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Atherosclerosis, characterized by atherosclerotic plaques, is a complex pathological
process that involves different cell types and can be seen as a chronic inflammatory
disease. In the advanced stage, the ruptured atherosclerotic plaque can induce
deadly accidents including ischemic stroke and myocardial infarction. Epigenetics
regulation, including DNA methylation, histone modification, and non-coding RNA
modification. maintains cellular identity via affecting the cellular transcriptome. The
epigenetic modification process, mediating by epigenetic enzymes, is dynamic under
various stimuli, which can be reversely altered. Recently, numerous studies have
evidenced the close relationship between atherosclerosis and epigenetic regulations
in atherosclerosis, providing us with a novel perspective in researching mechanisms
and finding novel therapeutic targets of this serious disease. Here, we critically review
the recent discoveries between epigenetic regulation mechanisms in atherosclerosis.
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1 INTRODUCTION

In recent years, with the fast development of the economy and the change of people’s living
habits, cardiovascular diseases (CVDs), including coronary heart diseases and cerebrovascular
diseases, have seriously threatened human health in modern society (Bufalino et al., 2020). Even
huge progress has been achieved in preventing and treating CVDs, CVDs are still one of the
main causes of human mortality and morbidity worldwide. According to one survey conducted
by American Heart Association in 2021, the prevalence of CVDs (including chronic heart
diseases, Heart Failure, and stroke) in adults ≥20 years is 9.3% overall and increases with age in
both males and females (Virani et al., 2021). Among all the causes of CVDs, atherosclerosis
accounts for one of the primary underlying causes with the characteristics of narrowing the
blood vessels.

Till now, the pathology of atherosclerosis remains unclear, and the risk factors for
atherosclerosis include oxidative stress reaction, chronic inflammation, lipids
dysmetabolism, genetic factors et al. (Zhong et al., 2019; Leong, 2021). Epigenetics
mediates transcriptomic modification without changing DNA sequences and this process is
responsive to environmental stimuli (Napoli et al., 2021). Researchers in recent decades have
confirmed that aberrant epigenetic modifications participated in the initiation and progression
of atherosclerosis (Lee et al., 2020; Karthika et al., 2021; Wong et al., 2021). In this review, we
will focus on illuminating the regulation mechanisms between epigenetic modification and
atherosclerosis pathology.
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2 THE PATHOLOGYOF ATHEROSCLEROSIS
INVOLVES MULTIPLE TYPES OF CELLS

Atherosclerosis is the result of lipid metabolism disorder in the
body, the disbalance of influx and efflux of lipids, especially for
low-density lipoprotein (LDL) and oxidized low-density
lipoprotein (Ox-LDL), gradually leads to chronic inflammation
in blood vessels (Poznyak et al., 2021). The pathological process
of atherosclerosis involves multiple types of cells and can be seen
as the chronic inflammatory process of the blood vessel wall
(Khan et al., 2021). The accumulation of LDL and Ox-LDL leads
to endothelial cell (EC) dysfunction, and further, the activated
ECs subsequently recruit the monocytes to the damaged site, then
monocytes differentiate into macrophages (Xu et al., 2021a;
Malekmohammad et al., 2021). The differentiated
macrophages and resident macrophages take up lipoprotein
forming the initial foam cells (Mushenkova et al., 2021). At
the same time, the inflammatory macrophages secret and
recruit a series of cytokines, such as interleukin 1 (IL-1) and
chemoattractant protein 1(MCP-1), and this mechanism
provides a theoretical basis for anti-inflammation therapy in
atherosclerosis treatment (Zhang et al., 2021a). In addition,
the clearance efficiency of apoptotic cells in atherosclerosis
plaque is much lower owing to the impaired efferocytosis,
which also contributes to atherosclerotic plaque formation
(Wang et al., 2020). In the primary stage of atherosclerosis,
atherosclerotic plaques are lying underneath the blood vessel
and keep in a stable state with the help of the extracellular matrix.
The deposition of plaque gradually narrows the blood vessels,
contributing to ischemic diseases. The thrombus also promotes
plaque healing process, which leads to progressive intimal
thickening and aggravates downstream artery stenosis (Libby,
2021).

3 EPIGENETIC REGULATION OF
ATHEROSCLEROSIS

The chromatin mainly consists of DNA and histone proteins
(H2A, H2B, H3, and H4), which determine gene transcription
and transduction. Although DNA and histone proteins are highly
packaged, the environment of chromatin is not stereotyped and
the structure of chromatin is dynamic when subjects to various
stimuli andmodifications (Bhutani et al., 2011). Subsequently, the
change of chromatin affects information transduction to RNA,
which further alters the expression of certain proteins. The
epigenetic, in brief, can be described as potentially inheritable
chromatin regulation without altering the primary DNA
sequence. The occurrence of epigenetics can be ascribed to the
interaction between environment and gene (Baccarelli and
Bollati, 2009; Burdge and Lillycrop, 2010). Epigenetics are
mainly composed of three aspects: DNA/RNA methylation,
post-translational modification (PTM) of histone proteins, and
non-coding RNA modification (Xu et al., 2019).

The main process of DNA/RNA methylation and histone
modifications briefly consist of “readers”, “writers”, and
“erasers”. Epigenetic “readers” are specialized domains

detecting methylated histone (Zhang et al., 2021b; Zhang
et al., 2021c). Epigenetic “writers” include DNA
methyltransferases (DNMTs), histone acetyltransferases
(HATs), histone methyltransferases (HMT). Epigenetic
“erasers” include ten-eleven translocation (TET)
methylcytosine dioxygenases, histone deacetylases (HDACs).
The coordination of epigenetic readers, writers, and erasers
regulates gene expression either by active epigenetic marks or
repressive epigenetic marks towards target gene promoters (Xu
et al., 2021b). Non-coding RNA refers to RNA that cannot be
translated into protein, and in the past, noncoding RNA was
considered to be insignificant in gene transcription. However, in
the near decades, non-coding RNA (ncRNA) was evidenced to
exert different regulating functions in this process (Xu et al.,
2019).

Studies suggested that epigenetic regulation exerts a pivotal
role in many diseases such as cancers and CVDs (Liu et al., 2021;
Yang et al., 2021). Distinct from genetic alteration, epigenetic
modification is reversible, and the inhibitor of epigenetic
alteration provides a novel insight into searching
pharmaceutical therapeutic targets (Pons et al., 2009). Many
studies have revealed the pivotal roles that epigenetic
modification played in atherosclerosis progression and plaque
rupture, and techniques such as chromatin immunoprecipitation
sequencing (ChIP-seq) and epigenomic mapping techniques
based on genome make it possible to analyze the epigenetic
diversity between normal and atherosclerotic tissue (Yue et al.,
2014; Lee et al., 2020). In the following part, we will discuss the
mechanism of epigenetic modifications in atherosclerosis in
detail.

3.1 DNA/RNA Methylation in the Pathology
of Atherosclerosis
Among epigenetics, DNA methylation is the most researched in
the mechanism of atherosclerosis. Methylation and
demethylation regulate gene translation and transduction,
which means DNA methylation is dynamic and can be
modified or reversed, so is the structure of DNA. And
generally, the methylation of the promoter is regarded as the
marker of the silenced gene. According to different functions in
DNA methylation, DNMTs can be classified into three types:
DNMT1, DNMT3a, and DNMT3b. For specific, DNMT1 is
responsible for maintaining DNMT by adding methyl to
hemi-methylated DNA in mitosis when cell replicating. And
DNMT3a and DNMT3b add methyl groups to unmethylated
DNA directly from de novo in mammals (Jeltsch and Jurkowska,
2014). The significant role of DNA methylation played in
atherosclerosis is reported by many studies (Zhang et al.,
2021b; Jeong et al., 2021). Zaina et al. studied the DNA
methylation of atherosclerosis in humans and mapped the
DNA methylation profile in atherosclerosis, they reported that
DNA methylation regulated different inflammatory genes and
pathways (Zaina and Lund, 2014). Valencia et al. interrogated
atherosclerotic and normal aortic samples and they found
atherosclerosis progression-specific DNA hypermethylation
profiles in the vascular tissue (Valencia-Morales et al., 2015).
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Atherosclerosis is a chronic inflammatory disease in blood
vessels characterized by infiltration of inflammatory cells and
cytokines. The irregular shear stress plus lipid dysmetabolism
initially activate the ECs, subsequently, the monocyte,
macrophage, and vascular smooth muscle cell (VSMC) are
activated and recruit inflammatory cytokines such as MCP-1,
matrix metalloproteinase (MMP), and tumor necrosis factor α
(TNF-α) (Sugiyama et al., 2001; Ding et al., 2015). In recent years,
studies have revealed the key roles DNA methylation played in
the inflammation of atherosclerosis (Shuto et al., 2006; Ianni
et al., 2013). Stenvinkel et al. analyzed DNA methylation of
peripheral blood leukocytes in chronic kidney disease and they
found that global DNA hypermethylation was correlated with
inflammation reaction, which contributed to the highmortality in
chronic kidney disease (Stenvinkel et al., 2007). The
dysmetabolism of lipid is one the of main causes of
atherosclerosis, and among lipoproteins, dysmetabolism of Ox-
LDL is key in atherosclerosis. Ding et al. reported the role of Ox-
LDL lipoprotein played in inflammation in vascular ECs. In their
study, they also found that DNA methylation in inflammation is
one of the potential risk factors in CVDs (Ding et al., 2015).
Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1)
recognizes and regulates the metabolism of ox-LDLs in ECs. Tian
et al. reported that DNA hypomethylation is associated with ECs
damage, and they confirmed this effect was mediated through
toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) (Tian
et al., 2018). Nitric oxide synthase (NOS) is synthesized in ECs,
NOS exert a significant role in inflammation of atherosclerosis
(Forstermann and Sessa, 2012). Heiss et al. suggested that
posttranslational modifications of NOS could be regulated
through DNA methylation (Heiss and Dirsch, 2014). Kruppel-
like factor 2 (KLF2) is one of the critical anti-inflammatory
mediators in atherosclerosis in ECs, which is also the
transcriptional factor of NOS (Atkins et al., 2008).
Inflammatory molecular lipopolysaccharides (LPS) regulate the
expression of KLF2 through DNA hypermethylation, and this
discovery provided a novel perspective to atherosclerosis (Yan
et al., 2017).

Irregular blood shear stress is one of the potential risk factors
to endothelium injury, which contributes to the pathology of
blood vessel atherosclerosis (Björck et al., 2018). Atherosclerosis
plaques are prone to develop in arteries where blood flow is
disturbed. Dunn et al. found that gene expression of ECs could be
altered in such conditions, and they evidenced that the expression
level of DNMT was increased in cultured ECs when suffering
oscillatory shear stress (Dunn et al., 2014). Jiang et al. found that
disturbed blood flow increased DNA methylation within the
KLF4 promoter, which further lead to suppression of KLF4
expression. And this effect could be mitigated by utilizing
DNMT inhibitors (Jiang et al., 2014). Zhou et al. also found
that in rat carotid arteries, oscillatory shear flow induces DNA
hypermethylation, which exerted a role in the injury of ECs, and
this effect was mediated by DNMT manner (Zhou et al., 2014).

The effect of DNA methylation is mediated through DNMT,
and different DNMTs may play different roles in atherosclerosis
(Yu et al., 2012; Yang et al., 2014). Deng et al. found that the
expression level of DNMT1 was correlated with the expression

level of monocytes and DNA hypomethylation was
independently linked with the risk of CADs in the Chinese
population (Deng et al., 2018). The role of DNMT1 played in
atherosclerotic plaque was also evidenced in other studies
(Greissel et al., 2015). Yu et al. reported that DNMT 3a
limited the expression of interleukin-13 in T helper two cells,
which further inhibited inflammation reaction (Yu et al., 2012).
Yang et al. suggested that DNMT 3b regulated macrophage
polarization and inflammation through DNA methylation at
promoter location (Yang et al., 2014).

Besides DNMT dependent manner, DNA demethylation also
can be mediated through TET, which includes TET1, TET2, and
TET3. Greissel et al. found that the expression of DNA-
demethylase TET1 was increased in atherosclerotic plaques,
which was consistent with DNA hypomethylation (Greissel
et al., 2015). Liu et al. suggested the significant role of TET2
played in the phenotype transformation of vascular smooth
muscle cells, dysfunction of endothelial cells, and macrophage
inflammation, which contributed to the pathology of
atherosclerosis (Liu et al., 2018). Jiang et al. suggested that
DNA demethylation mediated by TET3 played a key role in
DNA injury repairmen and stability of gene expression (Jiang
et al., 2017).

Besides DNA methylation, RNA methylation is a newly
emerging field of epigenetics in atherosclerosis. Fu et al.
reported the relationships between N6-methyladenosine (m6A)
modification in messenger RNA (mRNA) and atherosclerosis risk
factors (Fu et al., 2021). Chien et al. identified m6A
methyltransferase-like 3 (METTL3) as a responsive hub when
subject to hemodynamic forces, which was atherogenic stimuli in
endothelial cells (Chien et al., 2021). Similarly, METTL3-
dependent m6A methylation in regulating inflammatory
processes was also reported in Zhang et al. study, which
contributed to a more comprehensive understanding of
atherosclerosis pathogenesis (Zhang et al., 2021d).

3.2 Histone Modification in the Pathology of
Atherosclerosis
Compared to DNA methylation, PTM is more complex, which
occurs at the N-terminal of histones and plays a crucial role in
regulating gene expression (Bentzon et al., 2014). The function of
PTM is dependent on the modification of different residues and
varies among different tissues. The PTM mainly includes
acetylation, methylation, phosphorylation and ubiquitination,
SUMOylation, GlcNAcylation. Among PTM, histone
acetylation and methylation are the most researched, which
are closely associated with the inflammatory process of
cardiovascular diseases (Zhang et al., 2014). Histone
acetylation is mediated by HATs and histone deacetylases
(HDACs) while histone methylation is mediated by histone
methyltransferases (HMTs) (Pons et al., 2009; Jiang et al., 2018).

3.2.1 Histone Acetylation and Pathology of
Atherosclerosis
Histone acetylation, mediating via HATs, is defined as adding
positive acetyl groups to amino acid residues of histones, which
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reduces the combination between histone protein and DNA and
further activates gene expression. Histone deacetylases, mediating
via HDACs, refers to the removal the acetylated residues at lysine
and further inhibits gene expression (Chen et al., 2020). Recently,
various studies have confirmed the key role HATs and HDACs
played in the pathology of atherosclerosis. Hoeksema et al.
suggested that HDAC3 exerted a significant role in the
phenotype of macrophages in atherosclerotic lesions, and
collagen deposition was observed in HDAC3 deletion mice,
promoting the stabilization of atherosclerotic plaques
(Hoeksema et al., 2014). Mullican et al. found that in HDAC3
deletion mice, the expression of the IL-4 gene was elevated, and
the alternative anti-inflammatory cytokine secretion was
evidenced in macrophages (Mullican et al., 2011). Lee et al.
suggested that HDAC groups exerted key roles in oxidative
and inflammatory reactions, in their study, they found that
under disturbed blood flow, the expression of HDAC2,
HDAC3, HDAC5 was elevated in the rat aortic arch, which
resulted in a pro-atherogenic phenotype of endothelial cell
(Lee et al., 2012). Li et al. found that HDAC1 was reduced in
atherosclerotic lesions, mediating ECs apoptosis by miR-34a (Li
et al., 2018). Sun et al. reported that HDAC1 was pivotal in the
migration and phenotypic transformation of VSMCs (Sun et al.,
2020). Thus, the role of HDACs played in atherosclerosis is
complex, the multiple functions may vary depending on the
different cell types.

While controversial roles exist in HDACs, the role of HAT is
considered to be proatherogenic. Kawahara et al. observed the
hyper-nuclear acetylation in VSMCs of coronary atherosclerotic
lesions (Kawahara et al., 1999). Greissel et al. found in human
carotid plaques, histone acetylation was localized in ECs, VSMCs,
and macrophages (Greissel et al., 2016). Inhibiting HAT
expression was accompanied by increased cholesterol efflux in
macrophages, this anti-inflammatory effect was mediated by
decreased NF-kB activation (Lin et al., 2015).

3.2.2 Histone Methylation and Pathology of
Atherosclerosis
Histone methylation refers to transferring a methyl group from
S-adenosyl-L-methionine to lysine or arginine residues in histone
via HMTs, in this process, the charge of histone protein keeps
unchanged. Compared to histone acetylation and deacetylation,
histone methylation is a more complex process, the modification
of different residues in histone may lead to activating or
repressive chromatin configuration. Also, the amount of
methyl group added to histone residues may vary from mono-
methylation, di-methylation, and tri-methylation (Bannister and
Kouzarides, 2011). Among them, histone three lysine 27
trimethylation (H3K27me3), histone three lysine nine
trimethylation (H3K9me3), and histone three lysine four
trimethylation (H3K4me3) are typical epigenetic marks of
histone methylation.

The association between histone methylation and
atherosclerosis was revealed in many studies. Alkemade et al.
confirmed that in Apoe–mice, the H3K27me3 level was reduced
in VSMCs (Alkemade et al., 2010). Wierda et al. studied the
relationship between H3K27me3 modifications and

atherosclerotic plaque in human renal aortic tissue, the
immunohistochemistry result found that the expression
level of H3K27me3 was reduced in atherosclerotic blood
vessels, which was related to the VSMCs migration and
proliferation (Wierda et al., 2015). Bekkering et al. isolated
human monocytes and exposed them to oxLDL, after 24 h, the
elevated expression of H3K4me3 of inflammatory genes
include MCP-1, TNF- α, IL-6, IL-18, MMP was observed,
which further exerted a proatherogenic role in vitro
(Bekkering et al., 2014). Jumonji C domain protein (JMJD)
expressed in macrophages is a specific H3K27me3 demethylase
and polycomb group (PcG) protein that can mediate gene
silencing. De et al. found that in macrophages JMJD3 could
regulate H3K27me3 levels by binding PcG in response to
inflammation and transcriptional activity. When exposed to
lipopolysaccharide (LPS), the levels of JMJD3 were increased
in macrophages (De Santa et al., 2007).

3.3 Non-coding RNA Modification in the
Pathology of Atherosclerosis
Besides DNA methylation and histone modifications, there are
more and more studies confirming the existence of ncRNA
epigenetic modifications in the pathology of atherosclerosis
(Wang et al., 2019; Chang and Wang, 2021). According to the
amounts of base pairs, ncRNAs can be classified into small
ncRNAs such as microRNAs (miRNA), long ncRNAs such as
long intergenic ncRNA (lncRNA), circular RNA (circRNA)
(Boon et al., 2016).

3.3.1 miRNA in the Pathology of Atherosclerosis
MiRNA, consisting of 20–40 nucleotides, regulates post-
transcriptional gene expression. In many diseases, this process
is accompanied by DNA methylation or histone modifications
(Tao et al., 2021). miRNA broadly participates in inflammation,
oxidative reaction, cholesterol balance, and all of these processes
are atherosclerosis risk factors. The specific mechanism of
miRNA contributing to atherosclerosis varies depending on
the cell types (Hosen et al., 2020). Leeper et al. summarized
the key role miRNA played in VSMCs in atherosclerosis, and they
suggested that miRNA could potentially be a biomarker when
diagnosing and treating this disease (Leeper and Maegdefessel,
2018). Other studies also revealed the importance miRNAs
played in endothelial dysfunction and macrophage failure in
atherosclerosis (Schober and Weber, 2016; Poller et al., 2018).

3.3.2 lncRNA in the Pathology of Atherosclerosis
LncRNA consists of more than 200 nucleotides, in a long time,
lncRNA was considered to be insignificant in gene expression.
Similar to miRNA, lncRNA can exert epigenetic roles in different
cell types in atherosclerosis. Guo et al. reported that LncRNA
PVT1 knockdown alleviated ECs injury and atherosclerosis in
mice (Guo et al., 2021). Weng et al. suggested that LINC01123
promoted cell proliferation and migration through regulating
miR-1277-5p in VSMCs, whichmay be involved in fibrous plaque
formation (Weng et al., 2021). Huang et al. reported in
macrophage, lncRNA H19 overexpression significantly
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increased the atherosclerotic plaque in mice via the miR-146a-5p
pathway (Huang et al., 2021a).

3.3.3 circRNA in the Pathology of Atherosclerosis
CircRNAs are closed circular molecules, which are generated
from splicing of specific regions of pre-mRNAs (Bayoumi et al.,
2018). More recently, growing studies have shown regulating
effects of circRNAs in atherosclerosis (Cao et al., 2020). Huang
et al. found circUSP36 promoted EC dysfunction in
atherosclerosis via miR-637 (Huang et al., 2021b). Li et al.
reported in the serum of atherosclerosis patients, circ_0002984
was elevated and further study confirmed its role in the
proliferation and migration of VSMCs (Li et al., 2021). And in
He et al.’s study, circSCAP aggravated macrophage injury in
atherosclerosis (He et al., 2021). In brief, the newly emerging
circRNAs have broadened our understanding of atherosclerosis
pathology.

4 CONCLUSION

Till now, a growing number of studies have revealed the
relationship between epigenetic regulation and atherosclerosis.
However, owing to the complexity of the pathology of
atherosclerosis, the current discoveries are still in a
preliminary stage. Epigenetics transfer and translate
environmental stimuli of atherosclerosis risk factors into
reversible gene abnormal expression. The improvement of
epigenetic analysis technology, as well as more efforts by
researchers, will significantly increase our understanding of the

potential epigenetic marks either as diagnostic or as a therapeutic
agent in atherosclerosis.

Our review briefly summarizes the regulatory mechanism of
epigenetic modifications in different stages of atherosclerosis
progression and different cell types. Bedside the questions,
improvements have been acquired in the pharmacology of
targeted drugs to inhibit atherosclerosis progression. Although
most of the therapeutic agents currently are still in the
laboratory stage, it can be envisaged that as the
understanding of epigenetic modification is deepening,
novel therapeutic interventions of atherosclerosis are in the
near corner.
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