abstract: Gastrointestinal region (GI) cancers are closely linked to the ubiquitination system, with the E3 ubiquitin ligase playing 
a crucial role by targeting various substrates. As E3 ubiquitin ligases, proteins of tripartite motif (TRIM) family play a role in cancer 
signaling, development, apoptosis, and formation. These proteins regulate diverse biological activities and signaling pathways. This 
study comprehensively outlines the functions of TRIM proteins in gastrointestinal physiology, contributing to our knowledge of the 
molecular pathways involved in gastrointestinal tumors. Gastrointestinal region (GI) cancers are closely linked to the ubiquitination 
system, with the E3 ubiquitin ligase playing a crucial role by targeting various substrates. 
Keywords: tripartite motif, E3 ubiquitin ligase, ubiquitin–proteasome system, GI cancer, molecular pathways

Introduction
Approximately 10 million individuals succumb to malignant tumors annually worldwide, with gastrointestinal cancer 
standing out as a prevalent malignancy within the digestive system.1 Common gastrointestinal (GI) cancers involve 
tumors that impact various parts of the digestive system, such as the esophagus, stomach, intestines, liver, bile ducts, and 
pancreas.2 Despite significant progress in surgical removal, radiation therapy, and chemotherapy, the 5-year survival rate 
for GI cancers remains poor.3,4 It is the gradual alteration and influence of many genes that leads to the occurrence and 
development of GI tumors.5,6 Hence, the pursuit of diagnostic markers characterized by high sensitivity and specificity 
holds paramount importance in enhancing the diagnostic precision of GI cancer.

As evidence has accumulated over the past ten years, abnormal degradation of oncogenic proteins or tumor 
suppressors by the ubiquitin proteasome system (UPS) plays a significant role in GI cancer development and 
progression.7 It involves the work of ubiquitin-activating (E1), ubiquitin-conjugating (E2), and ubiquitin-ligating 
(E3) enzymes to facilitate the attachment of ubiquitin to lysine residues in proteins, step-by-step.8 In humans and 
mice, dozens of members of TRIM family belong to the RING-type E3 ubiquitin ligases.9 Multiple research studies 
have shown that several TRIM family members are linked to the onset and advancement of various types of cancer.10–14 

This suggests that we should comprehensively and thoroughly explore these members to gain a deeper understanding. 
Hence, we delve into the research progress concerning TRIMs associated with the predominant malignant neoplasm, 
gastrointestinal cancers, including esophageal squamous cell carcinoma (ESCC), gastric cancer (GC) and colorectal 
cancer (CRC).
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Structure and Function of TRIM Family Proteins
The TRIM proteins are distinguished by their preserved RING domain, B-box domain, and coiled-coil region (CC) at 
their beginnings. TRIM proteins are categorized into subfamily C-I to C-XI based on their unique C-terminal domains, 
which differ from the N-terminal domains. Specifically, the C-terminal regions of TRIM proteins contain various 
domains COS (cos-box) domain, Fibronectin type-III domain (FN3), PRY domain, B30.2/SPRY domain (SPRY), acid- 
rich region (ACID), filamin type I domain (FIL), NHL domain, PHD domain, bromodomain (BRD), Meprin and TRAF- 
homology domain (MATH), ADP-ribosylation factor family domain (ARF), and transmembrane region (TM). An 
additional subfamily, known as UC, consists of 8 TRIM proteins that do not contain a RING domain (Figure 1). In 
addition, the functions of each domain name are shown in Table 1.

N-Terminal
The RING Domain
The RING domain lies approximately 10–20 amino acids from the initial methionine. Initially, it was anticipated that the 
RING domain would be involved in DNA binding and identification.27 Rad18, a yeast protein belonging to the first group 
of RNF proteins, can facilitate histone ubiquitination through its RING domain.28 Past decades have demonstrated that 
the RING domain, when coupled with two zinc atoms, creates a RING finger structure resembling the zinc finger 
structure.14,29 This structure facilitates the ubiquitination process by serving as a stable binding site for E2. The presence 
of this RING finger domain is a common feature among numerous E3 ubiquitin ligases.30

The B-Box Regions
The B-box is a zinc-binding motif unique to TRIM proteins that can bind either one or two zinc atoms, locating after the 
RING finger domain. Due to the B-box domain’s structure resembling the RING finger, it gains ubiquitination capability 
for substrates.15 The B-box domain can be classified into two types based on their amino acid sequence: type 1 B-boxes 
(B-box1) and type 2 B-boxes (B-box2).31 There is evidence that the B1 box domain can function as an E3 ligase or boost 
the activity of the RING type E3 ligases. Also, the B-box2 domain, which is primarily connected to RING and coiled-coil 
domains, may have an effect on TRIM protein function.15 It could potentially impact the control of the RING domain 
function or work alongside the B-box1 domain, potentially influencing substrate recognition and/or E3 ligase activity.

Coiled-Coil Domain
The coil–coil domain has 2 or 3 motifs, typically varying in length between 100 and 200 residues. These proteins have 
mechanical characteristics due to the basic arrangement, consisting of α helices twisted to form a rope-like structure, 
which is supported by hydrophobic interactions. Within the TRIM family, it facilitates both homodimeric interactions 
among its members and heterodimeric interactions between its members and other proteins. The coiled-coil domain has 
the ability to influence interactions between TRIM and various proteins, both heteromeric and homomeric, which 
ultimately dictates where they are located within the cell.32,33

C-Terminal
The majority of TRIMs are found in the cytoplasm, making it crucial to comprehend their mechanisms of action and the 
types of substrates they interact with, which are determined by the C-terminal of TRIMs. In general, this region of TRIM 
proteins identifies certain targets and serves as a unique identifier to differentiate one TRIM protein from another. 
Typically, a COS domain appears after the coiled-coil domain, then the PRY-SPRY domain appears. Among them, the 
PRY-SPRY domain acts as a protein–protein interaction module.21,34,35

C-I subgroup members significantly influenced microtubule cytoskeleton interactions.18 Specifically, the C-II sub-
group contains COS-ACID domains, which possess abundant glutamate regions and function as E3 ubiquitin ligases to 
facilitate ubiquitin-mediated degradation of muscle proteins.20 Noteworthy, C-I and C-III subgroups possess FN3 
domain. Research suggests that this domain may have a broad range of molecular interactions due to its scaffold’s 
ability to accommodate various loop lengths and coupling with other protein domains.19 C-IV subgroup members possess 
the Plant homeodomain-bromodomain (PHD-BROMO) domain, which has been categorized as a gene regulator by 
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Figure 1 TRIM family structural classification. The C-terminus of TRIM proteins determines their classification from C-I to C-XI; an unclassified group lacks a RING-finger 
domain. 
Abbreviations: R, RING-finger domain; B1, B-box domain 1; B2, B-box domain 2; CC, coiled-coil domain; COS, cos box; FN3, fibronectin type III repeat; PRY, PRY domain; 
SPRY, SPRY domain; ACID, acid-rich region; FIL, filamin-type IG domain; NHL, NHL domain; PHD, PHD domain; BROMO, bromodomain; MATH, Meprin and TRAF- 
homology domain; ARF, ADP-ribosylation factor family domain; TM, transmembrane region.
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bringing together multiple regulators of transcription and chromatin, regulating numerous signaling pathways crucial for 
typical tumor growth and development.36

C-VII to C-X possessed FIL, NHL, MATH, or/and ARF domain. Four TRIM proteins have a filamin-type immunoglobulin 
domain, one type of FIL domain. TRIM45 possesses only the FIL domain at its end of the C-terminus participating in various 
tumor progression signal transduction pathways.37 In addition to the above domain, TRIM2, TRIM3, and TRIM71 include an 
NHL domain, composed of repeat NCL-I/HT2A/LIN-41. As for the MATH and ARF domains, TRIM37’s MATH domain 
promotes auto-oligomerization, and TRIM23’s ARF domain induces autophagy in response to viruses.24 TRIM13 and TRIM59 
both possess a transmembrane domain located at the end of the C-terminal region. Both of these proteins are found in the ER and 
are essential for restraining inflammatory responses to pathogenic DNAs.38,39 However, none of the typical C-terminal domains 
are present in the C-V subgroups. Typically, these unclassified TRIMs lack RING domains, but can still control inflammatory 
pathways.40

The Role of TRIM in GI Cancer
The members of TRIM family can be classified as oncogenes or cancer suppressors according to their unique roles. We 
summarize and elucidate important roles of various TRIM proteins in GI malignancies (Table 2).

Table 1 Functions of Different TRIM Domains

Domain Functions Refs

RING It promotes the transfer of ubiquitin to the substrate by binding to the ubiquitin coupling enzyme (UBE2 or E2) 
during the ubiquitination process

[14]

B-BOX The B1 domain may exhibit E3 ligase activity or potentiate the effect of the RING domain. B2 can also contribute 
to RING domain efficacy or synergize with B1

[15]

COILED-COIL Coiled-coil domains mediate the formation of homodimers or heteropolymers in TRIM proteins, playing a crucial 
role in the assembly and localization of macromolecular protein complexes

[16]

PYRIN It regulates inflammation and apoptosis [17]

COS Interaction between Cos and the microtubule cytoskeleton [18]

FN3 Pharmaceutical scaffolds based on FN3 [19]

ACID In addition to regulating ubiquitin-mediated protein degradation, ACID is an acidic region rich in glutamate [20]

PRY-SPRY PRY-SPRY is a protein-protein interaction and RNA binding region that plays a role in innate immune response and 
viral protein recognition.

[17]

PHD-BROMO DNA-binding and transcriptional activation properties are found in PHD-BROMO domain, which are more 
protein-to-protein interaction modules

[21]

FIL It regulates both TRIM-NHL mRNA and the immune system [22]

NHL A specific RNA sequence or structure can bind to NHL [23]

ARF By hydrolyzing GTP, ARF plays a role in intracellular transport [24]

MATH The MATH domain, common to other ubiquitin ligases known as TRAFs, facilitates protein–protein interactions 
and enables the formation of both hetero- and homo-oligomeric structures through self-interaction.

[25]

TM It is necessary for TM to suppress the inflammatory response to pathogenic DNAs. [26]

Abbreviations: ACID, acid-rich region; ARF, ADP-ribosylation factor family domain; B-BOX, B-box domain; Coiled-coil, coiled-coil domain; COS, cos box; FIL, filamin-type 
IG domain; FN3, fibronectin type III repeat; MATH, Meprin and TRAF-homology domain; NHL, NHL domain; PHD-BROMO, PHD-BROMO bromodomain; PRY, PRY 
domain; SPRY, SPRY domain; TM, transmembrane region.
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Table 2 Summary of TRIMs Roles in GI Cancer

Gene Cancer 
Type

Expression Gene 
Type

Prognostic Tested Tissues Tested Cells Cell Functions Pathway Refs

Primary 
Tissue

Normal 
Tissue

TRIM15 ESCC Upregulated Oncogene NA 38 38 1 esophageal epithelial cell line (HET-1A); 5 

ESCC cell lines (EC9706, EC-1, KYSE-410, 
KYSE-150, TE-1 cells)

Proliferation, 

migration, invasion, 
EMT

Wnt/β-catenin 

signaling 
pathway

[41]

TRIM27 ESCC Upregulated Oncogene NA 25 18 1 esophageal epithelial cells (HECC); 4 ESCC 
cell lines (TE-1, TE-11, EAC-109, KYSE150)

Proliferation, 
apoptosis

PI3/AKT 
signaling 

pathway

[42]

TRIM28 ESCC Upregulated Oncogene None 136 37 NA Metastasis NA [43]

TRIM37 ESCC Upregulated Oncogene Unfavorable 441 NA Specimens of the adjacent noncancerous 
esophageal tissue; esophageal Eca109 cells

NA NF-κB 
signaling 

pathway

[44]

TRIM44 ESCC Upregulated Oncogene Unfavorable 100 100 1 esophageal epithelial cells (HECC); 5 ESCC 

cell lines (KYSE140, KYSE150, EC109, 

EC9706, KYSE510)

Proliferation, 

migration, invasion, 

EMT

PI3K-AKT 

/mTOR 

pathway

[45]

TRIM3 GC Downregulated Tumor 

suppressor

Favorable 20 20 1 normal gastric epithelial cell line (GES-1); 2 

GC cell line (SGC-7901, MGC-803)

Proliferation, 

migration, EMT

NA[ [46]

TRIM11 GC Upregulated Oncogene Unfavorable 36 36 1 normal gastric epithelial cell line (GES-1); 4 

GC cell line (MGC-803, AGS, SGC-7901, 
HGC-27)

Proliferation, 

migration, invasion, 
EMT

Activating β- 

Catenin 
Signaling

[47]

TRIM3 GC Upregulated Tumor 
suppressor

Favorable 40 40 NA Proliferation, 
apoptosis, cell cycle

NA [48]

TRIM14 GC Upregulated Oncogene Unfavorable 117 117 1 normal gastric epithelial cell line (GES-1); 5 
GC cell line (MKN45, MGC803, BGC823, 

SGC7901, AGS)

Migration, invasion, 
metastatic, EMT

AKT/mTOR 
pathway

[49]

TRIM15 GC Downregulated Tumor 

suppressor

Favorable 134 134 2 GC cell line (AGS, MKN-1) Invasion NA [50]

TRIM15 GC Upregulated Oncogene Unfavorable 275 275 2 GC cell line (MGC80-3, HGC-27) Migration, invasion, 

EMT, metastasis

NA [51]
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Table 2 (Continued). 

Gene Cancer 
Type

Expression Gene 
Type

Prognostic Tested Tissues Tested Cells Cell Functions Pathway Refs

Primary 
Tissue

Normal 
Tissue

TRIM16 GC Downregulated Tumor 

suppressor

None 40 40 NA NA NA [52]

TRIM16 GC Upregulated Oncogene NA 10 10 1 normal gastric epithelial cell line (GES-1); 6 

GC cell line (AGS, BGC-823, HGC-27, SGC- 
7901, MKN-28, NCI-N87)

Invasion, migration NA [53]

TRIM21 GC Downregulated Tumor 
suppressor

Favorable 64 64 2 GC cell lines (SGC7901, BGC823) Proliferation, 
apoptosis

NA [54]

TRIM23 GC Upregulated Oncogene Unfavorable 81 40 1 normal gastric epithelial cell line (GES-1); 6 
GC cell lines (MKN45, BGC823, MGC803, 

HGC27, SGC7901, AGS)

NA NF-kB 
signaling

[55]

TRIM24 GC Upregulated Oncogene Unfavorable 133 20 5 GC cell lines (BGC-823, AGS, SGC-7901, 

MKN-1, HGC-27)

Proliferation Akt signaling 

pathway

[56]

TRIM24 GC Upregulated Oncogene Unfavorable 90 60 1 normal gastric epithelial cell line (GES-1); 5 

GC cell lines (AGS, BGC823, MGC803, 

HGC-27, SGC7901)

Proliferation, 

migration, invasion, 

apoptosis, metastasis, 
cell cycle

Wnt/β-catenin 

signaling 

pathway

[57]

TRIM24 GC Upregulated Oncogene Unfavorable 12 12 1 normal gastric epithelial cell line (GES-1); 5 
GC cell lines (AGS, BGC823, MGC803, 

HGC-27, SGC7901)

Proliferation PI3K/AKT and 
Wnt/β-catenin 

pathways

[58]

TRIM25 GC Downregulated Tumor 

suppressor

Favorable 90 82 3 GC cell lines (BGC823, SGC7901, 

MGC803)

NA NA [59]

TRIM29 GC Upregulated Oncogene NA NA NA 1 normal gastric epithelial cell line (GES-1); 2 

GC cell lines (BGC823, MGC803)

Proliferation, cell 

cycle, apoptosis

Wnt/β-catenin 

signaling

[60]

TRIM29 GC Upregulated Oncogene Unfavorable 124 124 NA NA NA [61]

TRIM31 GC Upregulated Oncogene NA 39 71 293 cells, AsPC-1 Colony formation NA [62]

TRIM31 GC Upregulated Oncogene NA NA NA 293 cell, AsPC-1 pancreatic cancer cells None NA [63]
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TRIM32 GC Upregulated Oncogene Unfavorable 142 0 2 GC cell lines (MKN45; MKN74 cells) Proliferation, 

apoptosis

NA [64]

TRIM32 GC Upregulated Oncogene Unfavorable 81 20 1 normal gastric epithelial cell line (GES-1); 4 

GC cell lines (SGC7901, BGC823, AGS, 

MKN28)

Proliferation, 

migration, invasion, 

colony formation

β-catenin 

signaling 

pathway

[65]

TRIM32 GC Upregulated Oncogene Unfavorable 876 NA 1 normal gastric epithelial cell line (GES-1); 5 

GC cell lines (NCI-N87, MKN74, HGC27, 
AGS, MKN45)

Proliferation, 

apoptosis

Akt signaling 

pathway

[66]

TRIM40 GC/ 
CRC

Downregulated Oncogene NA NA NA HEK293T, HeLa, SW480, IEC-6 cells lines NA NF-κB 
signaling 

pathway

[67]

TRIM44 GC Upregulated Oncogene Unfavorable 112 7 gastric cancer cell lines (KatoIII, NUGC4, 

HGC27, MKN7, MKN28, MKN45, MKN74)

Proliferation, 

migration and 

invasion

NA [68]

TRIM47 GC Upregulated Oncogene Unfavorable 136 30 1 GC cell line (AGS) Apoptosis, EMT NF-κB 

signaling 
pathway

[69]

TRIM50 GC Downregulated Tumour 
suppressor

NA 415 34 1 normal gastric epithelial cell line (GES-1); 7 
GC cell lines (AGS, BGC-823, HGC-27, 

MGC-803, MKN-28, MKN-45, SGC-7901)

Proliferation, cell 
cycle, Migration, 

Invasion,

Wnt/β- 
Catenin 

Signaling 

Pathway

[70]

TRIM54 GC Upregulated Oncogene Unfavorable 4 4 1 normal gastric epithelial cell line (GES-1); 3 

GC cell lines (AGS, HGC27, MGC-803)

Proliferation, 

migration, invasion, 
metastasis

NA [71]

TRIM58 GC Downregulated Tumour 
suppressor

Favorable 23 23 1 normal gastric epithelial cell line (GES-1); 5 
GC cell lines (MKN45, BGC823, HGC27, 

AGS, SNU719)

Proliferation, cell 
cycle

β-catenin 
signaling

[72]

TRIM59 GC Upregulated Oncogene Unfavorable 156 122 1 normal gastric epithelial cell line (GES-1); 7 

GC cell lines (MKN45, AGS, SGC7901, 

BGC823, N87, SNU1, SNU5)

Proliferation, clone 

formation, and 

migration

P53 Signaling 

Pathway

[73]
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Table 2 (Continued). 

Gene Cancer 
Type

Expression Gene 
Type

Prognostic Tested Tissues Tested Cells Cell Functions Pathway Refs

Primary 
Tissue

Normal 
Tissue

TRIM3 CRC Downregulated Tumour 
suppressor

NA NA NA 2 CRC cell lines (HCT116, DLD-1) Proliferation, clone 
formation, migration, 

invasion

P53 Signaling 
Pathway

[74]

TRIM6 CRC Upregulated Oncogene Unfavorable 125 35 1 normal colorectal mucosa cell line (FHC); 

4 CRC cell lines (LOVO, Sw620, HCT-8, 

HCT116)

Proliferation, cell 

cycle

NA [75]

TRIM8 CRC Downregulated Tumour 

suppressor

NA NA NA HCT116 Proliferation, colony N-MYC 

pathway

[76]

TRIM11 CRC Upregulated Oncogene Unfavorable 23 23 4 CRC cell lines (DLD-1, HT29, Sw480, 

HCT116)

Proliferation, 

apoptosis

miR-24-3p/ 

TRIM11 axis

[77]

TRIM14 CRC Upregulated Oncogene NA 40 40 4 CRC cell lines (Sw620, Caco2, LOVO, 

HT29)

Migration, invasion SPHK1/STAT3 

pathway

[78]

TRIM15 CRC Downregulated Tumor 
suppressor

NA 32 32 1 normal colorectal mucosa cell line, 
CCD18Co; 3 CRC cell lines (HCT116, HT- 

29, LOVO)

Migration, colony 
formation

NA [79]

TRIM21 CRC Downregulated Tumor 

suppressor

NA 39 14 NA Proliferation, EMT NA [80]

TRIM23 CRC Upregulated Oncogene Unfavorable 60 60 1 normal colorectal mucosa cell line, FHC; 5 

CRC cell lines (Sw480, HT29, SW1116, 

HCT116, SW620)

Proliferation, cell 

cycle, metastasis

P53 Signaling 

Pathway

[81]

TRIM24 CRC Upregulated Oncogene Unfavorable 80 80 1 normal colorectal mucosa cell line 

(NCM460); 5 CRC cell lines (HCT116, 
LOVO, Sw620, HT29, NM460)

Proliferation, colony 

formation

YAP signaling [82]

TRIM24 CRC Upregulated Oncogene Unfavorable 97 NA NA NA NA [83]

TRIM24 CRC Upregulated Oncogene NA NA NA 1 CRC cell (HCT116) Proliferation, colony 

formation, cell cycle, 
apoptosis

NA [84]
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TRIM25 CRC Upregulated Oncogene NA NA NA 5 CRC cell lines (H1299, U2OS, MCF7, 

HCT116, HCT116 p53-/-)

NA P53 Signaling 

Pathway

[84]

TRIM25 CRC Upregulated Oncogene NA 11 NA 2 CRC cell lines (HCT116, HT29) Proliferation, 

migration, invasion

TGF-β 
signaling

[85]

TRIM25 CRC NA Oncogene NA NA NA 2 CRC cell lines (RKO, DLD-1); HEK293 

cells

Apoptosis NA [86]

TRIM27 CRC Upregulated Oncogene Unfavorable 80 80 1 normal colorectal mucosa cell line 

(NCM460); 5 CRC cell lines (LOVO, 

HCT116, Sw480, DLD-1 and HT29)

Proliferation, 

invasion, metastasis, 

apoptosis, cell cycle, 
EMT, colony 

formation

AKT signaling 

pathway

[87]

TRIM27 CRC Upregulated Oncogene NA NA NA 2 CRC cell lines (HT29, RKO); HEK293; 

HeLa

NA STAT3 

signaling

[88]

TRIM28 CRC Upregulated Oncogene Unfavorable 137 NA NA NA P53 Signaling 

Pathway

[89]

TRIM28 CRC Upregulated Oncogene Unfavorable 19 NA NA NA P53 Signaling 

Pathway

[90]

TRIM28 CRC Downregulated Tumor 

suppressor

Favorable 15 15 1 normal colorectal mucosa cell line 

(NCM460); 5 CRC cell lines (LOVO, 

HCT116, SW48, DLD-1, HT-29); HEK293T 
cell

Migration, invasion, 

metastasis

WNT/β- 

catenin 

signaling 
pathway

[91]

TRIM29 CRC Upregulated Oncogene Unfavorable 90 90 7 CRC cell lines (HCT116, SW620, SW480, 
SW1116, LOVO, HT29; RKO)

Proliferation, 
migration, invasion, 

apoptosis, metastasis, 

Cell cycle

p53 signaling 
pathway and 

JAK2/STAT3 

signaling 
pathway

[92]

TRIM32 CRC Upregulated Oncogene NA NA NA 1 normal colorectal mucosa cell line (CRL- 
1831); 2 CRC cell lines (HCT116, RKO), 

H1299; H460; MCF7; CRL-1831; CRL-10742 

cells

Apoptosis, cell cycle p53 Signaling 
Pathway

[93]
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Table 2 (Continued). 

Gene Cancer 
Type

Expression Gene 
Type

Prognostic Tested Tissues Tested Cells Cell Functions Pathway Refs

Primary 
Tissue

Normal 
Tissue

TRIM37 CRC Upregulated Oncogene NA 30 30 2 CRC cell lines (SW480; SW620) Proliferation, colony 

formation, invasion, 

EMT

NA [94]

TRIM37 CRC Upregulated Oncogene NA NA NA 1 normal colorectal mucosa cell line 

(NCM460); 3 CRC cell lines (Sw480, HT-29, 
HCT116)

Proliferation, 

migration, invasion

Wnt/β- 

Catenin 
Signaling 

Pathway

[95]

TRIM39 CRC Upregulated Oncogene Unfavorable 367 NA 7 CRC cell lines (HCT116, LOVO, DLD-1, 

HT29, SW48, Sw480, Caco2); HEK293T

Colony formation, 

migration, invasion

p53 Signaling 

Pathway

[96]

TRIM40 CRC Downregulated Tumor 

suppressor

NA NA NA 1 CRC cell SW480, HEK293T, HeLa NA NF-κB 

signaling 

pathway

[67]

TRIM44 CRC NA NA NA NA NA 1 normal colorectal mucosa cell line (HIEC); 
5 CRC cell lines (SW480, Caco-2, SW620, 

HCT116, HT29)

Proliferation LINC00265/ 
miR-216b-5p/ 

TRIM44

[97]

TRIM44 CRC Up-regulated Oncogene Unfavorable 123 3 1 normal colorectal mucosa cell line 

(NCM460); 3 CRC cell lines (SW620, LOVO, 

HCT116)

Proliferation, 

migration, invasion

Akt/mTOR 

signaling

[98]

TRIM47 CRC Upregulated Oncogene Unfavorable 280 280 1 normal colorectal mucosa cell line (FHC); 

8 CRC cell lines (HCT116, HT29, Sw480, 
RKO, SW620, Caco2, LOVO, SW1116)

Proliferation, 

metastasis

TRIM47- 

SMAD4- 
CCL15 axis

[99]

TRIM52 CRC Upregulated Oncogene Unfavorable 80 80 1 normal colorectal mucosa cell line (HIEC); 
5 CRC cell lines (SW480, LOVO, SW620, 

HT29, RKO)

Proliferation, 
apoptosis

STAT3 
signaling 

pathway

[100]

TRIM55 CRC Downregulated Tumor 

suppressor

Favorable 101 36 1 normal colorectal mucosa cell line (FHC); 

4 CRC cell lines (DLD1, HCT116, SW620, 

Sw480)

Migration, invasion, 

apoptosis, cell cycle

NA [101]

https://doi.org/10.2147/D
D

D
T.S482340                                                                                                                                                                                                                               

D
o

v
e

P
r
e

s
s
                                                                                                                                     

D
rug D

esign, D
evelopm

ent and Therapy 2024:18 
5624

W
eng et al                                                                                                                                                            

D
o

v
e

p
r
e

s
s

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


TRIM58 CRC Downregulated Tumor 

suppressor

Favorable 81 81 11 CRC cell lines (HCT8, KM12, Caco-2, 

DLD-1, HCT116, LOVO, HT-29, SW480, 

SW620, RKO, HCT15)

Proliferation, colony 

formation, migration, 

invasion, EMT

Wnt-β-catenin 

signaling 

pathway

[102]

TRIM59 CRC Upregulated Oncogene Unfavorable 90 90 1 normal colorectal mucosa cell line 

(NCM460); 6 CRC cell lines (Caco-2, Sw480, 
HT-29, LOVO, DLD-1, HCT116)

Proliferation, colony 

formation, apoptosis, 
migration, invasion, 

metastasis, EMT

PI3K/AKT 

signaling 
pathway

[103]

TRIM59 CRC Upregulated Oncogene Unfavorable 80 16 1 normal colorectal mucosa cell line 

(NCM460); 6 CRC cell lines (HCT116, 

SW480, SW620, HT29, Caco2, NCM460)

Proliferation, 

migration, invasion, 

cell cycle, apoptosis

NA [104]

TRIM65 CRC Upregulated Oncogene Unfavorable 194 160 1 normal colorectal mucosa cell line 

(NCM460); 11 CRC cell lines (HCT8, KM12, 
Caco-2, DLD-1, HCT116, LOVO, HT-29, 

Sw480, SW620, RKO, HCT15)

Proliferation, colony 

formation, migration, 
invasion, metastasis

NA [105]

TRIM66 CRC Upregulated Oncogene NA 17 17 1 normal colorectal mucosa cell line 

(NCM460); 4 CRC cell lines (HCT116, 
HT29, CaCo2, SW620)

Proliferation, 

migration, invasion, 
EMT

JAK2/STAT3 

signaling 
pathway

[106]

TRIM67 CRC Downregulated Tumor 
suppressor

Favorable 138 138 2 normal colorectal mucosa cell line 
(NCM460, GES1); 3 CRC cell lines 

(HCT116, RKO, LOVO)

Proliferation, 
apoptosis, cell cycle

p53 signaling 
pathway

[107]

TRIM68 CRC Upregulated Oncogene Unfavorable NA NA 2 CRC cell lines (HCT116, SW1116); 

HEK293T cell

Proliferation, colony 

formation, cell cycle, 

apoptosis

NA [108]

Abbreviations: ESCC, Esophageal squamous cell carcinoma; CRC, Colorectal cancer; GC, Gastric cancer; NA, Not mentioned; EMT, Epithelial–mesenchymal transition.
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TRIM Proteins Regulate Targets Stability
The TRIM family consists of proteins that have E3 ubiquitin ligase activity, and they regulate tumor progression or 
suppression by adjusting the stability of target proteins. Autophagy is a significant intracellular degradation system, 
alongside the ubiquitin-proteasome system. TRIM27, TRIM37, TRIM6, TRIM65, and TRIM39 exhibit increased 
expression in tumor tissues of GI cancer compared to normal tissues, potentially influencing the progression of GI 
cancer through the ubiquitin-proteasome system.

TRIM Proteins Regulate Tumor Progression via Ubiquitin–Proteasome Pathway
TRIM27 and TRIM37 were reported to be over-expressed in tumor tissues, relating to the ubiquitin-proteasome pathway 
in ESCC and/or CRC.42,44,87 Initially, TRIM27 acts as an E3 ligase to increase the poly-ubiquitination of tensin 
homologue protein (PTEN), leading to PIP3 dephosphorylation of and PIP2 regeneration of, which reduces PI3K 
signaling, activating AKT signaling pathway and ultimately inhibiting cell apoptosis in ESCC.42 TRIM37 is another 
E3 ligand in ESCC. Following genotoxic stimulation, TRIM37 quickly moves into the nucleus and directly interacts with 
TRAF6 to facilitate the mono-ubiquitination of NEMO at K309.44 Blocking the interaction between TRIM37 and TRAF6 
also prevented NEMO mono-ubiquitination, increasing cells’ sensitivity to DNA-damaging chemotherapeutic treatments 
by inhibiting NF-kB signaling.

Comparatively, to adjacent normal tissues, GC tissues express less TRIM25. TRIM25 enhances ubiquitination of SP1 
at K610, resulting in the down-expressed MMP2 level and the inhibition of angiogenesis in GC.59 Besides, TRIM54 also 
up-expressed in GC tumor tissues, promoting GC progression by ubiquitin FLNC.71 Given the complex function of 
FLNC in cancers, the deep mechanism needs to be further explored. However, TRIM21 is down-expressed in GC tumor 
tissue, exerting as a tumor suppressor.54 Reduced expression of EZH1 by TRIM21 leads to enhanced anti-tumor effects 
of Apatinib by overcoming chemoresistance in various tumor types.

TRIM59, TRIM23, TRIM24, and TRIM32 can act as an E3 ligase by binding with p53, a key tumor suppressor that 
affects the development and/or advancement of human cancers. TRIM59 and TRIM23 could potentially be linked to 
tumor depth and metastasis in GC.55,102 Furthermore, TRIM59 and TRIM23 enhance the growth of cancer cells by 
directly interacting with p53 and increasing p53 ubiquitination.81,102 Like TRIM23, TRIM24 and TRIM32 are also 
capable of directly interacting with p53 and facilitating p53 degradation through ubiquitination.93,109 Remarkably, 
a complex feedback loop modulates TRIM24/TRIM32 and p53 expression post-DNA damage. Initially, ATM kinase 
phosphorylates TRIM24 at S768, subsequently inducing its self-ubiquitination. Later, the late stage of DNA damage 
promotes phosphorylation and activation of p53, further inducing TRIM24 or TRIM32 transcription.93,109 Elevated 
TRIM24 or TRIM32 then degrades p53 via ubiquitination, aiding tumor cell survival. Consequently, targeting to TRIM24 
and TRIM32 holds promise in augmenting the efficacy of chemotherapy.

TRIM6 was overexpressed in CRC, promoting tumor cell proliferation and decreasing sensitivity to oxaliplatin and 
5-fluorouracil.75 It has been found that TRIM6 lead to TIS21 ubiquitination, while TRIM6 E3 catalytic mutant (C15A) 
cannot influence the stability of TIS21. Subsequently, the decrease of TIS21 caused by TRIM6 overexpression eventually 
leads to increased phosphorylation of FOXM1, resulting in tumor progress. TRIM65 also over expressed in CRC. In the 
same way, TRIM65 focuses on ARHGAP35, a protein that deactivates Rho GTPase and hinders its function, marking it for 
breakdown through ubiquitination. This process leads to the promotion of migration and invasion in CRC. Moreover, the 
phosphorylation of TRIM65 at S167, S367, T413, S166, S172, and S181 seemed to attenuate its oncogenic activity.105

TRIM Proteins Regulate Tumor Progression via Autophagy Pathway
Autophagy is a primary cellular degradation mechanism alongside the ubiquitin-proteasome system.110 Recent studies 
indicate that multiple TRIM proteins serve as receptors for autophagy and are involved in autophagosome formation. 
TRIM39 was also over-expressed in tumor tissues, predicting clinical outcomes of CRC patients. Functionally, TRIM39 
binds to Rab7 and enhances its function by preventing its ubiquitination at the lysine 191 site.96 Prior research has 
identified Rab7 as playing a crucial function in the maturation of autophagosomes. Additional findings indicated that 
reducing TRIM39 levels hinders the flow of autophagy in a manner dependent on Rab7 activity, consequently impeding 
the breakdown of p53 through autophagy.
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TRIM Proteins’ Functions in Signal Pathways
Previous studies have demonstrated that the TRIM family engages in diverse cellular pathways, whose cascades are 
intricately linked to carcinogenesis, including AKT, Wnt/β-catenin, STAT3, TGF-β, p53, NF-κB pathways. A wealth of 
research has evidenced that TRIM proteins effectively regulate these pathways by modulating the expression of down-
stream targets within the context of cancer.

TRIM Proteins in Akt Signaling
Akt signaling is crucial in coordinating essential cellular functions such as cell growth, viability, energy regulation, 
movement, and reactions to various stressors and treatments.111 Activating PI3K-AKT pathway leads to changes in 
cellular metabolism by increasing the function of multiple transporters and enzymes, which helps meet the growth needs 
of rapidly dividing cells.110 The effectiveness of PI3K inhibitors in clinical settings has been questioned due to negative 
effects like high blood sugar and resistance to treatment, while AKT inhibitors face limitations due to their numerous 
downstream targets and complex interactions with other signaling pathways.112

Several TRIM members influence Akt signaling in gastrointestinal cancer, predicting a worse prognosis and promoting 
cancer cells proliferation, invasion, metastasis, and apoptosis resistance113 (Figure 2). TRIM14,49 TRIM24,56,58 TRIM3266 

TRIM44,45,98 and TRIM59114 were frequently over-expressed in tumor tissues in GI cancer. They stimulate tumor cells’ 
growth and metastasis by activation of Akt signaling pathway. Notably, participation in the AKT/mTOR signaling pathway 
induced by TRIM44 further influences STAT3 phosphorylation, a point of convergence for many oncogenic pathways, while 
Akt inhibitor rescued the phosphorylation of STAT3 and cancer-promoting effect of TRIM44.115

TRIM Proteins in Wnt/β-Catenin Signaling
Dysregulation of the Wnt/β-catenin pathway is linked to the reappearance of cancer, the migration of cancer cells, and the 
avoidance of the immune system.116,117 As a crucial member of the canonical Wnt-signaling cascade, β-catenin activates 

Figure 2 The interaction role between TRIM family and Akt signaling pathway in GI cancer. When growth factors induce PI3K activation, it triggers the activation of PIP3. 
The tumor suppressor PTEN exerts inhibitory control over PIP3 levels, thereby negatively modulating the Akt signaling cascade. PIP3-mediated recruitment and subsequent 
activation of PDK1 leads the activation of Akt, further stimulating the activity of mammalian target of mTORC1. Subsequently, Akt signaling fosters the upregulation of target 
gene expression. Furthermore, TRIM protein regulates the regulator of Akt signaling pathway. 
Abbreviations: Akt, Protein kinase B; GSK3β, Glycogen synthase kinase 3β; mTORC1, Mammalian target of rapamycin complex 1; P, Phosphorylation; PDK1, 
Phosphoinositide-dependent kinase-1; PI3K, Phosphoinositide 3-kinase; PIP3, Phosphatidylinositol (3,4,5)- trisphosphate; PTEN, Phosphatidylinositol 3,4,5-trisphosphate 
3-phosphatase and dual-specificity protein phosphatase PTEN; RTK, receptor tyrosine kinase; Ub, ubiquitin.
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several genes responsible for maintaining the multi-potency of stem cells, serving as a co-activator of the TCF/LEF 
transcription factors.118 Multiple research studies have indicated the interaction between TRIM proteins and Wnt/β- 
catenin pathway in GI tumors (Figure 3).

TRIM15 was found to be highly expressed in ESCC41 and GC,50,51 leading to the upregulation of β-catenin, C-myc, 
and CyclinD1 specifically in ESCC.41 In GC and CRC, TRIM24, TRIM32, TRIM37 and TRIM11 activated Wnt/β- 
catenin signal to induce the tumor progression.47,57,65,95 TRIM11 specifically enhances the expression of β-catenin and 
further facilitates its transfer from cytoplasm to nucleus. Conversely, reducing TRIM11 levels leads to an accumulation 
of Axin2,47 which directly interact with β-catenin and enhance its degradation through the proteasome-ubiquitin system. 
This process may be due to TRIM11’s E3 ligand function to promote Axin2 ubiquitination, which needs further 
verifying.

In contrast to the above, TRIM16, TRIM50, TRIM58, and TRIM28 were down-expressed in GC and/or CRC tumor 
tissues.52,70,72,91,102 TRIM16 suppress β-catenin signaling pathway.52 Additionally, TRIM50 and TRIM58 have the 
ability to bind with β-catenin, resulting the breakdown of β-catenin.70,72 Further experiments confirmed that TRIM50 
induce β-catenin degradation through protease-ubiquitin system and TRIM58 could significantly induce ubiquitination of 
β-catenin. TRIM28 was also identified as a tumor-suppressor. The PHD/Bromo domain in TRIM28 was found to bind 
with co-activator-associated arginine methyltransferase1 (CARM1), preventing CARM1 from being degraded by the 
proteasome. As a consequence of this interaction, Wnt signaling was subsequently suppressed, dependent on CARM1 
expression.91

TRIM Proteins in STAT3 Signaling
The abnormal and continuous stimulation of STAT3 leads to the formation of tumors, primarily caused by excessive 
specific cytokines, or malfunctioning regulators.119 Various types of cancer progression are influenced by the continuous 
activation of STAT3, which is driven by multiple tyrosine kinases, including JAK1, JAK2, EGFR, and BMX, but also by 

Figure 3 The interaction role between TRIM family and Wnt/β-catenin signaling pathway in GI cancer. Activated Wnt ligand binds to the LRP5/6 co-receptor, thus recruiting 
GSK3β complex to induce β-catenin expression. In the nucleus, β-catenin binds to TCF1, activating Wnt target genes. TRIM proteins also regulate the regulator of Wnt/β- 
catenin signaling pathway. 
Abbreviations: APC, Adenomatous polyposis coli; CK1, Casein kinase 1; CARM1, coactivator-associated arginine methyltransferase1; Dvl, Dishevelled; GP130, 
Glycoprotein 130; GSK-3β, Glycogen synthase kinase 3β; GSK3β complex, disrupts the destruction complex; LRP, Low density lipoprotein receptor-related protein; 
TCF1, T cell factor 1; P, Phosphorylation; Ub, ubiquitin; ZNRF3, zinc and ring finger 3.
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other stimulators like IL-6, IL-11, and S1P.120,121 In addition, protein tyrosine phosphatases (PTPs) such as PTP1B, 
TCPTP, SHP1, and SHP278 also negatively regulate STAT3 signaling.122 Thus, understanding the relevance of TRIM 
family and STAT3 signaling is critical for tumor therapy.

An excessive amount of TRIM-mediated STAT3 activation has been reported in GI cancer (Figure 4). TRIM14 
enhanced the expression of sphingosine kinase 1 (SPHK1), an enzyme responsible for producing S1P, leading to the 
phosphorylation of STAT3 at Y705.78 STAT3 activation promotes the expression of MMP2, MMP9, and VEGF, which 
facilitates CRC invasion and migration. Previous research has demonstrated that IL-6 is capable of attracting and 
triggering STAT3 activation via the IL-6R/gp130/JAK pathway in the cytosol.123 Zhang et al showed that TRIM27 
was found in retromer-positive structures, a well-preserved heteropentameric complex crucial for reusing proteins from 
endosomes to trans-Golgi networks or cell membranes, and serves as a connector for bringing gp130, JAK1, and STAT3 
to the retromer, enhancing the activity of JAK1, gp130, and STAT3 through IL-6 stimulation.88 Moreover, TRIM52 may 
function as an E3 ligase, enhancing the ubiquitination of SHP2 and its proteasomal breakdown, leading to an elevation in 
STAT3 phosphorylation.100 Other TRIM proteins, such as TRIM29 and TRIM66, also could active JAK/STAT3 
signaling, promoting GI cancer cells proliferation, migration, and invasion.92,106

TRIM Proteins in TGF-β Signaling
Secreted cytokines from the TGF-β superfamily are critical to the regulation of growth, survival, cell death, dormancy, 
self-degradation, and aging in cells.124 It attaches to its receptor type II and activates its type I counterpart, triggering the 
phosphorylation of the receptor-regulated SMAD2/3. This enables it to join with SMAD4 and enter the nucleus to 
connect with specific enhancers in target genes, initiating transcription.125 TGF-β signaling pathway suppresses prolif-
eration and encourages cell-cycle stoppage and cell death in both healthy and precancerous cells. In advanced cancer 
cells, the activation of this pathway may promote the transition from epithelial to mesenchymal cells, as well as increase 
stemness and mobility, ultimately boosting tumor growth and spread.126

Figure 4 The interaction role between TRIM family and STAT3 signaling pathway in GI cancer. Growth factors and cytokines engage transmembrane receptors, initiating 
receptor-associated JAK activation. This prompts phosphorylation of receptor cytoplasmic tails, recruiting and phosphorylating cytoplasmic STAT3. Activated STAT3 forms 
dimers, transfers to nucleus, and induce target gene expression. TRIMs (eg, TRIM14, TRIM27, TRIM29, TRIM52, TRIM66) modulate JAK/STAT signaling. TRIM29 and TRIM66 
activate JAK2/STAT3, while TRIM27 activates JAK1/STAT3. TRIM52 promotes SHP2 polyubiquitination and degradation, thereby enhancing STAT3 phosphorylation. 
Abbreviations: GP130, Eukaryotic Glycoprotein 130; JAK, Janus Kinase; JAK1, Janus kinase 1; JAK2, Janus kinase 1; IL-6, Interleukin 6; P, Phosphorylation; SHP2, SH2 
domain-containing protein-tyrosine phosphatase-2; SPHK1, Recombinant Sphingosine Kinase 1; STAT3, Signal transducer and activator of transcription 3; Ub, ubiquitin; 
VEGF, vascular endothelial growth factor.

Drug Design, Development and Therapy 2024:18                                                                             https://doi.org/10.2147/DDDT.S482340                                                                                                                                                                                                                       

DovePress                                                                                                                       
5629

Dovepress                                                                                                                                                            Weng et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


So far, the association between TRIMs of GI tumors and this signaling pathway has been established.85,99 TRIM25 
plays an important part in promoting CRCs malignancy by increasing Smad2 and Smad4 phosphorylation.85 In the 
previous section, it was explained that TRIM47 inhibited TGF-β-Smad signaling by ubiquitinating and degradating 
SMAD4.99 Loss of SMAD4 also led to an increase in C-C motif chemokine ligand 15 (CCL15), promoting CRC 
progression through chemokine receptor 1 (CCR1) signaling99 (Figure 5).

TRIM Proteins in p53 Signaling Pathway
P53, a well-known cancer inhibitor, is commonly altered in various forms of cancer. Oncogenes or cellular stress activate 
p53, causing it to respond and activate a variety of genes associated with cell cycle regulation, DNA repair, aging, and 
programmed cell death. It has been discovered the interaction functions of p53 and TRIM family members (Figure 6).

TRIM3, TRIM67 and TRIM25 can upregulate p53 expression in GI cancer. TRIM3 upregulated p53 and its down-
stream targets such as p21 and GADD45 in CRC cells.74 The increase in p53 levels could be attributed to the prolonged 
stability of p53 resulting from TRIM3 overexpression, leading to an extended half-life of p53.74 Additionally, TRIM67 
binds with the p53’s C-terminal region, disrupting the communication between MDM2 and p53 in CRC. This results in 
a reduction of MDM2-mediated ubiquitination of p53.107 Consisting with this, TRIM25 prevents MDM2 from interacting 
with p300,127 an essential requirement for p53 polyubiquitination.115 However, the upregulation of p53 mediated by 
TRIM53 did not result in an increase in apoptosis, due to the decreased acetylation of p53, which is required for p53’s 
transcriptional activity to grow-arresting and pro-apoptotic target genes.128 TRIM28 also could down-regulate MDM2 
expression to increase p53 expression and deacetylation of p53, inhibiting p53’s tumor-suppressive activity in CRC.90

Interestingly, TRIM29, categorized as one of the TRIM proteins that inhibit p53, does not have the usual RING 
domain. The p300-dependent acetylation of TRIM29 at Lys116 causes TRIM29 to interact with p53, causing p53 to 
remain in the cytoplasm and inhibit its transcription of its target genes in the nucleus.129

Figure 5 The role of the TRIM family in the TGF-β signaling pathway in GI cancer. Upon TGF-β activation, TGFBR1 phosphorylates the SMAD2/3 complex, facilitating its 
association with SMAD4. This complex translocates into the nucleus to modulate targeted gene expression. TRIM proteins, such as TRIM25 and TRIM47, play crucial roles in 
TGF-β signaling pathway modulation. TRIM25 enhances TGF-β signaling pathway activity by promoting the phosphorylation of SMAD2/3. Conversely, TRIM47 negatively 
regulates TGF-β-Smad signaling by enhancing the ubiquitination and subsequent degradation of Smad4. 
Abbreviations: P, Phosphorylation; SMAD, Mothers against decapentaplegic homolog; TCF1, T cell factor 1; TGF-β, Transforming Growth Factor-β; TGFBR1, Type I TGF-β 
Receptor; TGFBR2, Type II TGF-β Receptor; Ub, ubiquitin.
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TRIM Proteins in YAP, NF-κB Signaling Pathway
YAP and NF-κB signaling pathway play an important role in controlling programmed cell death.130 Nonetheless, limited 
research has been conducted on the correlation between TRIMs and those signaling pathways in GI tumors. The TRIM24 
recruited by the DANCR/KAT6A complex specifically binds to acetylated lysine 23 of histone H3 (H3K23), leading to 
its direct binding to the YAP promoter, further activating YAP transcription and ultimately boosting the proliferation of 
CRC cells.82 TRIM40 and TRIM47 might affect NF-κB signaling.131–133 By neddylating the inhibitor of NF-κB kinase 
subunit gamma, TRIM40 prevented the inflammation-related carcinogenesis in the GI tumors.67 Additional research is 
necessary to elucidate the impact of TRIM-mediated control of NF-κB in various disease states, particularly in the 
context of anti-cancer immune response and tumor resilience.

Impact of TRIM Proteins on Characteristics of Cancer Development
TRIM Family in Cell Cycle
Cells go through the cell cycle in four stages: the G1 phase (preparation for growth), the S phase (replication of DNA), 
the G2 phase (growth and preparation for division), and the M phase (phase of division).84 Proper control of cell division 
is crucial for preserving the regular functions of tissues and organs, whereas disruptions in the cell division process are 
a common characteristic in numerous types of cancer.134 Irregular TRIM protein expressions result in the cell cycle 
advances abnormally and continuous cell division.

TRIM family is crucial in controlling the G1/S phase transitions and is involved in regulating cell cycle progression 
through diverse mechanisms. Certain TRIM proteins can impact CDKs, CKIs, and cyclins to control G1 phase 
advancement.135,136 Silencing TRIM24, TRIM29, TRIM23, TRIM27, and TRIM68 result in the G1-S phase arrest of 
GC or CRC cells.57,60,81,87,108 However, TRIM50 overexpression decrease CDK4 and Cyclin D1 expression, inducing 

Figure 6 The interaction role between TRIM family and p53 signaling pathway in GI cancer. MDM2 binds to p53, facilitating p53’s ubiquitination and degradation to suppress 
cell apoptosis. Certain TRIMs facilitate p53 stabilization. TRIM67 directly targeting to MDM2, thus preventing p53 proteasomal degradation. Similarly, TRIM25 disrupts the 
formation of a ternary complex involving p53, Mdm2, and p300, which is crucial for p53 degradation. 
Abbreviations: MDM2, Mouse double minute 2; Rab7, Ras-related GTP binding protein 7; Ub, ubiquitin.
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GC cell arrest in the G0/G1 phase.70 Furthermore, increased TRIM58 led to a significant decrease in C-myc, Cyclin D1, 
and survivin, ultimately halting cell proliferation.72

During the G2/M transition, TRIM protein may influence cell preparation and entry into mitosis by regulating 
proteins such as mitotic kinase. Increased levels of TRIM6 have been linked to excessive growth of CRC cells, whereas 
reducing TRIM6 enhances responsiveness to chemotherapeutic drugs, leading to G2/M phase arrest in CRC.75 

Furthermore, TRIM55 has been shown to have a strong relation to the genes involved in G2/M checkpoint and Myc 
signaling.101

TRIM Family in Apoptosis
As cell death, apoptosis is characterized by blebbing of the cell membrane, shrinkage of the cell, nuclear fragmentation, 
chromatin condensation, and fragmentation of chromosomal DNA.137–139 Various intracellular stimuli, such as DNA 
damage, lack of growth factors, and oxidative stress, trigger the inherent apoptotic pathway. The process depends on the 
creation of a complicated structure known as the apoptosome, which consists of procaspase-9, Apaf-1, and cytochrome 
c. A number of proteins such as Bx, Bak, Bcl-2, and Bcl-xL get involved in controlling cytochrome c release from the 
mitochondria and affect the membrane permeability of the mitochondria.140

Parts of TRIMs exert their carcinogenic function by inhibiting apoptosis. TRIM27 could inhibit cell apoptosis in 
esophagus cancer, and its knockdown significantly increases the percentage of apoptosis.42 In addition, TRIM47 and 
TRIM32 knockdown successfully decreased Bcl-2 or increased cleaved caspase 3 and cleaved PARP in GC.64,69 

Similarly, several TRIM proteins act as apoptosis inhibitors in CRC. Numerous research studies have indicated that 
silencing TRIM24,84 TRIM29,92 TRIM52,100 or TRIM59103 led to a notable reduction in Bcl-2 levels or an elevation in 
Bax levels, while upregulation of TRIM55 inhibited the expression of Bcl-2.101

Several TRIM members act as tumor suppressors in GI cancers by inducing cell apoptosis. For example, TRIM55 
enhanced the expressions of cleaved-caspase 3, BAX, and BAK, indicating the significant role of TRIM55 in cell 
apoptosis.101 Elevated levels of TRIM67 led to a notable rise in cell death-associated proteins, such as activated caspase- 
3, −7, −8, −9, and PARP, by activating the p53/MDM2 pathway.107 Furthermore, other TRIM proteins, such as TRIM3, 
also induce tumor apoptosis through Bcl-2 expression in GC.48 Interestingly, TRIM21 significantly improves chemo-
sensitivity to classic chemotherapeutic agents, whereas TRIM21 knockdown markedly decreased the apoptosis in 
apatinib-incubated GC cells.54

Upstream Noncoding RNA Regulators of TRIM Family in GI Cancer
Non-coding RNAs (ncRNAs) act an important role in biological functions, including cancer, instead of protein-coding 
transcripts.141 In general, depending on their length (200 nucleotides), ncRNAs can be divided into small ncRNAs 
(sncRNAs) and long ncRNAs (lncRNAs). MicroRNAs (miRNAs) is one type of sncRNAs.142 Prior research has shown 
that TRIM proteins can also engage with ncRNAs in order to carry out their diagnostic and therapeutic functions, as 
indicated in Table 3.

By binding to 3′ untranslated regions (3′UTRs), miRNAs inhibit the expression of their target genes post- 
transcriptionally.146 Within GC, miR-20a and miR-195-5p were found to have a suppressive function on the TRIM3 
and TRIM14 mRNA levels through their interaction with the UTRs.46,49 This interaction ultimately inhibits GC cell 
proliferation and migration.46,49 TRIM24 is a direct target of miR-511, showing an inverse correlation in GC.58 

Additionally, miR-185 inhibited malignant behavior by inactivating Wnt and repressing TRIM29 expression.60 In 
CRC, miR-24-3p can directly target and control TRIM11 expression, inhibiting cell proliferation and inducing 
apoptosis.77 There is a reduction in TRIM8 mRNA in cancerous tissues due to the suppressive effects of miR-17-5R 
and miR-10, which could be targeting TRIM8’s mRNA.76 Conversely, TRIM8 has the ability to directly engage 
with p53, enhancing p53’s stability through the promotion of MDM2 degradation.147 Furthermore, the active p53 by 
miR-17-5p and miR-106b knockdown further induce miR-34a, which could negatively regulate N-MYC (a 
transcription factor activated miR-17-5p and miR-106b), increasing p53 tumor-suppressor function by the feed- 
forward loop.76
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LncRNAs have also been shown to affect tumor growth by regulating the TRIM family. Increasing the lncRNA 
SDMGC expression leads to the positive regulation of TRIM16 expression, which enhances the progression of GC.53 In 
addition, lncRNAs typically function as a molecular sponge for specific miRNAs, increasing the levels of downstream 
targets.53,97,144,145 By interacting with miR-137, ZFPM2-AS1 increased TRIM24 expression, causing CRC cells to 
proliferate, migrate, and invade.144 Likewise, ELFN1-AS1 functions as a molecular decoy for miR-4644, leading to 
elevated levels of TRIM44 mRNA and protein in CRC cells.145 LINC00265 has the ability to directly attach to miR- 
216b-5p and suppress its activity, leading to an elevation in TRIM44 levels within CRC cells.97

Conclusion and Prospect
Here, we summarize recent advances in multiple roles played by TRIM family members in GI cancer. There has been 
a growing body of evidence showing that patients with digestive tract tumors express high amounts of TRIM proteins 
compared to non-cancerous tissues. The high levels of many TRIM proteins are strongly linked to patient survival, 
making TRIMs promising targets for treatment and new indicators for detecting and evaluating gastrointestinal cancer 
early on, as well as for providing therapy. The significant contribution of these cancer-promoting TRIMs to the 
development of gastrointestinal cancer is supported by evidence from experiments involving both reduced and increased 
activity in gastrointestinal cancer cell lines, as well as from studies using xenograft models. Conversely, some individuals 
are consistently decreased in gastrointestinal cancer and demonstrate tumor-inhibiting functions.

Given that TRIM proteins primarily function through the UPS, it appears possible to inhibit TRIM proteins in 
gastrointestinal cancer using proteasomal inhibitors.148 Compounds that inhibit proteasomes, such as bortezomib, 
ixazomib, and carfilzomib, have demonstrated efficacy in treating gastrointestinal cancer.149–152 Furthermore, it suggests 
that focusing on TRIM proteins could be a treatment option for cancer. The growing interest in TRIM proteins has 
spurred the development of drug designs, particularly those targeting TRIM24. Knapp and Bradner reported in 2015 and 
2016 that three inhibitors, Compound 34,153 IACS-6558,154 and IACS-9571,155 were created to target the TRIM24 
bromodomain. These inhibitors showed micromolar or nanomolar efficacy. Moreover, the compound dTRIM24, degrad-
ing TRIM24 selectively and bifunctionally, may result in greater inhibition effectiveness compared to IACS-9571, which 
targets the same TRIM244.156 These research studies suggest that TRIM24 could be a new focus for developing drugs to 
treat different types of cancer. Additionally, investigating various natural and synthetic substances that can hinder tumor 
growth by targeting TRIM proteins, either directly or indirectly, could be engaging research endeavors. In summary, 
focusing on the bromodomain as a target to discover potential small-molecule inhibitors for TRIMs shows promise in 
cancer therapy.

Proteolysis-targeting chimeras (PROTACs) are heterobifunctional molecules with two ligands, one attaching to 
a protein of interest (POI) and the other bringing in an E3 ubiquitin ligase. The close interaction caused by chemicals 
between the POI and E3 ligase leads to the tagging with ubiquitin and eventual breakdown of the POI by the UPS.157 

PROTACs have the ability to directly target TRIM proteins. An example is how dTRIM24 is able to bring in VHL E3- 

Table 3 TRIMs are the Targets of Non-Coding RNAs in GI Cancer

Gene Cancer Type Upstream Associated Molecules or Mechanisms Refs

TRIM3 GC miR-20a Downregulating expression of TRIM3 [143]
TRIM14 GC miR-195-5p Upregulating expression of TRIM14 [49]

TRIM16 GC SDMGC Upregulating expression of TRIM16 [53]

TRIM24 GC miR-511 miR-511 regulates TRIM24 through translational inhibition [58]
TRIM29 GC miR-185 Up-regulation of miR-185 repressed TRIM29 expression [60]

TRIM8 CRC miR-17-5p MiR-17-5p directly targets the 30 UTR of TRIM8 repressing its expression [76]

TRIM11 CRC Mir-24-3p miR-24-3p downregulation can promote TRIM11 upregulation [77]
TRIM24 CRC ZFPM2 - AS1 ZFPM2-AS1 positively regulated TRIM24 expression by sponging miR-137 [144]

TRIM44 CRC LINC00265 Directly bounding to miR-216b-5p and negatively regulating miR-216b-5p, and increases 
the expression of TRIM44

[97]

TRIM44 CRC ELFN1-AS1 ELFN1-AS1 targeted miR-4644 to augment TRIM44 level [145]
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ligase to trigger powerful and specific breakdown of TRIM24.43,156 TRIM proteins can also serve as vehicles in 
PROTACs, enabling the targeted down-regulation of certain oncoproteins to alleviate gastrointestinal cancer. 
Developing new PROTACs ligand compounds is difficult due to the requirement of attaching to the correct-binding 
site with a limited number of ubiquitin sites and leaving enough room to extend the ubiquitin chain.

Despite significant advancements in comprehending the TRIM proteins linked to cancer, no TRIM protein-based 
treatments are currently being tested in clinical testing. To date, the FDA has not approved any drug or treatment that 
focuses on targeting ubiquitin E3 ligases. Thus, identifying TRIM proteins as potential targets for treating cancerous 
conditions could prove to be difficult. Therefore, additional translational research and clinical trials are necessary to 
create new biomarkers and treatments based on TRIM for individuals with cancer.
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