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Simple Summary: The red deer (Cervus elaphus) de novo genome assembly (CerEla1.0) has provided
a great resource for genetic studies in various deer species. In this study, we used gene order
comparisons between C. elaphus CerEla1.0 and B. taurus ARS-UCD1.2 genome assemblies and
fluorescence in situ hybridization (FISH) with bovine BAC probes to verify the red deer-bovine
chromosome relationships and anchor the CerEla1.0 C-scaffolds to karyotypes of both species. We
showed the homology between bovine and deer chromosomes and determined the centromere-
telomere orientation of the CerEla1.0 C-scaffolds. Using a set of BAC probes, we were able to
narrow the positions of evolutionary chromosome breakpoints defining the family Cervidae. In
addition, we revealed several errors in the current CerEla1.0 genome assembly. Finally, we expanded
our analysis to other Cervidae and confirmed the locations of the cervid evolutionary fissions and
orientation of the fused chromosomes in eight cervid species. Our results can serve as a basis for
necessary improvements of the red deer genome assembly and provide support to other genetic
studies in Cervidae.

Abstract: The family Cervidae groups a range of species with an increasing economic significance.
Their karyotypes share 35 evolutionary conserved chromosomal segments with cattle (Bos taurus).
Recent publication of the annotated red deer (Cervus elaphus) whole genome assembly (CerEla1.0) has
provided a basis for advanced genetic studies. In this study, we compared the red deer CerEla1.0 and
bovine ARS-UCD1.2 genome assembly and used fluorescence in situ hybridization with bovine BAC
probes to verify the homology between bovine and deer chromosomes, determined the centromere-
telomere orientation of the CerEla1.0 C-scaffolds and specified positions of the cervid evolutionary
chromosome breakpoints. In addition, we revealed several incongruences between the current deer
and bovine genome assemblies that were shown to be caused by errors in the CerEla1.0 assembly.
Finally, we verified the centromere-to-centromere orientation of evolutionarily fused chromosomes in
seven additional deer species, giving a support to previous studies on their chromosome evolution.

Keywords: BAC mapping; comparative cytogenetics; chromosome fission; chromosome fusion;
FISH; genome assembly; karyotype

1. Introduction

The family Cervidae (Ruminantia) groups more than fifty extant deer species, includ-
ing species with growing economic importance. Deer species can be divided into three
subfamilies: Cervinae, Capreolinae and Hydropotinae [1] and show a great karyotype
diversity reflecting chromosome evolution of the taxon. The diploid chromosome num-
bers range from 2n = 6 in the female Indian muntjac (Muntiacus vaginalis) to 2n = 70 in
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several species of Capreolinae [2–4]. The 2n = 70 karyotypes of Hydropotes inermis and
Mazama gouzoubira, involving 68 acrocentric autosomes, an acrocentric X and a small sub-
metacentric Y, most probably represent an ancestral cervid karyotype [4] which evolved
from the hypothetical ancestral pecoran karyotype (2n = 58) by six chromosome fissions [5].

Comparative cytogenetic studies revealing interspecies chromosome homologies and
tracking of evolutionary karyotype rearrangements have been still scarce in Cervidae, with
the exception of Muntjacini. The published studies were based mostly on standard banding
methods [6–8] or on fluorescence in situ hybridisation (FISH) using whole chromosome
painting probes [5,9–13]. The known data show that the most common mechanism of
karyotype evolution in Cervidae is represented by Robertsonian (centric) fusions [4,7],
whereas tandem fusions were described as the major evolutionary karyotype shaping factor
in Muntiacini [9,11]. On the other hand, fissions of several ancestral pecoran chromosomes
conserved in Bos taurus (BTA, 2n = 60) as BTA1, 2, 5, 6, 8, 9 and intrachromosomal rear-
rangements of the BTA1 orthologue and the X chromosome were also detected in Cervidae
using bovine BAC (Bacterial Artificial Chromosome) probes [13,14].

However, the recent rapid development of high throughput molecular methods,
namely whole genome sequencing, has brought new resources for comparative phyloge-
netic studies. At the level of chromosomes and their parts, an analysis of the next generation
sequencing data can enable a precise determination of evolutionary chromosome break-
points and allow a detection of small or intrachromosomal rearrangements that cannot
be visualized by conventional cytogenetics or FISH with whole chromosome painting
probes. In ruminants, cryptic interspecies chromosome differences as small as 3.3 Mb were
identified in cattle and sheep using an in silico comparative bioinformatic approach [15].
This indicates that the use of sensitive methods can bring interesting discoveries even in
seemingly well-described taxa.

Unfortunately, this approach is only limited to species with completely sequenced
and well-assembled genomes. Regarding Cervidae, whole genome assembly divided to
chromosome-scale scaffolds (C-scaffolds) and including basic gene annotation is avail-
able only for the red deer (Cervus elaphus, CEL, 2n = 68) [16]. The CerEla 1.0 assembly
available in the NCBI database has a total length of 3438.62 Mb and a total ungapped
length 1960.83 Mb. It includes 406,637 contigs, 11,479 scaffolds and 35 chromosome-scale
scaffolds (C-scaffolds) (https://www.ncbi.nlm.nih.gov/assembly/GCA_002197005.1/#/st
accessed on 5 November 2020). The C-scaffolds in the CerEla1.0 genome assembly currently
available in the NCBI database are arranged in accordance with the red deer genetic linkage
map [17]. As a result, their order does not comply with the physical chromosome length
and the chromosome order and centromere-telomere orientation in the red-deer karyotype.

Generally, the use of other methods, i.e. BAC FISH mapping, is recommended to
verify the newly established genome assemblies and physically anchor them to to chro-
mosomes, thus upgrading them to a chromosome level [18–21]. In this study, we used
comparisons with cattle (B. taurus), a closely related species used as model for comparative
studies among Cetartiodactyla, with a range of available BACs and, above all, a well
established whole genome sequence that served as a reference sequence for the CerEla1.0
assembly establishment [16]. We paired the 34 deer chromosome-scale scaffolds of the
C. elaphus (CerEla1.0) genome assembly with bovine chromosomes by comparison of the
gene annotation of the C. elaphus (CerEla1.0) and B. taurus (ARS-UCD1.2) assemblies avail-
able in the NCBI database. We selected bovine BACs for a construction of FISH probes
that we used to anchor the CerEla1.0 C-scaffolds to C. elaphus karyotype, to compare the
centromere-telomere orientation of the deer and bovine chromosomes and to analyse cervid
evolutionary chromosome rearrangements. Using this approach, we revealed and cor-
rected several incongruences between the CerEla1.0 and ARS-UCD1.2 genome assemblies,
specified the orientation of the C. elaphus C-scaffolds and adjusted the predicted positions of
evolutionary breakpoints characteristic for the cervid lineage. Using BAC-FISH mapping,
we verified the breakpoints positions in a total of eight karyotypically different cervid
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species from subfamilies Cervinae and Capreolinae and specified the centromere-telomere
orientation of their evolutionarily rearranged chromosomes.

2. Materials and Methods
2.1. Samples and Karyotype Analysis

Samples of whole peripheral blood of cattle (Bos taurus) and eight deer species includ-
ing the red deer (C. elaphus) were obtained from captive born animals held in the Prague
zoological garden and/or in deer enclosures in Bila Lhota and Frycovice (Czech Republic).
The analysed species are listed in Table 1. Taxonomic nomenclature published by Groves
and Grubb (2011) was used in this study [22].

Table 1. List of analysed species.

Species Latin Name Abbrev. 2n FNa Bia X Fused BTA Orthologues

Red deer Cervus elaphus CEL 68 68 2 A 17/19
White-lipped deer Cervus albirostris CAL 66 68 4 A 17/19, 25/6prox

Rusa deer Rusa timorensis RTI 60 68 10 A 17/19, 5prox/22, 2dist/7, 5dist/8prox,
5prox/22, 18/3

Eld’s deer Rucervus eldii REL 58 68 12 A 17/19, 2dist/7, 5dist/8prox, 5prox/10,
18/1prox, 22/1dist

Roe deer Capreolus capreolus CCA 70 68 0 B
Reindeer Rangifer tarandus RTA 70 70 2 B

Moose Alces alces AAL 68 70 4 B 29/17
White-tailed deer Odocoileus virginianus OVI 70 70 2 B

2n—diploid number; FNa—fundamental number of autosomal arms; Bia—number of bi-armed autosomes; BTA—Bos Taurus;
A—acrocentric; B—bi-armed. The evolutionary chromosome fusions were detected previously using bovine whole chromosome painting
probes [13].

Peripheral blood lymphocytes were cultured, harvested and fixed according to the
previously described protocols [23]. Metaphase chromosome spreads for the karyotype
and FISH analysis were prepared according to the procedures described previously [24].
GTG-banded karyotypes of B. taurus and C. elaphus were prepared using the standard
trypsin/Giemsa method [25]. The karyotype of C. elaphus was arranged in accordance with
the previously published deer karyotypes [13,26].

2.2. Chromosome Orthology and Breakpoint Site Prediction

Orthology between the red deer and bovine chromosomes was assessed by a com-
parison of B. taurus ARS-UCD1.2 and C. elaphus hippelaphus CerEla1.0 annotated genome
assemblies available in the NCBI database (Accessed on 15 May 2020). Predicted locations
of protein coding genes in the CerEla1.0 genome assembly (https://www.ncbi.nlm.nih.gov/
genome/browse/#!/proteins/10790/321837%7CCervus%20elaphus%20hippelaphus/ ac-
cessed on 15 May 2020) were compared with positions of the corresponding genes in the
bovine genome (https://www.ncbi.nlm.nih.gov/gene/advanced accessed on 15 May 2020).
Briefly, we selected predicted protein coding genes separated by a distance of approxi-
mately 5 Mb along the length of the C. elaphus CerEla1.0 C-scaffolds and searched for their
positions in the bovine ARS-UCD1.2 genome assembly. The 5 Mb distance was chosen to
enable a reliable distinguishing of the mutual positions of BAC probes mapping to these
regions when any incongruences would need to be solved by a dual colour BAC-FISH. To
specify the breakpoints of the evolutionary chromosome fissions of ancestral chromosomes
corresponding to bovine BTA1, 2, 5, 6, 8 and 9 [13,14], we predicted the putative ancestral
breakpoint sites on the basis of the flanking gene positions in the deer and bovine genome
assembly. The real positions of the evolutionary breakpoints were narrowed using a set of
BAC probes and verified in all deer species available for this study.

2.3. FISH Probes

BAC clones specific to proximal and distal chromosome regions, to regions flanking the
predicted evolutionary breakpoint sites in Cervidae, and to regions showing incongruences

https://www.ncbi.nlm.nih.gov/genome/browse/#!/proteins/10790/321837%7CCervus%20elaphus%20hippelaphus/
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between the deer and bovine genome assembly were selected from the CHORI-240 bovine
BAC library (BACPAC Genomics, Emeryville, CA, USA) on the basis of their location
along the bovine chromosomes in the ARS-UCD1.2 genome assembly. The chromosome
positions of cervid evolutionary breakpoints were further narrowed using additional
BAC clones located in neighbouring positions. The BAC clones used in this study are
listed in Supplementary Tables S1–S3. The BAC DNA was isolated using Wizard Plus SV
Minipreps DNA Purification System (Promega, Madison, WI, USA), labelled with Green-
dUTP (Abbott, Abbott Park, IL, USA), biotin-16-dUTP (Roche, Mannheim, Germany),
or digoxigenin-11-dUTP (Roche) using BioPrime Array CGH Genomic Labeling Module
(Invitrogen, Carlsbad, CA, USA) and used for FISH.

2.4. FISH

A hybridization mixture containing 50% formamide, 2 × SSC, 10% dextran sulfate,
0.7 µg salmon sperm, 1.3 µg Bovine Hybloc DNA (Applied Genetics Laboratories, Mel-
bourne, FL, USA) and 200 ng of the labeled DNA probe was prepared. Ten µL of the
mixture were denatured at 75 ◦C for 10 min, preannealed at 37 ◦C for at least 30 min, and
applied on slides with metaphase chromosomes denatured by 0.07 M NaOH as previously
described [27]. After hybridization in a humid chamber at 37 ◦C overnight, the slides were
washed in 0.7 × SSC at 72 ◦C for 2 min. The BAC probes labeled with biotin-16-dUTP or
digoxigenin-11-dUTP were detected with Avidin-Cy3 (Amersham Pharmacia Biotech, Pis-
cataway, NJ, USA), Streptavidine-Cy5 (Invitrogen/Molecular Probes, Camarillo, CA, USA)
and antidigoxigenin-rhodamine (Roche) according to manufacturers’ instructions. If we
used a combination of two probes labelled/detected by the same fluorochrome for the same
chromosome, we performed two rounds of FISH, so that the position of each probe could be
reliably determined. The slides were mounted in Vectashield mounting medium containing
1.5 mg DAPI (Vector Laboratories) and analysed using Zeiss Axio Imager.Z2 fluorescence
microscope (Carl Zeiss Microimaging GmbH, Jena Germany) equipped with appropriate
fluorescent filters and the Metafer Slide Scanning System (MetaSystems, Altlussheim, Ger-
many). Images of well-spread metaphase cells were captured by CoolCube CCD camera
(MetaSystems) and analysed using Isis3 software (MetaSystems). The reliability of the BAC
probes was confirmed by their hybridization on bovine chromosomes prior to FISH in deer.

3. Results

Comparing chromosomal positions of the predicted genes annotated to the CerEla1.0
C-scaffolds with their locations in the bovine ARS-UCD1.2 genome assembly, we assigned
all red deer C-scaffolds to their bovine orthologues (Supplementary Table S4). Then we
verified the deer-bovine chromosome orthology by BAC-FISH, which also enabled reliable
physical anchoring of CerEla1.0 C-scaffolds to C. elaphus karyotype. Using BAC probes, we
observed identical physical centromere-telomere orientation of orthologous red deer and
bovine chromosomes. However, the orientation of CerEla1.0 C-scaffolds 2, 6, 8, 11, 12, 16,
and 22 in the NCBI database was found to be reversed, and the deer chromosome CEL4 was
found rearranged, when compared with the corresponding CerEla1.0 C-scaffold 19. The
orthology between the G-banded red deer and cattle karyotypes are displayed in Figure 1
and Supplementary Figure S1. The relationships among the CerEla1.0 C-scaffolds and the
red deer and cattle chromosomes are summarized in Table 2. The comparative FISH results
in cattle and the red deer are documented in Figure 2. Karyotypes of the additional studied
cervid species with indicated homologies with B. taurus are displayed in Supplementary
Figure S2.
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Figure 1. The orthology between the G-banded chromosomes of cattle (B. taurus, BTA) and red deer (C. elaphus, CEL).
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Table 2. CerEla1.0 and ARS-UCD1.2 genome assembly comparisons.

Red Deer (CerEla1.0)
CEL Chr

Cattle (ARS-UCD1.2)
Comments *

Pseudochr INSDC Size (Mb) BTA Chr RefSeq Size (Mb)

1 CM0080008.1 104.5 13 15 NC_037342.1 85.01
2 CM0080009.1 63.26 31 29 NC_037356.1 51.1 Reverse
3 CM0080010.1 88.46 17 5prox (1–70 Mb) NC_037332.1 120.09 1–55 Mb of BTA5
4 CM0080011.1 81.2 15 18 NC_037345.1 65.82

5 CM0080012.1 178.03 1 17/19
NC_037344.1 73.17
NC_037346.1 63.45

6 CM0080013.1 73.11 21 6dist (64–118 Mb) NC_037333.1 117.81 Reverse, 70–118
Mb of BTA6

7 CM0080014.1 66.84 26 23 NC_037350.1 52.5

8 CM0080015.1 55.92 28 2dist (94–136 Mb) NC_037329.1 136.23 Reverse, 80–136
Mb of BTA2

9 CM0080016.1 141.95 5 7 NC_037334.1 110.68
10 CM0080017.1 55.94 30 25 NC_037352.1 42.35
11 CM0080018.1 140.39 9 11 NC_037338.1 106.98 Reverse
12 CM0080019.1 127.78 7 10 NC_037337.1 103.31 Reverse
13 CM0080020.1 89.79 24 21 NC_037348.1 69.86
14 CM0080021.1 103.59 14 16 NC_037343.1 81.01
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Table 2. Cont.

Red Deer (CerEla1.0)
CEL Chr

Cattle (ARS-UCD1.2)
Comments *

Pseudochr INSDC Size (Mb) BTA Chr RefSeq Size (Mb)

15 CM0080022.1 125.28 8 28/26
NC_037355.1 45.94
NC_037353.1 51.99

16 CM0080023.1 62.95 32 8dist (64–112 Mb) NC_037335.1 113.32 Reverse, 69–112
Mb of BTA8

17 CM0080024.1 79.72 20 6prox (1–63 Mb) NC_037333.1 117.81 1–66 Mb of BTA6
18 CM0080025.1 152.66 3 4 NC_037331.1 120

19 CM0080026.1 127.24 4 1dist (59–158 Mb) NC_037328.1 158.53 Rearranged,
57–158 Mb of BTA1

20 CM0080027.1 149.34 2 3 NC_037330.1 121.01
21 CM0080028.1 107.36 12 14 NC_037341.1 82.4

22 CM0080029.1 63.92 18 5dist (71–121 Mb) NC_037332.1 120.09 Reverse, 60–121
Mb of BTA5

23 CM0080030.1 109.47 11 13 NC_037340.1 83.47
24 CM0080031.1 78.16 25 22 NC_037349.1 60.77
25 CM0080032.1 96.54 23 20 NC_037347.1 71.97
26 CM0080033.1 55.1 33 9dist (64–106 Mb) NC_037336.1 105.45 65–106 Mb of BTA9
27 CM0080034.1 84.64 27 24 NC_037351.1 62.32
28 CM0080035.1 82.07 19 9prox (1–62 Mb) NC_037336.1 105.45 1–64 Mb of BTA9
29 CM0080036.1 80.17 22 8prox (1–63 Mb) NC_037335.1 113.32 1–64 Mb of BTA8
30 CM0080037.1 117.8 10 12 NC_037339.1 87.22
31 CM0080038.1 75.46 16 1prox (1–58 Mb) NC_037328.1 158.53 1–51 Mb of BTA1
32 CM0080039.1 60.01 29 27 NC_037354.1 45.61
33 CM0080040.1 121.43 6 2prox (1–92 Mb) NC_037329.1 136.23 1–71 Mb of BTA2
X CM008041.1 181.54 X NC_037357.1 139.01
Y CM008042.1 4.03 - - -

* Reverse—inversed centromere-telomere orientation of the CerEla1.0 sequence; Rearranged—intrachromosomal rearrangement. Factual
span on the BTA orthologue verified by BAC-FISH.

Minor differences in the gene order revealed between CerEla1.0 C-scaffolds 4, 5, 6,
11, 12, 18, 19, 23, 27, 33 and X and their bovine orthologues in the ARS-UCD1.2 genome
assembly are highlighted in Supplementary Table S4. We clarified the incongruences in
eight of these regions on six red deer chromosomes, i.e., where the order of the BAC probes
mapping to the incongruent regions was clearly visible. We observed an identical order
of the BAC-FISH signals on cattle and red deer in all of the regions (Figure 3). Interesting
results were obtained using the BAC probe CH240-134N9 targeted to the incongruent
proximal region of the C-scaffold 11 corresponding to the distal part (82.9 Mb) of BTA11
according to CerEla1.0 and ARS-UCD1.2 comparisons, and to orthologous C. elaphus
chromosome CEL9. Instead of BTA11 and CEL9, this probe hybridized to a distal part
of other chromosome in both cattle and red deer. This chromosome was subsequently
identified as BTA29, and CEL31, respectively, by FISH with the BAC probe CH240-384F12
specific to the proximal part (5.8 Mb) of BTA29 orthologous to CEL31 (Figure 3B).

Regarding the X chromosome, we found that the sequences spanning 1–86 Mb of the
CerEla1.0 X chromosome C-scaffold copy the gene order of the bovine X chromosome.
However, a different order of the evolutionary conserved X chromosome segments was
previously reported in studies using BAC-FISH in Cervidae [13,28].

Positions of the evolutionary chromosome breakpoints in chromosomes orthologous to
BTA1, 2, 5, 6, 8 and 9 in the cervid ancestor were predicted on the basis of the genes located
in the most proximal and distal positions of the corresponding CerEla1.0 C-scaffolds and,
thus, flanking the assumed breakpoints. However, we revealed that the real breakpoints
were located in a slightly different positions by a physical FISH-mapping with a series
of BAC probes distributed along the chromosomes in the proximity of the predicted
breakpoints (Figures 4 and 5). The subsequent analysis of the breakpoint positions in
additional cervid species showed similar results in all deer species analysed in this study
(Supplementary Figure S3).
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Figure 2. Centromere-telomere orientation of orthologous bovine (B. taurus, BTA) and red deer (C. elaphus, CEL) chromo-
somes confirmed by BAC-FISH. Green signal—proximal BAC probe; red signal—distal BAC probe.

The evolution of the BTA1 orthologue in the cervid lineage involved an initial fission
followed by intrachromosomal rearrangements of one of the newly formed chromosomes.
Two differentially rearranged types of the chromosome orthologous to the distal part of
the BTA1 were observed in this study: An acrocentric chromosome common to Cervinae
and C. capreolus and a submetacentric chromosome observed in the remaining Capreolinae
in this study (R. tarandus, A. alces and O. virginianus) that was most probably derived from
the previous by a pericentric inversion (Figure 5).

Using CerEla1.0 and ARS-UCD1.2 genome assembly comparisons, the fusion site of
the ancestral chromosomes corresponding to BTA17 and BTA19, which roughly represents
the position of centromere, was found at 95 Mb of the deer C-scaffold 5 (CEL1) length. The
evolutionary fission, giving rise to bovine separated BTA28 and BTA26, was located to
60 Mb of the CerEla1.0 C-scaffold 15 (CEL8).

Finally, we used the bovine BAC probes to determine the centromere-telomere ori-
entation of their evolutionarily fused chromosomes in seven additional deer species with
rearranged karyotypes (Table 1). Except for the tandem fusion of BTA28;26 common to all
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Cervidae, the rearranged chromosomes were formed by evolutionary centric fusions in all
studied species (Figure 6).
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Figure 3. BAC-FISH mapping of the selected regions showing different gene order in CerEla1.0
and ARS-UCD1.2 genome assembly. Numbers indicate the BAC positions (Mb) on individual BTA
chromosomes. (A,B) Identical signal order on orthologous bovine and red deer chromosomes.
(B) Signal of the BAC probe CH240-134N9 on BTA29 and CEL31 instead of BTA11 and CEL9.
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scaffolds and BTA and CEL chromosomes with indicated positions of BAC clones used for the verification of the breakpoint
positions. The BAC gene content and the position of the genes on the CerEla1.0 C-scaffolds is also shown. Notice differences
in the assumed breakpoint positions on the CerEla1.0 C-scaffolds and the positions of breakpoints detected by FISH on
the red deer chromosomes. (B) BAC-FISH signals at proximal, breakpoint and distal positions on C. elaphus chromosomes
orthologous to BTA2, 5, 6, 8 and 9. Positions of selected BAC probes indicating the approximate evolutionary breakpoints
are marked by letters (a–j): a—182F21, b—141M6, c—56D20, d—4M4, e—98F4, f—66P17, g—223P21, h—512A24, i—64B22,
j—4G18. The unmarked FISH signals correspond to the proximal (green); and distal (red) BAC probes.
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4. Discussion

The recent publishing of the C. elaphus whole genome assembly (CerEla1.0) [16]
brought a great resource for a research in the field of deer evolution, conservation and
population genetics. However, the high automation in the genomic assembly construction
may lead to errors. A verification and further improvements provided by molecular genetic
and cytogenetic approaches are recommended for all newly established genome assem-
blies [18–21]. Inter- and intraspecies assembly comparisons supported by FISH enabled the
detection and correction of misassembled sequences in genome assemblies of economically
important bovid species (cattle, Bos taurus, sheep, Ovis aries and goat, Capra hircus) [29,30].
The combination of bioinformatic comparisons and BAC-FISH allowed identification of
cryptic divergences between cattle and goat [15]. Using universal BAC sets, multiple
scaffolds can be anchored to chromosomes of various species, as it was shown in birds [20].

In this study, we focused on the verification of chromosome relationships among
C. elaphus CerEla1.0 and B. taurus ARS-UCD1.2 genome assemblies and karyotypes of
both species. Using bovine BAC probes, we physically anchored the CerEla1.0 C-scaffolds
to C. elaphus and B. taurus karyotype (Figure 1). Similar approach exploiting BAC-FISH
mapping technique was previously successfully used for an integration of cytogenetic land-
marks or upgrading draft genome sequences to chromosomal level in other species [20,31].
The C-scaffolds of the CerEla1.0 genome assembly had been constructed according to
the reference deer linkage map [17] and the well-established bovine (B. taurus) Btau_5.0.1
genome assembly [16]. The order, orientation and schematic length of the C-scaffolds in
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the NCBI database comply with the deer genetic linkage map [17] but do not correspond
with their sequence length in Mb, nor the position of the chromosomes in the red deer
karyotype [5,26,32].

To document the results of this study, we arranged the G-banded red deer karyotype
with regard to the chromosome morphology, physical lengths and G-banding patterns.
Our G-banding and BAC-FISH showed concordant centromere-telomere orientation of
the orthologous chromosomes in C. elaphus and B. taurus karyotypes. In compliance
with the published paper on the CerEla1.0 assembly [16], we observed that the CerEla1.0
C-scaffolds 2, 6, 8, 11, 12, 16, 19 and 22 are presented in reversed centromere-telomere
orientation in the NCBI database compared with the physical orientation of the red deer
and bovine chromosomes.

Comparing the gene order in the CerEla1.0 and ARS-UCD1.2 genome assembly, we
observed differences in several CerEla1.0 C-scaffolds. Bana et al. [16] suggested that these
red deer genomic regions represent inverted segments. We analysed eight of these regions
by BAC-FISH and observed identical BAC probes order in the orthologous bovine and
deer chromosomes in all studied regions (Figure 3). Nevertheless, we revealed that the
BAC probe CH240-134N9, selected from the position 82.9 Mb of the BTA11 in ARS-UCD1.2
genome assembly, hybridised to a distal part of BTA29 and, correspondingly, to the BTA29
orthologue in the red deer (CEL31). Either the chromosome position of this BAC in the
NCBI database is incorrect, or the region covered by this BAC probe in the bovine ARS-
UCD1.2 genome assembly and probably the wider region at the start of the CerEla1.0
C-scaffold 11 showing several incongruences with ARS-UCD1.2 (Supplementary Table S4),
actually represent sequences of the chromosome BTA29 and CEL31, respectively. The
above-mentioned regions of the CerEla1.0 assembly need further thorough revision.

In the published paper on the CerEla1.0 de novo genome assembly, the C-scaffold
33 was supposed to comprise sequences orthologous to parts of chromosomes BTA2 and
BTA22 [16]. However, the bovine counterparts of all genes predicted to the CerEla1.0
C-scaffold 33 and selected for the CerEla1.0 - ARS-UCD1.2 comparisons in this study were
found on BTA2.

Our comparisons of the CerEla1.0 C-scaffold X with the bovine chromosome X in
ARS-UCD1.2 showed that, despite several smaller discrepancies, the gene order on the
CerEla1.0 C-scaffold X corresponds to that on the bovine X chromosome. However, it was
previously published that cervid X chromosomes were shaped by complex evolutionary
rearrangements, including neocetromere formation, that differentiated them to two distinct
types characteristic for Cervinae and Capreolinae [13,28]. With regard to the previously
published findings on the X chromosome structure in Cervidae [13,28], the first 86 Mb of
the CerEla1.0 X chromosome C-scaffold need to be revised accordingly.

Regarding another evolutionary chromosome changes, it is known that karyotypes of
the current deer species derived from the pecoran ancestral karyotype (2n = 58) by fissions
of six ancestral chromosomes orthologous to BTA1, 2, 5, 6, 8, 9 [12–14,17]. We used BAC
probes selected on the basis of CerEla1.0 and ARS-UCD1.2 comparisons to hybridise to
positions flanking the predicted evolutionary breakpoints, with the aim to physically verify
the breakpoint sites. We revealed that the factual breakpoints differed from those predicted
on the basis of CerEla1.0 C-scaffolds by up to 10 Mb, showing that the sequence span of
the CerEla1.0 C-scaffolds needs to be properly adjusted. The newly assessed breakpoint
locations were proved in all analysed species (four Cervinae and four Capreolinae) in
this study.

We also showed that the evolutionary history of the BTA1 orthologue in Cervidae was
more complicated than a simple fission and involved also intrachromosomal rearrange-
ments, as was previously suggested [13,16]. The actual evolutionary breakpoint sites on
the ancestral BTA1 orthologue, approximated by the set of BAC probes used in this study,
diverged from those predicted on the basis of the CerEla1.0 and ARS-UCD1.2 genome
assembly comparisons, neither they corresponded to the schematic presentation of the
B. taurus and C. elaphus chromosome differences shown in Bana et al. (2018). Using BAC
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probes at positions flanking the evolutionary breakpoints, we showed that the primary
evolutionary fission of the ancestral chromosome orthologous to BTA1 occurred between
52 and 57 Mb of the BTA1 length. This led to the formation of two neochromosomes
with different lengths. The smaller neochromosome orthologous to the proximal part of
BTA1 corresponds to CEL16 and CerEla1.0 C-scaffold 31 is present in both Cervinae and
Capreolinae. This indicates that this fission of the ancestral BTA1 orthologue together
with fissions of BTA2, 5, 6, 8 and 9 orthologues probably represent a defining event of the
karyotype evolution of Cervidae. The larger neochromosome orthologous to the distal part
of BTA1 then underwent an intrachromosomal rearrangement with a breakpoint between
119 and 125 Mb of the BTA1 length in the common ancestor of C. capreolus and the current
Cervinae. This rearrangement was followed by a pericentric inversion of the proximal
part of the rearranged chromosome during a separate evolution of the lineage leading to
R. tarandus, A. alces and O. virginianus (Figure 5).

Because the BAC-FISH was proved to be an advantageous and sensitive tool for
karyotype evolution studies [7,11,13–15,33–36], we used this method for verification of
the evolutionary chromosomal rearrangements in Cervidae. The four species of Cervini
analysed in this study share the fusion of BTA17;19 previously described on the basis of
banding patterns and chromosome painting [7,13,14,37]. Using BAC probes, we proved
that the ancestral chromosomes fused by their centromeres. Apart from the BTA17;19, five
other centric fusions were proved in R. eldii, four in R. timorensis and one in C. albirostris
by BAC-FISH in this study (Figure 6). As for Capreolini, the centric fusion BTA29;17 was
confirmed in A. alces in this study. The chromosomes involved in the above mentioned
fusions were previously identified by FISH with painting probes but their orientation in
fused chromosomes could not be further specified by whole chromosome probes [7,13,14].

In general, our analysis of chromosome evolution in the studied cervid species showed
that centric fusions probably represented the main evolutionary mechanism shaping their
karyotypes. In species analysed in this study, only the chromosome comprising BTA28;26
orthologues (CEL8) was shown to be formed by a tandem (centromere to telomere) fusion.
The fact that the BTA28;26 fusion is common to all Cervidae and characteristic for all
pecoran species excluding Bovidae [12–14,17] suggests that this chromosome probably
represents an ancestral chromosome which underwent a fission at the origin of the Bovidae
lineage [38]. Centric fusions are generally characteristic for the karyotype evolution in
the family Bovidae [38,39]. However, in Cervidae, centric and tandem fusions dominate
differentially in individual clades. In the subfamily Cervinae, centric fusions are relatively
common in the tribe Cervini but the karyotypes of Muntjacini were diversified by extensive
tandem fusions [4,5,11,33,38]. Among Capreolinae, presumed centric fusions occurred in
the karyotype evolution of Ozotoceros bezoarticus, Blastocerus dichotomus and A. alces [3,4]
(the latter one was proved in this study). On the other hand, both centric and tandem
fusions were involved in the karyotype diversification of South-American Capreolinae
species of the genus Mazama [40–42]. This suggests that the karyotype evolution has been
driven by different mechanisms in the individual cervid lineages and cytogenetic studies
employing BAC-FISH for the detailed differentiation of the evolutionary rearrangements
can help in future studies focused on the reconstruction of the cervid phylogeny.

5. Conclusions

In this study, we verified the red deer-cattle chromosome relationships, anchored the
CerEla1.0 C-scaffolds to the red deer and cattle karyotype and proved the centromere-
telomere orientation of the CerEla1.0 C-scaffolds. We indicated necessary adjustments to
the CerEla1.0 genome assembly, including better specification of the sequence span of the
chromosomes that underwent evolutionary chromosome fissions. Finally, we proved the
location of the cervid evolutionary fissions and orientation of the fused chromosomes in
a total of eight cervid species. Our results can serve as a basis for the CerEla1.0 genome
assembly improvement, supporting, thus, future research in Cervidae.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ani11092614/s1, Figure S1. The red deer (C. elaphus, CEL) karyotype with indicated orthology
with chromosomes of cattle (B. taurus, BTA). Figure S2. G-banded karyotypes of (A) C. albirostris
(CAL), (B) R. timorensis (RTI), (C) R. eldii (REL), (D) R. tarandus (RTA), (E) A. alces (AAL) and (F)
O. virginianus (OVI) with indicated orthology with chromosomes of Bos taurus (BTA). The karyotype
of RTI was previously published in Frohlich et al. (2017) [13]; the karyotypes of CAL and REL
were published in O’Brien et al. (2020) [26]. Figure S3. Evolutionary chromosome breakpoints in
BTA2, 5, 6, 8 and 9 orthologues in the analysed cervid species. C. albirostris (CAL), R. timorensis
(RTI), R. eldii (REL), C. capreolus (CCA), R. tarandus (RTA), A. alces (AAL) and O. virginianus (OVI).
Positions of BAC probes indicating the approximate evolutionary breakpoints are marked by letters
(a–j): a—182F21, b—141M6, c—56D20, d—4M4, e—98F4, f—66P17, g—223P21, h—512A24, i—64B22,
j—4G18. Table S1: BACs for the physical analysis of the cattle-red deer chromosome orthology
and centromere-telomere orientation. Table S2: BACs for the analysis of incongruences between
CerEla1.0 and ARS-UCD1.2. Table S3: BACs for the specification of evolutionary chromosome
breakpoints in Cervidae. Table S4: Comparison of the CerEla1.0 and ARS-UCD1.2 genome assembly
with indicated incongruences.
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