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The chromosome 16p13 region has been associated with several autoimmune diseases, including type 1 dia-
betes (T1D) and multiple sclerosis (MS). CLEC16A has been reported as the most likely candidate gene in the
region, since it contains the most disease-associated single-nucleotide polymorphisms (SNPs), as well as an
imunoreceptor tyrosine-based activation motif. However, here we report that intron 19 of CLEC16A, containing
the most autoimmune disease-associated SNPs, appears to behave as a regulatory sequence, affecting the ex-
pression of a neighbouring gene, DEXI. The CLEC16A alleles that are protective from T1D and MS are asso-
ciated with increased expression of DEXI, and no other genes in the region, in two independent monocyte
gene expression data sets. Critically, using chromosome conformation capture (3C), we identified physical
proximity between the DEXI promoter region and intron 19 of CLEC16A, separated by a loop of >150 kb. In re-
ciprocal experiments, a 20 kb fragment of intron 19 of CLEC16A, containing SNPs associated with T1D and MS,
as well as with DEXI expression, interacted with the promotor region of DEXI but not with candidate DNA frag-
ments containing other potential causal genes in the region, including CLEC16A. Intron 19 of CLEC16A is
highly enriched for transcription-factor-binding events and markers associated with enhancer activity.
Taken together, these data indicate that although the causal variants in the 16p13 region lie within
CLEC16A, DEXI is an unappreciated autoimmune disease candidate gene, and illustrate the power of the 3C
approach in progressing from genome-wide association studies results to candidate causal genes.
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INTRODUCTION

The chromosome 16p13 region of the human genome has
gained increasing attention since it was first associated with
risk of type 1 diabetes (T1D) by genome-wide association
study (GWAS) and fine mapping in 2007 (1–3). Subsequent as-
sociation and candidate gene studies, in other autoimmune dis-
eases such as multiple sclerosis (MS) (4–6), Addison’s disease
(7), primary biliary cirrhosis (8) and systemic lupus erythema-
tosus (SLE) (9,10), have also demonstrated association of this
region with disease risk, implying that the 16p13 region con-
tains a key regulator of the self-reactive immune response.

The 16p13 region is dominated by the large, 238 kb
CLEC16A gene (previously known as KIAA0350). The most
highly disease-associated single-nucleotide polymorphisms
(SNPs) lie predominantly within the 60 kb intron 19 of
CLEC16A (1,2,4,5,10,11), as well as within intron 10 of the
same gene. The most commonly cited disease-associated
SNPs within these respective introns are rs12708716 and
rs8062322, which are in high linkage disequilibrium (LD)
and are, therefore, likely to be tagging the same signal.
There is also evidence of a second T1D association signal in
the 16p13 region (3,12), 3′ of CLEC16A, within the
C16orf75 gene. This second disease-association signal was
detected in the absence of the intron 19/intron 10 signal in
celiac disease (13,14), and is likely to be related to an inde-
pendent causal variant common to both celiac disease and
T1D. The complexity of the region is also highlighted by a
recent report that the 16p13 region harbours three independent
MS-associated loci (6).

CLEC16A is regarded as a potential causal gene, since it
contains an imunoreceptor tyrosine-based activation motif
(ITAM) (3) and is widely expressed in cells of the immune
system; we note that the C-lectin-binding function implied
by its name remains questionable since it is only 22 amino
acids long. A recent study suggested that MS-associated
SNPs in CLEC16A were correlated with relative expression
of two CLEC16A isoforms in thymus but not in peripheral
blood (15). However, there are several genes in the 16p13
region, in addition to CLEC16A. These include some attractive
candidate genes for T1D and/or MS risk, such as MHC class II
transactivator (CIITA) and suppressor of cytokine signalling 1
(SOCS1) (Fig. 1), as well as DEXI, a gene of unknown func-
tion, which has not previously been regarded as a strong auto-
immune candidate gene.

Identification of the causal variant(s) and gene(s) presents a
particular challenge when there is a high degree of LD in a
disease-associated region and also when there are multiple
genes in a region, some of which have an unknown function.
If the expression of a particular gene is correlated with
disease-associated SNPs, this strengthens the candidacy of
that gene for an active role in the pathogenesis of disease.
We used published and unpublished human monocyte gene
expression data to examine expression quantitative trait loci
(eQTLs) within the 16p13 region of autoimmune disease asso-
ciation. Interrogation of the recently published ChIP-Seq
ENCODE data sets was undertaken to identify enhancer,
transcription-factor-binding and RNA-polymerase-II-binding
marks in the 16p13.13 region, which were consistent with
the role of intron 19 of CLEC16A as a regulatory sequence.

Gene expression analysis was followed by chromosome con-
formation capture (3C) experiments to evaluate candidate
long-range DNA interactions in the 16p13 region. This indi-
cated the mechanism by which disease-associated SNPs
within one gene, CLEC16A, might influence the expression
of the neighbouring gene, DEXI.

RESULTS

eQTL analysis in human monocytes

The two independent data sets interrogated were generated
previously from normal human monocytes purified from
fresh blood samples from 1370 individuals [Gutenberg
Health Study (GHS) (16)] and 753 individuals [Cardiogenics
Project (CGP) (17), http://www.cardiogenics.eu/web/],
respectively, and subjected to genome-wide genotyping and
microarray gene expression analysis. In both data sets, we
found evidence of a single eQTL in the region. Expression
of the DEXI gene was correlated with several chromosome
16p13 SNPs in high LD within CLEC16A, including
rs12708716 (Fig. 1) and rs8062322. Since the majority of
the DEXI eQTL SNPs in intron 10 and intron 19 of the
CLEC16A gene are in high LD, a single SNP most correlated
with DEXI expression could not confidently be determined.
The CLEC16A alleles that confer protection from T1D and
MS were only associated with increased expression of DEXI
(P ¼ 3.8 × 10238 in GHS data set; P ¼ 1.8 × 1027 in CGP
data set), and not with expression of any other genes in the
region, in both monocyte expression data sets.

Importantly, there was no correlation between expression of
DEXI and SNPs in the proposed second region of T1D associ-
ation, near C16orf75 (P . 0.05). In addition, we noted specif-
ically that no eQTLs were detected for expression of any other
gene within the 16p13 region, including CLEC16A and SOCS1
in either data set (Supplementary Material, Fig. S1). In add-
ition, in contrast to a recent report evaluating gene expression
in the 16p13 region in lymphoblastoid cell lines, no correlation
between expression of SOCS1, DEXI and CLEC16A was
detected (6).

We identified confirmatory evidence supporting an eQTL
within intron 19 of CLEC16A for DEXI expression within
the supplementary information of two further, recent inde-
pendent data sets (18,19). The first was an investigation of
eQTLs in Epstein Barr virus (EBV)-transformed lymphoblas-
toid cell lines (18), and the second, a study of eQTLs in human
primary bone cells treated with PGE2 (19). Both studies corre-
lated DEXI expression by microarray (Supplementary Mater-
ial, Fig. S2), with genotype at eQTL SNPs within intron 19
of CLEC16A, and neither study reported eQTLs in the
16p13 region for expression of CLEC16A, SOCS1 or CIITA.

Evaluation of candidate long-range DNA interactions by 3C

The DEXI promoter region and the SNP most associated with
T1D in CLEC16A (rs12708716) are separated by a distance of
�160 kb. If one region is to influence the other, this would
suggest that a DNA loop is formed during transcription of
DEXI, allowing the two regions to be in close physical prox-
imity. The 3C technique has been used to examine long-
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Figure 1. Expression of the DEXI gene, contained within the 16p13 region of T1D association (A) by microarray using Illumina probe set ILMN_1738866, is
correlated with the genotype at SNPs within the CLEC16A gene in two independent data sets. The first data set (i) was generated from purified human monocytes
(n ¼ 1370 individuals) collected during GHS and the second (ii) from purified human monocytes (n ¼ 753 individuals) collected during the CGP Project. SNPs
associated with T1D are illustrated on the same scale (iii) to illustrate the co-localization of the eQTL and T1D association signals. Boundaries of intron 10 and
intron 19 of CLEC16A contain the most associated SNPs for T1D and are contained within orange and black dotted lines, respectively. (C) DEXI expression by
genotype at the T1D-associated SNP rs12708716 within the published GHS monocyte data set, where the minor (G) allele is protective, and (D) DEXI expression
by genotype at the T1D-associated SNP rs725613 in the unpublished CGP monocyte data set.
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distance chromosomal interactions (20,21) and was employed
here to test our hypothesis that the DEXI promoter region and
intron 19 of CLEC16A are in close physical proximity during
gene transcription. The BglII restriction enzyme was chosen
for use in 3C since it makes two cuts in the 2 kb region
between the promoter regions of CLEC16A and DEXI, allow-
ing fragments containing these regions to be evaluated separ-
ately, and it also cuts seven times throughout intron 19 of
CLEC16A. Three human cell lines were selected for these
experiments—a monocyte cell line (THP-1), since we identi-
fied the eQTL originally in monocytes, a lung epithelial cell
(A549), since DEXI expression was first reported in this cell
line (22) and a human EBV-transformed B-cell line, since evi-
dence exists for the DEXI eQTL in CLEC16A in this cell type
in the literature (18).

The 3C technique generates ligated DNA fragments through
cross-linking of distal DNA sequences based on their physical
proximity in living cells. Using a ‘bait’ reverse primer next to
a BglII restriction site located in the region of the DEXI pro-
moter, quantitative polymerase chain reactions (qPCRs) were
initially undertaken using 13 different forward primers in can-
didate interaction BglII fragments, throughout the 16p13
region. In all three cell lines, a specific association was
detected between a fragment representing the DEXI promoter
region and a single specific BglII fragment of �20 kb within
intron 19 of CLEC16A (Figs 2 and 3). This finding was con-
firmed by gel electrophoresis and direct sequencing of the

qPCR products generated (data not shown). The additional
interaction detected between the DEXI promoter fragment
and an adjacent fragment containing the CLEC16A promoter
region is related to the proximity of these two regions in the
genome, and reflects random collisions between the chromatin
fibres, commonly seen in 3C experiments (23).

The interaction between the DEXI promoter region and
intron 19 of CLEC16A was confirmed using several different
primer sets. First, using alternative DEXI promoter primers
and a more comprehensive set of primer pairs for BglII sites
within intron 19 of CLEC16A, the original region of inter-
action was confirmed as the only interacting fragment within
intron 19. Second, reciprocal qPCRs were undertaken using
a primer in the interacting intron 19 fragment as ‘bait’. As
well as confirming the interaction with the DEXI promoter,
these experiments also demonstrated that this specific region
of intron 19 did not interact with any other candidate sites
(Supplementary Material, Table S1) within the region. We
also conducted further 3C/qPCR analysis of potential interac-
tions involving intron 10 BglII fragments, to evaluate the possi-
bility of a double loop, involving both intron 10 and intron 19
of CLEC16A since disease-associated SNPs have also been
reported within intron 10. We used both the DEXI promoter
region and the interacting region of intron 19 as bait, but
found no evidence of further interactions by qPCR (data not
shown). Finally, additional qPCRs were undertaken using the
interaction region in intron 19 as a ‘bait’ to test for DNA inter-
actions within intron 19 itself. No further sequencing-confirmed
interactions were detected in any of these experiments (data not
shown), but the qPCR product representing the DEXI promoter
region—intron 19 interaction was consistently present.

The challenge of progressing from a disease-associated
region identified in GWAS to convincing evidence for which
gene(s) are causal candidates in the disease pathogenesis is
considerable. This is, in part, due to the fact that a large
region of LD can contain many genes, in addition to the
strong possibility that the causal variant, lying within the LD
region, affects the expression of genes outside the LD block
in long-range functional interactions. We note that
rs12708716, reported in several studies as the SNP most asso-
ciated with T1D and MS, and shown here to correlate with
DEXI expression, lies within the 20 kb fragment that we
have shown to interact with the DEXI promoter region (Fig. 3).

Evaluation of epigenetic markers associated with enhancer
activity and transcription factor binding

Non-coding regions of DNA may impact upon expression of
distant genes by acting as enhancers, requiring looping of
DNA and interaction of remote regions via protein–protein
contacts (24). Although the exact mechanisms by which enhan-
cers or suppressors mediate their effects on gene transcription
are unknown, many enhancer regions contain binding sites for
transcription factors and are identifiable by the presence of epi-
genetic histone modifications such as H3K4me1 and H3K27Ac
(25,26). In addition, recent evidence suggests that some enhan-
cers in non-coding parts of the genome are transcribed, by RNA
polymerase II, into RNA with regulatory functions (27–29).
We, therefore, made use of publicly available genome-wide
ChIP-Seq data sets from the ENCODE project (30,31) to

Figure 1. Continued
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investigate histone modification marks and RNA polymerase
binding throughout the 16p13 region and found intron 19 of
CLEC16A to be particularly enriched for enhancer marks in

human cells (Supplementary Material, Fig. S3A). Further evi-
dence for a regulatory function of intron 19 of CLEC16A is pro-
vided by the observation that its sequence is highly conserved

Figure 2. A long-range interaction was detected between the DEXI promotor region and intron 19 of CLEC16A in an EBV-transformed B cell line (yellow), the
monocyte-like line THP-1 (blue) and the lung epithelial cell line A549 (red). Chromatin was cross-linked and digested by BglII and re-ligated. The interaction
frequency between (A) the DEXI promotor fragment bait or (B) the 20 kb intron 19 region bait containing rs12708716 and distal candidate fragments was deter-
mined by qPCR and normalized to control template interactions generated using PCR-digested and ligated PCR products from genomic DNA. Error bars rep-
resent the standard error of three independent PCR reactions and peaks were confirmed by sequencing of the qPCR products. The two grey dashed lines represent
the location of the DEXI promotor region and the region of intron 19 shown to interact with the DEXI promotor region.
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between mouse and humans, consistent with an important regu-
latory function in both species. It is bound by multiple tran-
scription factors in a murine haematopoietic progenitor cell
line (32) (Supplementary Material, Fig. S3B) and human cell
lines (N.K.W., unpublished data). Many of these
transcription-factor-binding events occur towards the 3′ end
of the fragment that we have shown to interact with the
DEXI promoter region in human cells. We also note that,

according to ENCODE ChIP-Seq data from human cell lines,
both the interacting region in intron 19 and the DEXI promoter
region share binding sites for several transcription factors
(Fig. 3A and B) including NF-kB, JunD and c-Myc. Further-
more, as might be predicted by recent work (29), clear
RNA-polymerase-II-binding peaks are evident within the frag-
ment of intron 19 of CLEC16A containing the putative enhancer
region (Fig. 3B).

Figure 2. Continued
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The gene expression and 3C data provide strong support
for DEXI’s candidacy as a new autoimmunity gene. Apart
from a pseudogene on chromosome 15, which we have
shown to produce little or no RNA (Supplementary Material,
Fig. S4), DEXI has no clear paralogue in the human genome.

Although CLEC16A itself appears to be the focus of many
investigators studying the 16p13 region, our results imply
an immediate additional need to investigate and understand
the biology of DEXI and its role in the development of auto-
immune disease.

Figure 3. The interaction sites detected by 3C at the DEXI promotor region (A) and intron 19 of CLEC16A (B) are enriched for transcription-factor-binding sites
(marked by grey and black horizontal lines) and enhancer-associated histone modifications (ENCODE project, displayed using the UCSC Genome browser).
Intron 19 of CLEC16A also contains RNA polymerase II binding peaks. The 3C interaction fragment, between two BglII restriction enzyme digestion sites,
is highlighted with a yellow line.

328 Human Molecular Genetics, 2012, Vol. 21, No. 2

http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddr468/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddr468/-/DC1


DISCUSSION

This study highlights DEXI as an autoimmune candidate gene
in 16p13, based on an eQTL for DEXI in monocytes that
appears to co-localize with the T1D-association signal and
demonstration of close physical proximity of regulatory
sequences in intron 19 of CLEC16A with the DEXI promoter
region by the 3C technique. DEXI was originally identified
in 2001 as a transcript which was differentially expressed in
lung tissue of patients with emphysema compared with
normal lung tissue (22). The function of DEXI is unknown;
however, the gene was named dexamethasone-induced tran-
script since dexamethasone treatment of the A549 cell line,
used here for the 3C experiments, was reported to increase
DEXI mRNA expression using a semi-quantitative blotting
method. More recently reported RNA-Seq and microarray
results using dexamethasone-treated cell lines do not support
this claim (19,33) and, therefore, we suggest that this name
may be a misnomer.

Historically, eQTLs have been classified into cis and trans
(or distant), where cis eQTLs affect expression of a gene
nearby and trans act at greater distances (usually on another
chromosome) in a more indirect way, such as affecting the
expression of a regulator that has a subsequent impact of the
trans-controlled gene. The findings presented here represent
a biomedically important finding at an intermediate distance
level, rather than a classical cis or trans effect. The eQTLs
act on the same chromosome, but at a distance of .150 kb,
and importantly do not, according to our current results,
affect the nearest gene, but the next one along chromosome
16p13. It is likely that this will not be an isolated event in
future studies of common disease, hence this finding is very
relevant to the wider field of GWAS follow-up. In addition, al-
though the interaction fragment in intron 19 contains several
disease-associated SNPs, the question of exactly how allele-
specific expression is driven is raised, and how this process
is made gene-specific. Since the other genes in the region
are expressed, their promoters are accessible, so it is unlikely
that specificity is simply related to promoter accessibility.
Instead, we hypothesize that specific transcription factor

combinations bound to the intron 19 region and DEXI pro-
moter are important and the mechanism by which gene expres-
sion is controlled might involve transcription of intron 19 and
its function as a non-coding regulatory RNA. Recent evidence
of a strong genetic component for allele-specific differences at
the level of transcription factor binding and chromatin struc-
ture has been reported (34). In addition, the recruitment of
cohesin and the multi-protein Mediator complex has been
associated with chromosome looping and regulation of gene
expression via enhancer sequences (35). We postulate that
the causal variant(s) in the region affect enhancer activity
and that this could arise because of an allele-specific effect
on chromatin structure and/or recruitment of a multi-protein
transcriptional co-activator complex (Fig. 4).

Our study illustrates that increased expression of DEXI in
monocytes is associated with SNP alleles that are protective
from autoimmune disease. Monocytes are already known to
be important in the pathogenesis of T1D, giving rise to macro-
phages, and the dendritic cells that are central in ‘priming’ the
islets and establishing an inflammatory milieu prior to the de-
struction of islets by antigen-specific T cells (36). In addition,
monocytes, macrophages and microglia have a central role in
the central nervous system (CNS) inflammation of MS. During
MS attacks, T lymphocytes and monocyte-derived macro-
phages gain entry to the CNS and form peri-vascular infil-
trates, a process which is accompanied by enhanced
permeability of the blood–brain barrier (37,38). Although
monocytes play a role in disease risk, we note that the DEXI
transcript is found in higher abundance in CD4+ and natural
killer cells compared with monocytes, and additional studies
have provided evidence for a DEXI eQTL in intron 19 of
CLEC16A in cells other than monocytes, including primary
bone cells and EBV-transformed lymphoblastoid cell lines
(18,19). Therefore, it is possible that DEXI’s role in auto-
immunity is related to genotype-regulated expression in a
cell subset other than, or in addition to, monocytes and
might also be specific to a particular time in development.
We note that DEXI expression was increased in macrophages,
generated in culture from a subset of the CGP samples, com-
pared with resting monocytes (Supplementary Material,

Figure 4. The eQTL and 3C data allow a model to be proposed in which a DNA loop is formed between the DEXI promotor region and intron 19 of CLEC16A. In
this model, the T1D-associated SNPs within the loop affect gene transcription by influencing the binding of transcription factors and other proteins at or near the
interacting site in intron 19. A more efficient transcription complex is formed in the presence of protective T1D alleles at 16p13, allowing more efficient DEXI
transcription. It is also possible that a converse model is true, with protective alleles being associated with reduced binding of suppressor/silencer proteins.
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Fig. S5), but that the DEXI eQTL was not preserved in macro-
phages (data not shown). We postulate that this may be the
result of a stricter (genotype-related) control of basal expres-
sion in monocytes.

The DEXI gene is conserved across many species including
the mouse, rat, dog, elephant, zebrafish and chicken, but is not
found in Caenorhabditis elegans or Drosophila (Supplemen-
tary Material, Fig. S6). It is predicted by some, but not all,
software packages to contain a trans-membrane domain, a se-
quence with a repeating leucine motif (Supplementary Mater-
ial, Fig. S6) and a predicted casein kinase phosphorylation site
(22). Expression is most strongly detectable by microarray in
liver, brain, heart and lung tissue, as well as in some cells of
the immune system (http://biogps.gnf.org/#goto=genereport&
id=28955 and Supplementary Material, Fig. S7). Although
not originally an obvious T1D candidate gene at 16p13, a pre-
vious survey of allelic expression using EST mining lists
DEXI as one of 40 genes whose expression is in allelic imbal-
ance by in silico analysis (39). It is also interesting to note that
DEXI expression is reported to be affected by exposure to cig-
arette smoke (16) (P ¼ 8 × 1028, data not shown), perhaps
explaining in part the original report of increased DEXI ex-
pression seen in the lungs of emphysema patients (22). Add-
itional opportunities for the control of DEXI expression
within cells exist at the level of microRNAs, since binding
sites for microRNAs, including miR-137 and miR-30–5p,
are predicted in the 3′UTR of the gene, using TargetScan (40).

To our knowledge, this is one of only a small number of
reports of successful application of 3C to the dissection of
GWAS SNPs and target genes (41–44). In contrast to previous
publications, however, the present study is the first to report
GWAS SNP alleles within an intron region appearing to regu-
late expression of a neighbouring gene. These data provide an
obvious rationale to search for long-distance regulatory
sequences as an explanation for a proportion of GWAS SNP
associations. The experiments reported here were able to iden-
tify a long-distance interaction using 3C, based on a hypoth-
esis generated using eQTL data. Further evaluation of the
region using more exhaustive interrogation methods for inter-
acting fragments in a variety of tissues may yet yield evidence
of further interactions. Taken together, there is now clear jus-
tification not only for the evaluation of the mechanism(s) by
which DEXI might protect against autoimmune disease, but
also for the development and use of 3C techniques involving
next-generation sequencing, on a genome-wide scale, such
as ChIA-PET (45), HiC (46) and 5C (47) in multiple cell
types. Based on the findings presented here, we propose that
the small DEXI gene represents the key to a novel and import-
ant pathway in the pathogenesis of T1D, MS and other
immune-mediated diseases.

MATERIALS AND METHODS

Ethics statement

All research involving human participants has been approved
by Fenland and Peterborough Local Research Ethics
Committee.

Monocyte purification and preparation for microarray

Gutenberg Health Study. This protocol has been previously
described (16,17) but briefly, GHS is a community-based, pro-
spective, observational single-centre cohort study in the
Rhein-Main region in Germany. Separation of monocytes
was conducted within 60 min of collection of 8 ml of blood
in patients recruited as part of this study, and RNA was
extracted the same day. Monocytes were separated by negative
selection, using the Vacutainer CPT Cell Preparation Tube
System (BD, Heidelberg, Germany) with 400 ml Rosette Sep
Monocyte Enrichment Cocktail (StemCell Technologies, Van-
couver, Canada) added immediately after blood collection.
After separation, cells were washed twice in ice-cold
phosphate-buffered saline (PBS) buffer containing 2 mM

EDTA and the purity in selected samples was confirmed by
flow cytometry. Cells were resuspended in 1.5 ml TRIzol
reagent (Invitrogen, Karlsruhe, Germany) and RNA extraction
was performed within 5 h using chloroform extraction and the
RNeasy Mini Kit (Qiagen, Hilden, Germany), including
DNAse digestion. Genome-wide expression analysis was per-
formed on monocyte RNA samples using the Illumina HT-12
v3 BeadChip (http://www.Illumina.com), in batches of 96
samples. Genotyping was performed using the Affymetrix
(Santa Clara, CA, USA) Genome-Wide Human SNP Array
6.0 and the Genome-Wide Human SNP NspI/StyI 5.0
Assay Kit.

Cardiogenics project. This protocol has previously been
described (17), but briefly, the multi-centre Cardiogenics
(CGP) study includes 363 patients with coronary artery
disease or myocardial infarction and 395 healthy individuals
of European descent (http://www.cardiogenics.eu). Blood
samples (30 ml) from fasting subjects were collected into
EDTA blood tubes and monocytes were isolated by positive
selection, using CD14 microbeads and AutoMACS/Auto-
MACS Pro (Miltenyi - Bergisch Gladbach, Germany) accord-
ing to the manufacturer’s instructions. Monocyte purity was
measured as the percentage of CD14+ve cells analysed by
flow cytometry. Isolated monocytes were lysed in TRIzol
reagent and RNA was extracted by a method similar to that
described above for GHS. Whole-genome genotyping was
carried out at the Wellcome Trust Sanger Institute, using
two arrays, the Sentrix Human Custom 1.2M array and the
Human 610 Quad Custom array (Illumina). Gene expression
profiling was performed using Human Ref-8 Sentrix Bead
Chip arrays (Illumina).

eQTL analysis

Normalized expression probes in 16p13 were tested for asso-
ciation in the region, assuming an additive model, using the
‘R’ software package.

3C and qPCR

The method for 3C has been previously reported in detail (21) by
co-authors N.F.C. and P.F., so is described briefly here. The lung
epithelial cell line A549 and the monocyte-like cell line THP-1
were obtained from ATCC (http://www.lgcstandards-atcc.
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org/ATCCCulturesandProducts/CellBiology/) and grown
according to standard tissue culture protocols, in addition to
an EBV-transformed B-cell line from the CEPH collection
obtained from ECACC (http://www.hpacultures.org.uk/
collections/ecacc.jsp).

Fifty million cells at �80% confluence from each cell line
were harvested and washed in ice-cold PBS before being
passed through a cell strainer. Following a second PBS
wash, cells were re-suspended in 45 ml high-glucose DMEM
medium + L-glutamine (Invitrogen) and 10% fetal bovine
serum. Cross-linking was performed by adding 2.7 ml of
37% formaldehyde (Merck) for 5 min at room temperature
with rocking. The reaction was quenched with 3 ml of 2 M

glycine, followed by washing with 50 ml ice-cold PBS. The
pellet for each cell line was re-suspended in 50 ml of perme-
abilization buffer [10 nM Tris–HCl, pH8, 10 mM NaCl, 0.2%
igepal and one complete protease inhibitor tablet, EDTA-free
(Roche Diagnostics, Penzberg, Germany)] and incubated at
48C on ice with mixing. Following a centrifugation step, and
manual cell count, each 1 × 107 nuclei from each cell line
were resuspended in 100 ml of NEB Buffer 3 (New England
BioLabs, Ipswich, MA, USA). One 1 × 107 nuclear pellet
from each cell line was treated with 7.5 ml of 20% SDS for
1 h at 378C, 950 r.p.m. on a Thermomixer (Eppendorf,
Histon, UK), to remove any non-cross-linked proteins from
the DNA. This was followed by the addition of 50 ml of
20% Triton-X100 (Sigma-Aldrich) for 1 h at 378C,
950 r.p.m., to sequester SDS and allow subsequent digestion.
BglII enzyme (1500 IU) (NEB) was added to each tube, fol-
lowed by incubation overnight at 378C and 950 r.p.m.

A 5 ml of aliquot of digested DNA was assessed for com-
pleteness of digestion using gel electrophoresis. The BglII
enzyme was inactivated by the addition of 40 ml of 20%
SDS for 25 min at 658C at 950 r.p.m. The incubated samples
were added to 7 ml of 1.1× ligation buffer (NEB) and
375 ml of Triton-X100 for 1 h at 378C, with mixing. The
cross-linked digested DNA was re-ligated by the addition of
800 IU NEB T4 DNA ligase for 4 h at 168C and then
30 min at room temperature. Then 900 mg of Proteinase K
(Roche Diagnostics) was added followed by an overnight
incubation at 658C.

The samples were cooled to room temperature and 300 mg
of RNAse A (Sigma) added for 1 h at 378C. This was followed
by phenol–chloroform extraction and ethanol–acetate precipi-
tation of DNA, which was quantified by PicoGreen assay.

3C interaction products were detected by PCR using candi-
date primer pairs with and Qiagen HotStar Taq Polymerase
and 250 ng of DNA per reaction, followed by agarose gel elec-
trophoresis. Quantification of interaction products was under-
taken using qPCR and 2× SYBR Green Mastermix (Applied
BioSystems, Final 1×) and candidate forward and reverse
primers at a final concentration of 400 nM. Samples were
tested in a 96-well format in triplicate, using the ABI 7000
sequence detection system. Quantification was achieved
using serial dilutions of a 3C-positive control template on
each plate. This was generated by synthesis of all possible
PCR products using the available primers (Supplementary Ma-
terial, Table S1), followed by gel extraction and purification.
PCR products underwent BglII digestion before being mixed
in equimolar concentrations and ligated with T4 ligase

(NEB) to generate a pool of potential interaction products,
which was purified by phenol–chloroform extraction and
ethanol precipitation. The control template was mixed with
genomic DNA that had undergone digestion and random liga-
tion so that PCR efficiency was not affected by the total
amount of DNA present (similar to the 300 ng/reaction for
the real 3C samples) (16). Quantification of PCR products
was achieved by comparison with the standard curve on
each plate and in addition, values were normalized for each
experiment using the result obtained from the most 3′ interact-
ing primer and the bait within each cell line.

Sequencing of qPCR products at candidate interaction sites
was undertaken following gel purification and PCR of purified
products with the original 3C primers and the BigDye Termin-
ator v3.1 sequencing kit. Samples were analysed in triplicate
from each cell line, using the 3730xl DNA Analyzer
(Applied BioSystems) and sequencing traces were visually
checked using the Peak PickerTM software.
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