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studied to the best of our knowledge.

datasets and the original dataset.
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Background: As RNA-seq becomes the assay of choice for measuring gene expression levels, differential expression
analysis has received extensive attentions of researchers. To date, for the evaluation of DE methods, most attention
has been paid on validity. Yet another important aspect of DE methods, stability, is overlooked and has not been

Results: In this study, we empirically show the need of assessing stability of DE methods and propose a stability
metric, called Area Under the Correlation curve (AUCOR), that generates the perturbed datasets by a mixture
distribution and combines the information of similarities between sets of selected features from these perturbed

Conclusion: Empirical results support that AUCOR can effectively rank the DE methods in terms of stability for given
RNA-seq datasets. In addition, we explore how biological or technical factors from experiments and data analysis
affect the stability of DE methods. AUCOR is implemented in the open-source R package AUCOR, with source code
freely available at https://github.com/linbingqging/stableDE.

Background

RNA sequencing (RNA-seq) has now been the most pop-
ular technology for genome-wide differential expression
(DE) analysis due to its advantages over other technolo-
gies, such as high resolution, less bias and relatively low
cost. In the past few years, dozens of DE analysis meth-
ods have been proposed in three mainstream strategies:
(1) Read counts of features are directly fit by a presumed
discrete distribution, either Poisson or Negative Bino-
mial (NB) distribution, such as PoissonSeq [1], edgeR
[2], DESeq2 [3] and variations of dispersion estimation
under both Frequentist and Bayesian frameworks [4, 5].
(2) Raw counts of reads are log-transformed and sta-
tistical method based on normal distribution is applied
hereafter, like in Voom [6]. (3) No underlying distribution
is assumed on read counts, like in SAMseq [7], NOISeq
[8] and LFCseq [9]. These methods could avoid possibly
misspecified distributions and/or moderate the effect of
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outliers. While DE methods have been applied to identify
features whose expression levels change between condi-
tions and there have been many efforts to systematically
compare these methods [10—12], an important question
that has not been fully addressed is: how reliable is the
selected set of features? Two aspects that are important
and of interest to researchers about the reliability of the
selected set of features are stability and validity:

e Stability measures the consistency of feature
discoveries across datasets from different
experiments or platforms. In other words, stability is
a metric of reproducibility and answers important
questions: if there are small perturbations during the
experiments or preprocessing of the datasets, or the
experiment was rerun a second time, does the set of
selected features remain the same? How similar are
these sets of selected features to each other?

e Validity measures the similarity between the sets of
selected features by DE methods and the true
collection of differentially expressed features. In
practice, validity is unknown since the true collection
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of differentially expressed features is unknown.
However, some aspects of validity may be estimated,
such as false discovery rate (FDR). In simulation
studies, one can see a more complete picture of the
validity of DE methods by several standard statistical
metrics, such as precision, sensitivity, power and
receiver operating characteristic (ROC) curves.

The idealized result of DE methods is both high validity
and high stability, i.e. sets of selected features are consis-
tent and close to the true set of DE features. Currently,
most evaluations of the reliability of DE methods in RNA-
seq datasets are focusing on validity [3, 11, 13]. These
evaluation procedures ignore the stability of results and
may choose DE methods that are highly inconsistent when
datasets have small perturbations, i.e. sets of selected fea-
tures are quite different from each other, but close to the
true set of DE features in general.

As shown in Fig. 1, DE methods may suffer a lack of sta-
bility, i.e. the sets of selected features vary a lot for differ-
ent subsampled datasets. In particular, although the three
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randomly generated sub-datasets are similar to each other
(Fig. 1b), only 34% features are concordantly selected
(Fig. 1a). Furthermore, very few features are consistently
selected as DE features over 100 randomly selected sub-
datasets (Fig. 1c and d). Particularly, among 3596 features
that are selected at least once over the 100 sub-datasets,
only 179 features have selection frequency larger than 80
and 2583 features have selection frequency less than 10.
Additional file 1: Figure S1 reveals similar findings from
the Cheung’s dataset by DESeq2 with 3 replicates for each
condition.

So far, the major focus of stability measures has been
on microarray datasets which have relatively large repli-
cates. Figure 2 depicts a generic workflow for stability
assessment of DE methods in microarray datasets that
contains three steps: (1) Given a dataset Y, M perturbed
samples are generated by either bootstrap or subsampling;
(2) A DE method is applied to each perturbed sample and
selects a set of DE features with some given threshold for
adjusted p-values; (3) The stability measure is computed
by taking the average of similarities of all pairwise sets
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Fig. 1 Selection frequency of the Bottomly dataset [23] by edgeR-robust. Bottomly dataset contains ten and eleven replicates of two different,
genetically homogeneous mice strains. Sub-datasets are generated by randomly selected five biological replicates for each condition. a Venn
diagram of 3 randomly selected sub-datasets. b Scatterplot of biological coefficient of variation (BCV) against average of log, of counts per million
(CPM) of the first randomly selected sub-dataset. Three fitted BCV-CPM trends are represented by different colors. € Histogram of selection
frequency for 3596 genes that were selected at least once over 100 randomly selected sub-datasets. d Selection frequency for each feature over 100

randomly selected sub-datasets
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Fig. 2 A generic workflow for stability assessment of differential
expression analysis. Several perturbed samples are generated from
the original dataset by either bootstrap or subsampling in the first
step. In the second step, a DE method is applied to each perturbed
sample and a subset of features is selected for a given threshold to
the p-values generated by the DE method. Finally, the stability
measure is computed by taking the average of similarities of all
pairwise sets of DE features

of DE features. Currently, most existing works on stabil-
ity measures are devoted to developing similarity metrics,
including the Jaccard index [14], the consistency index
[15], Spearman’s rank correlation coefficient [16], per-
centage of overlapping genes [17], Pearson’s correlation
coefficient [18] and irreproducible discovery rate [19]. As
discussed in [18], Pearson’s correlation coefficient is an
extension of Jaccard index and Kuncheva’s index [15] and
possess many theoretical properties for similarity mea-
sure. The proposed metric in this paper, AUCOR, is based
on the Pearson’s correlation coefficient.

The above framework suffers from two issues when
analysing RNA-seq data, especially when the number of
replicates is small. First, in step (1), bootstrapping or sub-
sampling is useless for the typical three-versus-three or
five-versus-five cases in RNA-seq datasets, since the num-
ber of unique bootstrap or subsampled samples is too
limited to be useful. Second, by simply averaging the sim-
ilarities of pairwise sets of DE features in step (3), the
estimates of stability levels may heavily depend on the
choice of the size of subsampled samples.

More recently, a new stability metric, called the area
under the concordance curve (AUCC), was proposed for
single-cell RNA-seq dataset [20]. To calculate the value
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of AUCC, one ranks the features according to the mag-
nitude of signals in decreasing order, such as p-values,
then plots the number of features in common among the
top k features against k, for k = 1,2,...,K. The authors
adopted the ratio of the area under the curve to the max-
imal possible value K?/2 as a measure of concordance.
The idea of AUCC is related to the correspondence at the
top (CAT) [21] plot. To create a CAT plot, the features
are first ranked according to the magnitude of signals in
decreasing order as AUCC. For a given list of constants K,
one plots the proportion of features in common for the
top-ranked K features against K. Both the CAT and the
AUCC were developed to measure the similarity of two
ranks. Yet, these two metrics can not be used to assess the
similarity of two sets of DE features with different sizes.
Besides, results of both the CAT and the AUCC depend
on the choice of K. In [22], the authors defined the mea-
sure of stability by the number of common DE features.
The idea of this measure is natural and easy to under-
stand. However, if a DE method tends to select large sets of
DE features, the size of common features would be large.
Yet, similarity metrics more or less have this drawback.
From the property of Pearson’s correlation coefficient, we
believe that the issue has been alleviated.

The objective of this article is twofold. First, we propose
a stability metric to quantify the stability of DE methods
based on parametric data perturbations. The idea is to
have a sensible measure that can help one decide which
DE method should be selected for a RNA-seq dataset at
hand in terms of stability. We demonstrate that the pro-
posed metric could well rank the DE methods. Second, we
investigate which and how factors of RNA-seq data or DE
analysis procedures influence the stability of DE methods
in various simulation settings.

Methods

Notations

Suppose there are a total of G features measured in n
samples. Let Yy, ¢ = 1,...,G,i = 1,...,n, be the ran-
dom variable that expresses the count of reads mapped to
the gth feature from the ith sample and y,; be the corre-
sponding observed value. The following statistical model
is assumed

Yo ~ NB (Mgi, ng,-)

where pg; and o% are the mean and variance of the Nega-
tive Binomial (NB) distribution respectively. In particular,
we also assume that feature g’s variance equals to g +
og - pcﬁi [4, 13], while the dispersion ¢, determines the

relationship between the variance o2

g and the mean ;.
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Perturbation of NGS datasets

The underlying idea of estimating the stability of DE
methods for a specific dataset is simple: If the DE method
is stable, then a minor perturbation of the data should not
change the set of selected features drastically. Let f(‘)gl (y) be

the true density of Y;, and flgi (y) be the density of Y,; with
estimated parameters (i, and 6g2i respectively. Let ag be

the probability that a read count is generated from fogl )
and 1 = 1 — g be the probability that a read count is
generated from flgl (y). We generate a perturbed random
sample from the mixture distribution

o) = aoff o) + afE ).

Since it is not possible to get the true density of Yy,

fdgl (y), in real datasets, in practice, we generate a perturbed
random sample from the mixture distribution as follows.

1 Estimate the mean fi,; and the dispersion 6g2i for
gi
).
2 Generate a random number py; that is either 1 or 0
from the Bernoulli distribution with parameter «y.
3 If pg = 1, set the perturbed observed value from
S8 ) as ¥gi = ygis If pgi = O, set the perturbed
observed value from f#(y) as ¥, = yzi, where y;i is
generated from the NB distribution with the
estimated [iy; and 6g2i.

In other words, we replace the value at location (g, i)
of the dataset by the newly generated number from NB
distribution f{'(y) only if the corresponding generated
random number from the Bernoulli distribution is 0.
And we keep the value at location (g,i) of the dataset
unchanged if the corresponding generated random num-
ber from the Bernoulli distribution is 1. We estimate the
dispersions using the procedure proposed by [13] which
could sufficiently reduce the effect of outliers and reflect
the dispersion and mean trend effectively.

Note that @1, 0 < 3 < 1, is the perturbation size. If the
estimated mean and variance from the original dataset are
close to the true mean and variance of the NB distribution,
the mixture distribution f%(y) is close to fdgl (y) no mat-
ter how we choose «;. On the other hand, if the estimated
mean and variance are not very close to the correspond-
ing true values, the mixture distribution f&(y) can be also
close to f(‘;gl(y) when o7 is small. Due to the small num-
ber of replicates in many practical experiments, the mean
squared error (MSE) of estimated mean and variance may
be large for some features. At each «;, we generate the
perturbed dataset, ¥4, ¢ = 1,...,G, i = 1,...,n, several
times (say M) independently and apply the DE method to
each of these perturbed datasets.
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The stability metric of DE methods
The similarity of two sets of selected features, s; and s, is
assessed by the Pearson’s correlation coefficient

k — klkz/G
GV1V2 ’

where v; = /%‘ (1 — %‘), vy = /% (1 — %), k denotes

cardinality of the intersection of s; and sy, k; and k, denote
the cardinalities of s; and s respectively.

At each perturbation size 1, compute the average sim-
ilarities of the new set of selected DE features s, m = 1,
...,M, and the set of selected DE features sg from the
original dataset,

p(s1,82) = max (0,

M=

Ave(op) = ]i\/l 0 (s‘;},so).
m=1

Note that the estimated value of Ave(«;) depends on the
choice of a;. Ave(o1) converges to 1 as «; tends to 0 and
Ave(a;) shows a decreasing trend as o increases. To alle-
viate the dependence of the choice of o in the stability
metric, we measure the area under the correlation curve
that is created by plotting Ave(c;) at various «; from 0 to
a"® (Fig. 3). And finally, the Area Under the Correlation
curve (AUCOR) is defined as the area under the corre-
lation curve multiplying 1/a"®*. We let o™ = 0.1 in
our numerical experiments to make the dataset generated
from the mixture distribution has the similar distribution

as the original one (Additional file 1: Figure S2). From
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Fig. 3 Scatter plot of Ave(w7) against «; for five-versus-five random
sub-dataset from Cheung data. «; is evenly distributed in (0,0.1).
AUCOR is defined as 10 multiplying the area under the Ave(a1)
against oy curve
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empirical experiences, we find AUCOR is not sensitive to
the choice of a"®* (Additional file 1: Figure S3).

Results
Datasets
To validate the performance of our stability metric,
AUCOR, we considered three datasets with relatively
large number of replicates for both conditions A and B.
This allowed for a split of five vs five or three vs three
to mimic the limited number of biological replicates in
more generally practical situations. The first, Bottomly
[23], compares two genetically homogeneous mice strains,
C57BL/6] and DBA/2]. This dataset contains ten and
eleven replicates for each condition. The second, Cheung
[24], contains read counts for 52,580 Ensemble genes for
each of 41 Caucasian individuals of European descent
among which there are 17 replicates for female and 24
replicates for male. The third, MontPick [25] from the
HapMap project, consists of RNA-seq results from lym-
phoblastoid cell lines from 129 human samples, among
which 60 samples are unrelated Caucasian individuals of
European descent (CEU) and 69 samples are unrelated
Nigerian Individuals (YRI). For the basic statistics of these
three RNA-seq datasets, see Additional file 1: Table S1.
However, the absence of the truth and limited flexibil-
ity make the real datasets not suitable to assess the factors
that may affect the stability of results of DE analysis. To
this end, we also rely on artificial datasets that resemble
real datasets as much as possible. We generate datasets
from the NB distribution with randomly selected pairs of
mean and dispersion computed from Pickrell data [25].
The basic settings are similar to that of [13] as follows.
10,000 features are generated with 6 replicates which are
split into two equal-sized groups; 10% of features are sim-
ulated as differentially expressed features, among which
50% are set to be up-regulated; fold changes of DE features
are generated from the normal distribution N(3,0.5%).
Outliers may also be introduced by multiplying a random
factor between 1.5 and 10 to counts of randomly chosen
features with probability 0.1.

DE methods

We consider 7 state-of-art methods for detecting dif-
ferential feature expression from RNA-seq data, includ-
ing DESeq [26], DESeq2 [3], edgeR [2], edgeR_robust
[13], SAMseq [7], EBSeq [5] and Voom [6]. For ver-
sion numbers of the softwares and particular param-
eters used, see Additional file 1: Table S2. We use a
common threshold to call a set of DE features. Specif-
ically, DESeq, DESeq2, edgeR, edgeR_robust and Voom
all use a threshold of 0.05 for adjusted p-values by
Benjamini-Hochberg procedure [27]. SAMseq also uses
a threshold of 0.05 for the adjusted p-values via a
permutation-based method, while EBSeq calls DE features
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with posterior probability of being DE features greater
than 0.95.

Behaviors of AUCOR

We first applied our stability metric, AUCOR, to a 5-
versus-5 sub-dataset of Cheung dataset and a simulated
dataset. As expected, for all considered DE methods, the
similarity metric, Ave(x;), decreases in general as the
increasing of &1 (Additional file 1: Figure S4 and S5). Com-
pared with the direct use of Ave(x;) for some specific
value of o as the stability metric, AUCOR is a better
choice to compare the stability of different DE methods
since AUCOR can represent the overall trend of similari-
ties more effectively while the values of Ave(a;) are a little
bit bumpy and the order of DE methods based on Ave(a;)
is not consistent.

To assess the effectiveness of AUCOR, we have to know
the true stability level of each DE method, while this is
unknown for both real and simulated datasets. Yet, we can
find a proxy of the true stability level by computing the
average of Pearson’s correlation of DE results for indepen-
dent samples. Specifically, we treat the real dataset with
large number of replicates as population, then indepen-
dently generate small random samples from this original
dataset. For the simulation, we can simply generate multi-
ple random samples from the same NB distribution. In our
study, 20 random samples are generated. Then, we apply
DE methods to each random sample and compute the
Pearson’s correlation coefficients for each pair of random
samples. Standard errors of AUCORs are very small rela-
tive to the means of AUCOR (Additional file 1: Figure S6),
and so these standard errors are not shown in our plots.

The ranking of DE methods for both AUCOR and aver-
age of correlation is generally consistent on both real
RNA-seq and simulated datasets (Fig. 4, Additional file 1:
Figure S7), although the absolute values of AUCOR and
averages of correlation coefficients may be distinct a lot.
It is noted that the ranks of DE methods for the Cheung
dataset and the simulated dataset are quite different. On
the Cheung dataset, Voom is most stable, while DESeq2
has relatively low rank. However, on the simulated dataset,
DESeq2 is the most stable method. The AUCOR values
of SAMseq are zero in these two datasets, because it can
hardly produce adjusted p-values less than 0.05. Due to
the need of large sample size to enable the permutations
and the high computational cost, SAMseq is skipped in
some comparisons.

To further show that the AUCOR values can rank the
DE methods according to the stability, Fig. 5 compares
stability of edgeR, DESeq2 and EBSeq. All datasets
are generated from same population with default set-
ting. Intuitively, stable DE methods select similar sets
of features for different datasets. Thus, the correlation
coefficient or the proportion of intersection should be
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large for stable DE methods, and small for unstable DE
methods. It is reasonable to treat correlation coefficient or
the proportion of intersection as golden standard. From
Fig. 5, we can see that the ranking of edgeR, DESeq2 and
EBSeq is consistent for AUCOR values, correlation coeffi-
cient and the proportion of intersection. In this example,
the most stable DE method is DESeq2, followed by edgeR
and EBSeq.

To understand how the methods perform in the sense
of stability with different read count levels, the stability
of DE methods is further analyzed. The features in the
datasets are separated into four groups by three quartiles
of the average of the CPM. All methods exhibit similar
patterns for AUCOR values, i.e. it is more stable for the
categories of high expressed genes (Fig. 6). Besides, the
AUCOR values of all methods are more consistent for

the high expressed categories. In the absence of outliers,
robust versions of DE methods, such as edgeR_robust
and DESeq2, are more stable than other methods, except
for the low expressed category. When outliers are intro-
duced, the stabilities of edgeR_robust, DESeq2 and EBSeq
only deteriorate slightly, while Voom and DESeq exhibit
spectacular drops.

A more comprehensive picture of the performance of
different DE methods for the datasets with or without
outliers under the basic simulation setting is presented
in Fig. 7. The precision-sensitivity curves are provided
to assess the validity of the methods, while the size of
points represents the level of stability. DESeq2 is clearly
the most stable method no matter whether outliers are
introduced or not (Fig. 7), while the edgeR_robust and
EBSeq also rank at high levels in terms of stability with
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outliers introduced. When the number of replicates is
large, DESeq is the most stable method in the absence of
outliers and Voom becomes highly stable even if the out-
liers are introduced (Additional file 1: Figure S9). DESeq2,
edgeR and edgeR_robust have relatively high sensitivity.
Their sensitivity values are around 0.4 which seems satis-
factory in such small sample cases. In terms of precision,
Voom and DESeq perform better than other methods
(Fig. 8 and Additional file 1: Figure S10). Precision val-
ues of both methods can be around the nominal level
0.95. Similar findings are observed for datasets with out-
liers, although both sensitivity and precision are slightly
worse.

Factors that affect stability of DE results

While AUCOR is useful to verify how well DE meth-
ods behave in terms of stability for a dataset at hand,
and from which a method having high stability can be

chosen, it is also of interest to investigate which and
how underlying factors affect the stability of DE analy-
sis results. we consider some potential factors and their
corresponding levels as follows:

1 nSamp: sample size varies from 2 to 50, the default is
3.

2 gFeatures: number of features varies from 2000 to
20,000, the default is 10000.

3 pDE: percentage of differentially expressed features
varies from 10% to 70%, the default is 10%.

4 mFoldChange: mean of fold change of DE features,
varies from 3 to 6, the default is 3.

5 rDisp: ratio that is multiplied to the estimated
dispersion of the original dataset, varies from 0.6 to 2,
the default is 1.

6 pUp: proportion of DE features that are up-regulated,
varies from 0.1 to 0.7, the default is 0.5.
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Fig. 7 Sensitivity, precision and AUCOR in the simulated dataset. The simulated dataset contains 6 replicates evenly split into 2 conditions. The
AUCOR values are represented by the size of points, largest AUCOR values correspond to the largest size of points. a Sensitivity, precision and
AUCOR in the simulated dataset without outliers. b Sensitivity, precision and AUCOR in the simulated dataset with outliers
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and 7-versus-8 verification dataset. We take the sets of DE genes for the verification dataset by all considered DE methods as truth (we exclude
SAMseq, since it could hardly produce adjusted p-values less than 0.05). Finally, we have 6 true sets from different DE methods. We then calculate
sensitivity and precision values for the results of the evaluation dataset using these 6 true sets in turn. DE method for the verification dataset is
labeled on the top of each plot. a True set of DE genes from edgeR. b True set of DE genes from edgeR_robust. ¢ True set of DE genes from
DESeq_glm. d True set of DE genes from DESeq?2. e True set of DE genes from EBSeq. f True set of DE genes from Voom.

7 threshold: cutoff point to adjusted p-values which
are 0.001,0.01,0.05,0.1 and 0.2, the default is 0.05.

8 pOutlier: proportion of outliers, varies from 0.1 to
0.5, the default is no outlier.

9 outlierMech: three mechanisms that are used to
generate outliers: S, R and M [13]. Random factors
are generated from a Uniform distribution
U(1.5,10). In mechanism S, features are randomly
selected with some probability and one read count
among samples of each selected feature is multiplied
by a random factor. In mechanism R, each read
count in the dataset is selected with some probability
to be multiplied by a random factor. In mechanism
M, each read count in the dataset is selected with
some probability, and if so, the selected read count is
resampled by a NB distribution with mean p
multiplied by a random factor. In mechanism S, each
feature has at most one outlier, while in mechanism
R and M, features may have more than one outliers.
The default is no outlier.

Impact of number of replicates on stability

Among the 9 potential factors listed above, number of
replicates may be the one that researchers can control
easily. So, we are particularly interested in the perfor-
mance of DE methods on the RNA-seq dataset as the
increasing of number of replicates. As expected, AUCOR
values of all methods increase as the number of replicate
increases (Fig. 9a). In particular, we note that the AUCOR
values experience a two-phase process, a sharp increase as
the number of replicates is less than 10 for each condition
followed by a slight increase as the number of replicates
is above 10. When the number of replicates is 2 for each
condition, DESeq?2 is the most stable method, followed by
edgeR, edgeR_robust, EBSeq, and DESeq, while Voom is
highly unstable. However, when the number of replicates
reaches 8, Voom and EBSeq are the most stable methods,
followed by edgeR, edgeR_robust and DESeq2, while the
edgeR_robust become the least stable method. We also
observe that the precisions of these DE methods have sim-
ilar patterns as AUCOR and ranks of methods according
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to AUCOR and precision are overall consistent (Figs. 9a
and 10). It is also interesting, as a byproduct, to see that
both AUCOR and precision can barely increase as the
number of replicates reaches some point (in our example,
the change point is around 10), while the sensitivity can
continuously increase and tends to 1 when the number of
replicates is sufficiently large.

Impact of fold change and dispersion on stability

Fold change and dispersion are two important factors that
may affect the stability of DE methods, since these two fac-
tors are the main parameters that all DE methods directly
or indirectly want to estimate, and results of DE methods
are largely determined by the qualities of the estimates of
fold change and dispersion. Intuitively, as the increasing
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of fold change, the difference between DE features and
non-DE features are larger, and as a result, it is easier
for DE methods to identify DE features. By contrast, as
the increasing of dispersion, the difference between DE
features and non-DE features becomes vaguer, and it is
more difficult to find DE features for DE methods. In
general, as the increasing of fold change or decreasing of
dispersion, all DE methods exhibit higher stability (Fig. 9,
Additional file 1: Figures S11(a) and S11(b)). When the
number of replicates is 3 for each condition, DESeq and
Voom decrease sharply when the fold change is small or
dispersion is large. When the number of replicates is 10
for each condition, DESeq and Voom show high stability
and the stability trends of these two methods are similar to
that of other DE methods (Additional file 1: Figures S11(a)
and S11(b)).

Impact of outliers on stability

As shown in [3, 7, 13], outliers may appear in RNA-
seq by various reasons, such as GC content and specific
characteristic of individuals. And the presence of out-
liers may influence the estimates of parameters of DE
methods and consequently the finally calling of DE genes.
As the increasing of proportion of outliers, Voom and
edgeR can not identify any DE genes when the propor-
tion of outliers is larger than 15%, while AUCOR values
of EBSeq and DESeq2 only decrease slightly (Fig. 9h,
Additional file 1: Figures S12(c) and S12(d)). Regarding
to the outlier generating mechanism, we can also observe
the similar pattern, i.e. DESeq2 and EBSeq achieve high-
est AUCOR values no matter which outlier mechanism is
adopted.

Impact of number of features, pDE, pUp and threshold on
stability

Threshold is another factor that one can control.
Figure 9f shows that the stability of DE methods may

be largely affected by different choices of threshold.
We can see that the number of features and the
proportion of up-regulated features also do not influ-
ence the stability (Fig. 9d and e). The proportion of
DE features influences the stability slightly. DE meth-
ods seem less stable when the proportion of DE features
is small (Fig. 9g). And the patterns for all methods are
consistent.

Discussion

As RNA-seq has become the assay of choice for high-
throughput gene expression analysis, differential expres-
sion analysis for RNA-seq dataset has received extensive
attention of researchers and practitioners. The main goal
of DE analysis is to find a set of features toward a task
such as classification or identification of the top relevant
features corresponding to a biological phenomenon of
interest. Regarding to the reliability of DE methods, there
are two essential aspects: stability and validity. To date,
most attention has been paid on validity, while stability is
overlooked during the evaluation of DE methods. Thus,
the current evaluation system for DE methods may prefer
methods with low reproducibility.

We have used three different datasets with large number
of replicates, Bottomly, Cheung and PickMont datasets,
to illustrate the stability of the DE methods. We observed
that the selected sets of features were highly variable for
different randomly sampled sub-datasets. This demon-
strated the need for assessing stability and prompted us
to propose a stability metric AUCOR, which generates the
perturbed datasets by a mixture distribution and com-
bines the information of similarities between the sets from
perturbed datasets and the original dataset by the area
under the correlation curve which could effectively alle-
viate the influence of the choice of perturbed size on the
stability metric. We empirically demonstrated the effec-
tiveness of AUCOR by showing the consistency of ranks
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of DE methods according to the AUCOR and averages of
correlations from subsampling (Fig. 4).

An advantage of the proposed stability metric is the suit-
ability to RNA-seq datasets with small number of repli-
cates under both conditions. This advantage is critical,
since the number of replicates is still small in many RNA-
seq studies due to the limited budget, precious samples
or rare cell types in some cases. This property of the pro-
posed stability metric relies on a key assumption: read
count follows a NB distribution whose parameters are
properly estimated. First, the NB distribution assumption
is widely used in quantifying expression levels of RNA-
seq datasets and generally a reasonable assumption for
read counts [5, 11, 22]. We estimate the dispersions using
the procedure proposed by [13] which could sufficiently
reduce the effect of outliers and reflect the dispersion and
mean trend effectively. Second, we set the maximum size
of perturbation as 0.1 which further dampens the effect
of possibly violation of assumption or invalid estimates
of parameters. The overall trends of mean and dispersion
for the perturbed datasets are very close to those of the
original datasets (Additional file 1: Figure S2).

In this study, we further employed simulations to
explore which and how underlying factors affect the sta-
bility of DE analyses via a broad range of possible settings.
Our findings can be summarized as follows. First, lev-
els of fold change of truly differentially expressed features
and dispersions of the dataset substantially affect the sta-
bility of DE methods. Specifically, as the decreasing of
fold change or increasing of dispersion, DE methods tend
to be less stable. Second, as expected, more replicates

Table 1 Summary of stability levels based on AUCOR
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could make the results of DE methods more stable. How-
ever, the stability of all methods only increases slightly
after the number of replicates reaches some value, in our
example, 10. Third, outliers also reduce the stability as
well as validity. Fortunately, anti-outlier schemas used by
either DESeq2 or edge_robust can successfully alleviate
the influences of outliers and make the AUCOR values
decrease slower.

Further, it is worth mentioning that the perturbation of
dataset is based on the assumption of the NB distribution.
Although in most cases NB distribution is a proper
assumption and the value of a]"®* is restricted to a small
scale to avoid the possible violation of the NB distribution
or poor estimation of parameters, complete violation of
the assumption can possibly lead to undesired results. A
nonparametric method for perturbation will be required
to solve this problem. We leave this to the future work.

Conclusion

In conclusion, we developed a metric to measure the
stability of DE methods for differential expression analy-
ses of RNA-seq data. Overall, the metric could rank DE
methods according to the stability levels. There is no sin-
gle DE method which can be most stable in all cases.
On one hand, we summarize stability performance of 6
popular DE methods based on our study (Table 1). The
practitioners can choose a method according to the table
based on the information of the given RNA-seq dataset.
On the other hand, practitioners can choose some valid
candidate methods for the specific data based on the evi-
dence of extensive numerical comparisons and theoretical

edgeR edgeR_robust DESeq_glm DESeq2 EBSeq Voom
Low replicate number + + + ++ - _
(2to4)
High replicate number + ++ + + ++
>4
Low fold change + + - + + _
(<3)
High fold change + + + + - +
(>3)
Low dispersion + + - + + -
(<1
High dispersion + + + + + +
=1
No outliers + + + + + +
Outliers - + - ++ 4+ -
Low expressed features + + + - - +
High expressed features + + - + - +

Symbols, ++, +, —, —— indicate very good, good, bad and very bad, respectively
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backing in the literature, then estimate the stability levels
of these candidate DE methods by AUCOR and select a
DE method according to AUCOR values.

In this paper, we focus on assessing the stability of
selected sets of DE features based on a pre-set threshold
for the ranking of features from DE methods. Thus, this
stability metric depends on the choice of the threshold
and may have some potential drawbacks. First, features
whose p-values are close to the pre-set threshold on both
sides will be treated very differently. This may poten-
tially affect the stability level of DE methods, although
in general this is not a big issue. Usually there are not
many features’ adjusted p-values close to the threshold.
If it does happen, this may indicate that the DE method
is not able to provide stable results since small perturba-
tion of the dataset may result in very different collection
of features. Second, the proposed approach measures the
stability of selected subsets of features, but not the ranking
of features by DE methods. The information from inte-
rior rankings in selected subsets is overlooked. We believe
that the proposed method can be readily extended to con-
sider similarity of the weight values of features (such as
p-values) or the ranking of features. Besides, there are
other similarity measures for the results of DE methods
other than Pearson’s correlation coefficient. It is also of
interest to fully study how other similarity measures can
be incorporated into our framework. We will leave this as
the future work.

Additional file

Additional file 1: Supplementary text and figures. This file contains
related codes to use existing approaches, information and results for
simulated and real datasets. (PDF 953 kb)
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