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ABSTRACT: We propose to analyze molecular dynamics (MD)
output via a supervised machine learning (ML) algorithm, the
decision tree. The approach aims to identify the predominant
geometric features which correlate with trajectories that transition
between two arbitrarily defined states. The data-driven algorithm
aims to identify these features without the bias of human “chemical
intuition”. We demonstrate the method by analyzing the proton
exchange reactions in formic acid solvated in small water clusters.
The simulations were performed with ab initio MD combined with
a method to efficiently sample the rare event, path sampling. Our
ML analysis identified relevant geometric variables involved in the
proton transfer reaction and how they may change as the number
of solvating water molecules changes.

1. INTRODUCTION
In regions far from urban areas, formic acid (FA) has been
recognized as one of the main factors which reduces the pH of
rainwater, causing acid rain.1 It has relatively high atmospheric
concentrations2,3 and contributes to the formation of sulfuric
acid in the atmosphere.4,5 Enhanced description of proton
exchange reactions involving solvated FA can improve the
current atmospheric models. Theoretical studies of proton
transport in bulk aqueous media have a long history going back
to the elucidation of the Grotthuss mechanism.6 The current
view of the solvated proton in water focuses on the formation
of Zundel (H5O2

+) and Eigen (H9O4
+) cations and the

mechanisms describing transformations between these
states.7−13

A related area with significant theoretical and computational
contributions in the last decade is the study of acid ionization
in bulk water14−18 or at the water−air interface.9,19−23 By
contrast, there are only a few papers which focus on the nature
of acidic proton transport in small water clusters.24−30 In these
small systems, thermodynamic approaches appropriate for the
bulk system are no longer valid. Instead, these studies have
been forced to approach each specific chemical example as a
separate problem. As such, the use of a generalizable approach
such as the one we present in this study should be of
considerable interest.
Ab initio molecular dynamics (MD) simulations have

recently been used to examine FA deprotonation in aqueous
solution,18,22 successfully describing the proton exchange
reaction between water and FA. While these studies led to
valuable new insights, the limitations of the adopted methods
(e.g., usage of a bias potential and continuous collective

variables) could be overcome, thanks to relatively novel
methodologies such as replica exchange transition interface
sampling (RETIS).31,32 Respecting the natural dynamics of the
system, it allows the study of transitions even with a significant
diffusive contribution33,34 (i.e., a small reaction barrier) and
enables the direct investigation of reaction mechanisms.
RETIS is a rare event method developed to investigate

transitions. Its main advantages are as follows: (a) it does not
alter the natural dynamics of the system, (b) it does not
require a particularly accurate order parameter, (c) its results
are in principle identical to what would be obtained by an
infinitely long unbiased MD simulation. With RETIS, the
transition region is explored by continuously generating new
paths which start from a stable state and end up either back in
such a state (an unreactive path), or reach a different state (a
reactive path). The approach has been successfully employed to
study transitions that would, otherwise, require prohibitively
long simulation times. The results generated have been used to
describe the dynamics of chemical processes (e.g., reaction
rates) while considering the entropic contribution in the
analysis.5,33−36 Since significant amounts of data are often
generated by the sampling procedure, approaches to pragmati-
cally decode reaction mechanisms are greatly beneficial.
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Our aim is to establish a heuristic approach to describe
transitions regardless of whether they involve crossing an
entropic barrier. Data-driven, physically consistent, and
measurable system descriptors might be generated and their
correlations with the system dynamics asserted. It is a
classification problem, which a machine learning (ML)
algorithm can be trained to solve. The algorithm might then
predict if a certain molecular structure (frame) is part of a
reactive or a non-reactive trajectory. Connecting the
descriptors to measurable quantities provides a data-driven
“unbiased” description of a transition that might support, and
eventually surpass, human-biased “chemical intuition”.
Data-driven algorithms for enhanced sampling or the

analysis of chemical simulations have significant recent
contributions.37−43 Most of these approaches are based on
neural networks, which lack physically consistent interpret-
ability, which is, instead, a characteristic of decision trees
(DTs).39,40 Furthermore, in most of these studies implement-
ing neural networks, a pre-selection of trial collective
variables38,41,42 is required, which could lead to a hypothesis-
bias. DT44 classifiers have a unique solution and are not
sensitive to highly correlated variables. The results can be
readily interpreted if the source variables are also interpretable.
The approach was previously adopted to select optimal
collective variables with DTs, with reasonable success.36

We here propose a method based on DTs, which is both
interpretable and hypothesis-bias-free via an appropriate
system representation invariant to system translation, rotation,
and changes in atomic indices. Our aim is to gain insights into
reaction mechanisms with a systematic and objective
representation of the system.
The approach has been developed with sufficient versatility

to be applied to different types of molecular simulations, from
conventional MD to rare event methods. It should be noted
that conventional MD would require a priori classification of
the data, that is, dividing the source trajectory into reactive and
unreactive segments. The sampling strategy of rare event
methods, instead, generates a data structure which inherently
classifies the trajectories. Regardless of the adopted molecular
simulation approach, limiting the correlation between samples
is a primary task for a quantitative data-driven method to
identify reaction paths and the probability of their occurrence.
We demonstrate our data-driven method in this study on

small clusters of FA solvated by water, HCOOH + (H2O)n, n =
4 and 6. The system is relatively small and well understood and
hence provides an ideal test case for training an ML method.
Our analysis provides new quantitative and qualitative insights
into the acid−water proton transfer reaction in aqueous
clusters.

2. COMPUTATIONAL MODELS AND METHODS

Since the main focus of the present paper is an ML
methodology, we provide only a brief introduction to the
simulation methodology. Please consider our previous
studies5,18 for further details.
2.1. System Description. For studying proton transport,

molecular simulations able to consider bond formation and
bond breaking are required. Born−Oppenheimer MD has been
shown to be a suitable approximation in previous studies of
atmospheric reactions4,5 and of aqueous FA.18,22 The density
functional theory BLYP, implemented in the Quickstep
module of CP2K,45 has been adopted with a double-zeta

basis set supplemented by the use of Grimme’s D2 dispersion
correction.46

A set of systems with an increasing number of water
molecules around FA were studied. Initial configurations were
obtained from minimum energy configurations, of which
snapshots are reported in Figure 1. As more water molecules

were added, the probability of generating reactive trajectories
increased. However, at least four added water molecules were
required to allow generation of trajectories with a significant
charge separation between the deprotonated FA and the
solvated proton. With two additional water molecules, a
significantly higher proton transfer rate was measured. The two
systems composed by FA surrounded by four and six water
molecules have been thus selected and discussed here.

2.2. Definition of the Collective Variable. Path
sampling simulation requires the definition of a collective
variable, s(r), to quantify the progress of a transition (r
contains the positions and velocities of all atoms in the
system). The method is not limited to continuous collective
variables, allowing the consideration of relatively complex
functions to describe proton transport.
The collective variable adopted in the present work is

inspired by the study of water ionization,36 with modifications
introduced to consider acid deprotonation. As a first step, it
locates the smallest distance between any FA oxygen and any
reactive hydrogen in the system (excluding the methyl
hydrogen in FA). This distance is denoted as rOFAH,min.

Figure 1. Minimum energy configurations for systems with FA
associated with four and six water molecules. In the figures, s(r) is
equal to the rOH of the initially protonated FA molecule. These
configurations are the initial states used to initiate PyRETIS
simulations.
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For rOFAH,min < 1.4 Å, FA is considered protonated, so s(r) =

rOFAH,min. For rOFAH,min > 1.4 Å, charge separation between the
solvated proton and FA becomes significant. To quantify it and
thus compute s(r), all the distances between reactive
hydrogens and oxygens are first calculated. Hydrogens are
then assigned to the closest oxygen, either water or FA. Any
water oxygen found to be associated with three hydrogens is
then indexed. All distances between FA oxygens and hydrogens
associated with triply coordinated water oxygens are finally
sorted. s(r) is the minimum value of these distances.
Conceptually, we aimed to describe the formation of

complexes resembling Eigen or Zundel cations. A discontin-
uous jump of s(r) from ∼1.8 up to ∼3 Å is associated with a
change in the identity of the triply coordinated water oxygen
and the formation of structures resembling Zundel cations
H5O2

+. The formation of the Zundel cation with s(r) > 2.9 Å is
here labeled as the product state B.
2.3. RETIS. The PyRETIS47,48 library has been used to

perform RETIS49 simulations coupled with the ab initio MD
external engine CP2K. In the four-water simulations, the first
interface was placed at s(r) = 1.05 Å and the last interface at
s(r) = 3.0 Å, thus defining the initial and the final states of the
transition. Seventeen interfaces were positioned along the
interval. Similarly, the six-water simulations had the first
interface at s(r) = 1.07 Å and the last interface at s(r) = 3.0 Å.
Thirteen interfaces were positioned along the interval.
The initial paths describing the transition from protonated

to deprotonated FA along s(r) were generated by using the
kick method available in the software, starting from the initial
configurations shown in Figure 1. The “kick” approach uses a
mixture of stochastic and deterministic dynamics to generate a
set of initial paths. From the results, the paths that correlated
with the initial generated ones were discarded. Finally, the
remaining trajectories from a set of multiple independent
simulations were merged together for both the four- and six-
water-molecule cases.
2.4. Selection Window. In a trajectory, each frame can be

considered as an instance in a data-representation suitable for
the DT. Depending on the simulation setup, a large number of
frames would generate a long list of instances with a very high
correlation. Furthermore, different trajectories can be highly
correlated with one another, depending on the sampling
algorithm. Since generating a sufficient number of uncorrelated
trajectories often requires excessive computational require-
ments, an approach to provide a sufficient sampling with a
limited correlation is proposed here.
Frames contained in a rather restricted region in the path

space can be identified via a selection window. By randomly
picking a certain number of frames for each trajectory, within
the selection window, the correlation between instances is
minimized. By placing the selection window in proximity to the
initial state, as in the current study, the system configurations
which are correlated with the transitions can be identified prior
to the transition actually occurring. The selection window
location and dimension and the number of frames per
trajectory to consider constitute the three hyper-parameters
of our approach. In the present work, the ML algorithm has
been fed with one frame per trajectory within a selection
window defined by values of the order parameter 1.1 < s(r) <
1.25 Å. The range is sufficiently narrow to consider only a few
frames for each trajectory, each with a similar order parameter.
The ML algorithm should, therefore, be able to determine the

most relevant feature(s) associated with the transition
happening without hypothesis-bias on the main descriptor of
the transition itself. This limits the correlation of the detected
features with the classification of the trajectory.

2.5. Training the DTs, Labels. The ML problem we are
posing is as follows: “what are the main features that a
simulation frame has to have in order to be part of a trajectory
that connects an initial state to a final state (reactive)?” and
“with which probability?” The information gain (entropy) DT
is a viable method for a problem with highly correlated
features.50

DTs report the most important features that differentiate
between reactive and unreactive paths without imposing any
prior hypothesis.
Given a set of trajectories, a classification between reactive

and unreactive paths is first needed. A numerical descriptor,
conventionally defined as the order parameter, can quantify the
progress of a given transition. If its value for a given system is
within certain arbitrarily defined ranges, the system can be
considered to be located in the initial or the final state. A
reactive path is defined as a path starting from an initial state
and ending at a product state. A non-reactive path, instead,
ends at the initial state.
If the input generated by molecular simulation is composed

of a single long trajectory, sub-segments will have to be fed to
the ML task. In such a case, a segment starting at one state and
ending in another state will be considered reactive, whereas a
segment starting and ending at the same state without having
previously entered another state will be unreactive. When using
the input generated by path sampling, paths contained in a
single ensemble should be considered (please consider refs 31
and 51 for the definition of an ensemble and further details of
the path sampling methods).

2.6. Training the DTs, Data Matrix. Generally, all
trajectory segments or trajectories for path sampling can be
considered in the present analysis approach. When using path
sampling, a re-weighting algorithm is adopted to consider all
the generated paths. Due to the statistical weights of the
different ensembles and for simplicity, we opted to consider
only the trajectories included in the outermost ensemble in the
path space (for the definition of an ensemble, please consider
the RETIS formalism49).
From molecular simulations, an ordered data array for the

positions and velocities for each atom is written for each
selected time frame. While the convention facilitates post-
processing and visualization procedures, it includes a bias in
the data representation. Small deviations in the observation
angle or on the choice of coordinate system (e.g., exchanging x
with y coordinates) lead to significantly different data sets
while corresponding to nearly identical systems. For our work,
the data thus have to be pre-processed to become invariant
with respect to translations and rotations. Furthermore, the
ML problem also has to be atom-index-invariant, and the
sorting method also must be reversible to allow back-mapping
of the features indicated by the ML to the relevant atom (or
atom pairs).
In the present work, we considered atomic distances and

velocities as possible features. Since the atomic velocities did
not provide a significant contribution in our results, the
forthcoming analysis has been based on atomic distances only.
The translation and rotation-independent requisites might

be met with an atom−atom distance matrix. The atom-index-
invariant approach requires, on the other hand, a more
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elaborate representation. First, a reference atom, which can
differ in different frames if the atoms are indistinguishable (i.e.,
the same element in an atomistic simulation), shall be selected.
Thereafter, the rows in the atom−atom distance matrix are
grouped per element and sorted within each element-group
based on the distance from the reference atom. For each row in
the matrix, the columns are grouped and sorted following an
analogous procedure. The sorting is thus based on the distance
from the atom indicated by the row. The column indices can
therefore indicate a different atom for each row. A “′” denotes
the secondary index.
The resulting matrix reports the distance from a selected

reference atom (rows) to its next neighbor (columns). A
scheme of the algorithm to generate both the distance matrix
and the index-invariant distance matrix is provided in the
Supporting Information. In Figure 2, the two matrix

representations are provided, as an example, for an isolated
FA molecule, where we used the carbon atom (C0) as the
trivial identifiable reference atom. The resulting internal
coordinate representation allows an independent analysis of
each entry and, thus, a suitable data structure for the ML task.
We would like to note here that a common translational-

and rotational-invariant representation, the Z-matrix,52 also
provides an appealing internal representation of molecular
structures as it scales better with the number of atoms
compared to the distance matrix. However, the values of its
variables (i.e., distances, angles, and dihedrals) are dependent
on each entry and on the atom sequence. In contrast, in our
distance matrix representation, each entry is independent. Also,
distances are unique, with a lower bound (0) and an upper
bound (system size). These three characteristics allow for a
suitable split of sample space by the DTs. Furthermore, our
representation is index-invariant.
We here report the results obtained by the index-invariant

distance matrix, which is the most general approach, even if
more computationally demanding. It is worth noting that the
index-variant distance matrix can be advantageous for its
simplicity and symmetry in certain applications, for example, in
the presence of atoms that do not swap order during a
transition. The results for the index-variant distance matrix are
presented in the Supporting Information.
Computationally, a DecisionTree Classifier from scikit-

learn53 has been fed with the index-invariant matrix, flattened

to a feature vector, using the “entropy” splitting criterion and a
maximum depth of three.

2.7. Data Matrix Notation and DT Visualization. The
atom labeling system we use identifies each atom with a
character and a digit. The character corresponds to the atom
type, while the digit corresponds to the position of the sorted
distance list per element with respect to a reference atom, with
the indexing starting at 0. The digit of the first entry in the
atom−atom distance label refers to the sorted distance list with
respect to the reference atom (C0). The digit of the second
entry refers to the sorted distance list with respect to the first
atom of the atom−atom pair. To highlight it, a prime (′) has
been added to the second index. As two examples, (a) O2−
H5′ corresponds to the distance from the third closest oxygen
(O2) to the C atom to the hydrogen atom, which is 6th closest
to O2. (b) H0−O0′ is the distance from the H closest to the C
(H0) to the oxygen closest to H0.
A symmetric distance matrix can be back-mapped to xyz

coordinates (up to a translation and rotation) as described by
Young and Householder54 (and further detailed in the
Supporting Information). The index-invariant distance matrix
can be unsorted into the symmetric matrix up to an atom index
difference. The approach permits the addition of dummy
atoms according to the splits given by the DT, allowing a direct
visualization of the analysis output (e.g., via VMD55). For a
convenient visualization, only the dummy atoms correspond-
ing to the nodes along each decision path in the tree might be
selected. A main decision path is chosen such that a leaf node
would have the highest number of pertinent reactive paths
weighted by the percentage of pertinent reactive paths: nr·nr/
(nr + nu), where nr is the number of reactive paths in that node
and nu the number of unreactive paths.

2.8. Random Forest Decision Error Estimate. The
prediction error is simulation time-dependent and the true
answer is unknown. Furthermore, due to time evolution, the
distribution is not Gaussian and the noise is heteroscedastic
with respect to the true value. Our implementation of the DT
algorithm is not designed to make statistical predictions;
instead, it focuses on identifying the most important features
(regularization). To provide an estimate of the method’s
reliability in the feature selection, an error-estimate procedure
has been thus developed.
With highly correlated data, significantly different trees can

be originated depending upon the first split from minor
variations of the input. It is a constitutive limitation of the
approach. The relative importance of the first split can be
asserted by using random forests56 with a unit depth. The
random forest reports the importance of all features by
sampling several DTs, each one generated from a subset of
features. By limiting the depth of each tree to 1, the feature
importance of such random forests becomes equal to the
importance of the first split only. It shall be noted that the
feature that has the highest importance in the random forest
plot does not necessarily represent the main split for all
possible DTs.
A sequence of forests of DTs has been generated with

respect to the time sequence during which sampling output has
been generated. Source data have been split into 10 sub-blocks
and randomized within each. A random forest has then been
computed for each of these subsets, generating a sort of time-
dependent profile for the main splits, which allows the
computation of a variance σ for each of the main features.
The average value for each feature can then be computed by

Figure 2. Distance matrix (top) for a structure of FA (right). The
index-invariant distance matrix (bottom) corresponds to the first
distance matrix. The prime on the column atom index indicates that it
depends on the row atom index.
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considering the whole data set. By assuming a Gaussian
distribution for each feature and by using the previously
obtained variance and mean value for each feature, the relative
probability of a feature importance is estimated. By comparing
the probability distribution for each feature, the most relevant
can be identified even if the data are highly correlated.
Computationally, a RandomForest Classifier from scikit-

learn53 has been fed with the index-invariant matrix, flattened
to a feature vector, using the “entropy” splitting criterion and a
maximum depth of one.

3. RESULTS AND DISCUSSION
The rate of proton transfer from FA to the water molecules has
been computed via RETIS simulation and ab initio MD
simulations. Figure 3 reports the rate of reaction for two

systems, where four and six water molecules surrounded FA.
State A (protonated state) is defined as configurations with
s(r) < 1.05 Å (four waters) or with s(r) < 1.07 Å (six waters).
State B includes configurations with s(r) > 3.0 Å for both
systems.
The rate of proton transfer for the four-water-molecule case

is ∼2.10 × 10−14 and ∼1.01 × 10−7 fs−1 for six water molecules
around FA (107 times difference).
We here investigate the mechanism of reactions via DTs to

identify the feature(s) that better correlate for each case with
pathways that lead to proton transfer. The analysis might
provide qualitative and quantitative descriptions of the
different system features responsible for the significant
difference in the reported rates.
3.1. FA with Four Water Molecules. The DT generated

for the system with four water molecules clustered around FA
is reported in Figure 4. To simplify the visualization of the
main splits that lead to the highest reactive trajectories of the
DT, in Figure 4, a Cartesian/xyz representation has been
included. The atoms in blue, yellow, and green are involved in
the first, second, and third splits, respectively.

The deprotonation reaction of FA appears to primarily
require that the distance between O5 and H9′ be smaller than
5.25 Å. The split implies that the distance between the oxygen
furthest from the FA carbon (O5) and the furthest hydrogen
from O5 should be within a given threshold. As H9′ is the
hydrogen of FA, it also implies that a certain orientation of the
molecule, with respect to the water cluster, is also required.
Under these conditions, the probability for the path to be
reactive is 38%.
The next split along the branch with the highest probability

to be reactive is the distance between O1 and H8′ being
smaller than 4.25 Å. The distance between one of the FA
oxygens and one of the furthest hydrogen atoms should be
sufficiently small. This implies that the oxygen of FA should be
located around the center of the cluster and that a sort of
ordered disposition of the water molecules in the cluster is
required. When this condition is satisfied, the probability for a
path to be reactive reaches 63%.
Continuing along the branch with the highest reactive

probability, the distance between O5 and O3′ being bigger
than 3.52 Å represents the last split here considered. This
corresponds to the relative position of two water molecules
being two hydrogen bonds apart. We interpret the requisite as
the suitable distance to establish hydrogen bonding between
the atoms.
When all three of these requirements are met, the

probability of a path being reactive is 71%. By comparing
the number of reactive paths versus the number of unreactive
paths in the final splits of the DT, it can be concluded that the
indicated reactive path is clearly predominant. A similar
conclusion can be reached by observing the first splits reported
in Figure 5. The figure that reports the results obtained from a
random forest of DTs of depth 1 indicates that the relative
probability for the first split to be the most important feature is
39%. The subsequent distances reported by the random forest
analysis have a constantly decaying relevance. The first five
main splits reported by Figure 5 are correlated and taken
together indicate that the water cluster has to be sufficiently
compact and FA has to be oriented such that its oxygen
molecules are in close contact with the surrounding water
molecules.

3.2. FA with Six Water Molecules. For the clusters with
six water molecules around FA, in Figure 6, we report the
generated DT. As we did with the four-water-molecule case, a
visualization of the main splits of the DT that led to the highest
reactive trajectories is also included in Figure 6. The atoms in
blue, yellow, and green are involved in the first, second, and
third splits, respectively.
The deprotonation reaction of FA in the six-water-molecule

cluster requires the distance between O6 and H8′ to be smaller
than 3.55 Å. This split involves two water molecules in the
proximity of FA that need to be within a certain distance. By
inspecting the frame reported in Figure 6, the requirement
seems to indicate a certain orientation of one of the water
molecules associated with another water molecule in proximity
to the FA oxygen. Under such conditions, the probability for
the path to be reactive is 32%.
The next split, along the branch with the highest probability

to be reactive, is the distance between H9 and H11′ being
smaller than 4.27 Å. The distance between these two atoms
can also be interpreted as a combination of molecular
orientation of the water molecules in the surroundings of FA

Figure 3. Effective rate constant kAB computed using RETIS for FA
clustered with four or six water molecules to reach the deprotonated
state. Results are obtained from an average of several RETIS
simulations from different initial conditions weighted by the
respective number of RETIS cycles.
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and the water cluster size. The probability of a reactive path
reaches 53% when both these conditions occur.
Still along the branch with the highest probability to be

reactive, the distance between O2 and O2′ being bigger than
2.57 Å represents the last split here considered. This indicates
that the closest water oxygen to FA (O2) should be close
enough to its second closest oxygen atom to promote the

formation of a hydrogen bond network. When all three
requirements are met, the probability for a path to be reactive
is 72%.
By comparing the number of reactive paths versus the

number of unreactive paths in the final splits of the DT, it can
be concluded that the indicated reactive path is clearly
favorable, but that other significant paths also exist. The
conclusion is also supported by the random forest of DTs with
a single split. Before proposing an interpretation, it is worth the
reminder here that the random forest reports unconditional
entries, while the DT splits depend on the first split. Figure 7
indicates the probability that the first split is the most
important feature is 34%, but the second split has a comparable
relevance: O2−O2′ (28%). It confirms that while a
predominant pathway for the reaction has been sampled,
different main pathways can co-exist.
As reported in Figure 3, the number of water molecules in

the cluster has a significant effect on the rate of the proton
transfer reaction. From the comparison of the previously
discussed Figures 4 and 6, we note that the distance between a
FA oxygen and one of the furthest water hydrogens being
below some distance is the predominant characteristic for a
trajectory to be reactive. In other words, both clusters have to
be sufficiently compact in order to promote the reaction. In the
four-water-molecule case, the orientation of FA with respect to
the water cluster is the most important feature, while for the
six-water-molecule case, the water structure around FA appears
to be the predominant feature.
A second main difference between the four- and six-water

cases is the possible pathways for the reaction to occur. The
smaller system has only one predominant reactive path, while
for the six-water-molecule cluster, multiple paths appear to co-
exist, contributing to the final reaction rate. Physically, if the
system is sufficiently large, different configurations can lead to
the proton transfer reaction, consistent with the observation
that the overall rate is much higher.

Figure 4. DT for the system with four water molecules around the FA molecule based on the index-invariant distance matrix. Each text box
represents one node and reports (1) the inequality which splits the data going out of the node, (2) the number of samples entering the node, (3)
the number of (unreactive, reactive) samples entering the node, and (4) the majority class of the node (i.e., whether most of the data entering
represent unreactive or reactive trajectories). At each split, the “True” branch is on the left and the “False” is on the right. The color indicates the
ratio between unreactive (brown) and reactive (blue) samples included in a node. Wider arrows have been used to link the sequence of data
splittings determined to be the most important in the analysis. In the top left corner, a 3D representation of the system is provided. The atoms
highlighted in blue, yellow, and green correspond to the atoms involved in the first, second, and third split of the most important decision branch,
respectively. In red, white, and black are the oxygen, hydrogen, and carbon atoms if not already highlighted as the most important decision branch.

Figure 5. Importance approximations of the possible first split
inequalities generated from a random forest with a depth of one for
the four-water system. The bars represent the feature importance of a
random forest, with the error bar calculated with a block-error average
based on the generated trajectories. The probability that a split is truly
the most important split is shown above the bars for the three most
probable first splits.
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3.3. Computational Cost, Scaling, Method Trans-
ferability, and Limitations. The computational cost of our
method is negligible in comparison to the cost of generating
pathways via MD. It is worth stressing here that our approach
does not aim to replace the generation of trajectories but to
improve the description of their characteristics.
The time required to train the DT scales as a function of the

number of frames and features. The required time scales as
O(N log N), where N is the number of frames, and linearly
with the number of features. For the six-water-molecule
system, with 529 features and 11,418 frames, the training time
required was 1.7 s on a laptop (Dell XPS-15 with an Intel i7-
8750H, 6 cores, and 12 threads). The number of features in
the proposed representation scales as O(M2), with M being the
number of atoms, which could be an issue in both memory and
computational time for relatively large systems. However, the
training of the DT can be efficiently parallelized over the

number of features, with only one communication step per
split of the DT.
The trained DTs are generally not transferable to other

systems for predictions. However, the training of DTs is
efficient and the training input of the DT is a feature vector
that can be generated directly for any atomistic system as long
as the positions and elements of the atoms in a frame and the
classification of the trajectory are known. The feature vector
can also be extended with user-defined features. Therefore, our
described data representation and training/analysis approach
can be directly applied to other atomistic simulations.
One main limitation of the presented analysis method (as

with any ML/data-driven method) is the effect of “garbage in,
garbage out”. We aim to identify the most relevant features for
a transition in a simulation. When the configuration data (the
proposed feature space) do not properly correlate with the
system dynamics (in the presence of underlying potential
energy bias as in meta-dynamics simulation57) or when frames
are more correlated to a source sub-set (e.g., forward-flux-
sampling58), the DTs still identify the most important feature
for the classification, although the feature may be different
from unbiased simulation.

4. CONCLUSIONS

A data-driven method to systematically compute reaction
pathways has been presented. The conventional Cartesian/xyz
data representation employed in molecular simulations is
converted into an index-invariant distance matrix representa-
tion, which is also translation- and rotation-invariant. There-
after, an approach which limits the correlation between
elements in the source data (MD trajectories) has been
proposed in conjunction with a rare event simulation
framework. The data have then been fed to a supervised
classifier method, the DT.
To simplify the interpretation of the classifier, a back

mapping procedure from the index-invariant matrix has been
adopted to emphasize the atoms involved, with each split
identified by the DT. Generation of a random forest of DTs, in
combination with block averaging, provided an error range for
the first split of the DT.
We thus presented a data-driven approach to gain insight

into a chemical reaction. The method has been designed such
that it is readily applicable to other simulation strategies and

Figure 6. DT for the system with six water molecules around the FA molecule. For details, see the caption for Figure 4.

Figure 7. Importance approximations of the first split question from a
random forest with a depth of one for the six-water system. For
details, see the caption to Figure 5.
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types of transitions. The strength of the present approach is
that it allows the use of complex collective variables which may
be discontinuous and the estimation of the probability of their
occurrence in a transition path. The descriptors to elucidate
transition mechanisms might be directly implemented in a
prediction method.37

The method adopted an index-invariant distance matrix
providing a data-driven insight into the reaction pathways. The
data-driven identification aims to identify interpretable path-
ways in a system composed of indistinguishable molecules.
Applications to more inhomogeneous systems would be
straightforward, especially if only a portion of the system
atoms are of interest. The latter case would combine human
intuition with a data-driven approach, which would, possibly,
provide a better insight into the reaction if, and only if, the
introduced bias is correct. Our method can be further
expanded by considering a higher number of descriptors
alongside the distance matrix. Velocities, angles between
molecules, coarse-graining procedures, or a mix of user-defined
functions59 could be fed into the DT and subsequent analysis.
To demonstrate the capabilities of the developed method, a

mechanistic description of the proton transfer reaction in small
aqueous clusters of FA has been provided. The reaction has
been simulated via rare event simulation (replica exchange
transition interface sampling31) and its rate quantified for two
water clusters, one composed of four and one of six water
molecules surrounding an FA molecule.
The reaction rate we computed is strongly influenced by the

number of water molecules present. Mechanistically, the four-
and six-water proton transfer reaction requires the water
cluster to be sufficiently compact. The four-water-molecule
system requires a certain orientation of the FA molecules and
of the water molecules in its proximity. For the six-water-
molecule case, a certain orientation of the outer water
molecules appears to be more significant in describing the
reaction path. Furthermore, the four-water cluster system
indicated only one predominant pathway for the reaction to
occur, while in the six-water-molecule cluster, several pathways
have been identified, contributing to the higher reaction rate in
this system.
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