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Abstract

Gene-set analysis (GSA) is a standard procedure for exploring potential biological functions of a group of genes. The development of its
methodology has been an active research topic in recent decades. Many GSA methods, when newly proposed, rely on simulation studies
to evaluate their performance with an implicit assumption that the multivariate expression values are normally distributed. This assumption
is commonly adopted in GSAs, particularly those in the group of functional class scoring (FCS) methods. The validity of the normality as-
sumption, however, has been disputed in several studies, yet no systematic analysis has been carried out to assess the effect of this distri-
butional assumption. Our goal in this study is not to propose a new GSA method but to first examine if the multi-dimensional gene expres-
sion data in gene sets follow a multivariate normal (MVN) distribution. Six statistical methods in three categories of MVN tests were
considered and applied to a total of 24 RNA data sets. These RNA values were collected from cancer patients as well as normal subjects,
and the values were derived from microarray experiments, RNA sequencing, and single-cell RNA sequencing. Our first finding suggests
that the MVN assumption is not always satisfied. This assumption does not hold true in many applications tested here. In the second part
of this research, we evaluated the influence of non-normality on the statistical power of current FCS methods, both parametric and non-
parametric ones. Specifically, the scenario of mixture distributions representing more than one population for the RNA values was consid-
ered. This second investigation demonstrates that the non-normality distribution of the RNA values causes a loss in the statistical power of
these GSA tests, especially when subtypes exist. Among the FCS GSA tools examined here and among the scenarios studied in this re-
search, the N-statistics outperform the others. Based on the results from these two investigations, we conclude that the assumption of
MVN should be used with caution when evaluating new GSA tools, since this assumption cannot be guaranteed and violation may lead to
spurious results, loss of power, and incorrect comparison between methods. If a newly proposed GSA tool is to be evaluated, we recom-
mend the incorporation of a wide range of multivariate non-normal distributions or sampling from large databases if available.
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Introduction
Gene-set analysis (GSA) is one of the standard procedures used in
biomedical research when interest lies in the evaluation of cer-
tain biological functions, such as pathways, or of the collective
effect of a set of genes on disease status, phenotype, or other re-
sponse variables (Hirschhorn 2009; Mooney et al. 2014). The devel-
opment of the methodology for performing GSA has attracted
much attention in the biostatistics and bioinformatics communi-
ties in recent decades. Most GSA methods are applied to path-
ways as a way of evaluating and testing pathway association.
Findings in GSAs can provide a better understanding of disease
mechanisms and identify potential treatment targets, particu-
larly for complex diseases (Subramanian et al. 2005; Hirschhorn
2009; Mooney et al. 2014). Results from the procedures can save
time, cost, and effort in translational studies.

When used for pathway analysis, it is common to categorize
GSA methods into three classes: Over representation analysis, func-

tional class scoring (FCS), and pathway topology methods. Several

studies have reviewed and compared these different GSA categories

(Goeman and Buhlmann 2007; Ackermann and Strimmer 2009;
Gatti et al. 2010; Khatri et al. 2012; Maciejewski 2014; de Leeuw et al.

2016). The over representation analysis approach is concerned with

determining if the differentially expressed (DE) genes are overrepre-

sented (or enriched) in a candidate gene-set/pathway; that is, if the

number of DE genes in the set is beyond chance alone. When this is
the goal, an over representation analysis test is carried out based on

the hypergeometric distribution, chi-square test, or Fisher’s exact

test (Boyle et al. 2004). Whether the RNA values follow a normal dis-

tribution does not affect the over representation analysis test in the
step of enrichment evaluation. The over representation analysis
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approach is intuitive and is still a widely used procedure to screen
for potential targeted pathways from a list of known ones, thus it is
often called a knowledge-based procedure. A major limitation of
over representation analysis, however, is that it ignores the relation-
ship among genes in the set of interest and considers them equally
important.

The FCS approach aims to examine the collective and coordi-
nated effect of the gene-set/pathway. It calculates a score at the
pathway level based on a statistic evaluated at each individual
component gene, whether it is DE or not. Most FCSs consider the
score a weighted sum of the gene-level statistics, where the
weight usually represents the interrelationship among the genes.
The advantages of FCSs are the inclusion of genes that may not
be significant at the single gene level, the incorporation of the de-
pendence among genes, and the potential to compare contribu-
tions of different pathways. More discussion of various FCS
methods is included in Section 3. The third category, the pathway
topology methods, such as SPIA (Draghici et al. 2007), NetGSA
(Shojaie and Michailidis 2009), and NetworkHub (Chang et al.
2020), all involve a known topological structure of the genes, and
therefore can be applied only if the structure of the set of genes is
already determined. This limits the application of pathway topol-
ogy methods to established biological pathways. Consequently, it
becomes difficult to evaluate their performance with simulation
studies since the biological structure is required as input in path-
way topology methods.

Several review articles have documented the evolution of GSA
tools (Ackermann and Strimmer 2009; Maciejewski 2014; de
Leeuw et al. 2016), with emphasis on their differences, assump-
tions, and statistical properties; some have also addressed issues
that arise in GSA, including the lack of consideration of linkage
disequilibrium (or correlation) between genes (Goeman and
Buhlmann 2007; Gatti et al. 2010; Lin et al. 2018), the choice of null
hypothesis (competitive or self-contained tests) (Goeman and
Buhlmann 2007; Maciejewski 2014; de Leeuw et al. 2016), and the
influence of the proportion of associated genes in the set
(Maciejewski 2014; de Leeuw et al. 2016). A few studies have
expressed doubts about the distributional assumptions made
about the data (Kerr et al. 2000; Konishi 2004; Zyla et al. 2017).
Whether or not the transcriptomic data are normally distributed
has not been resolved, even though it has been noted that hetero-
geneity in the profiling values may exist due to disease subtypes
(Konishi 2004; Zyla et al. 2017; Ho 2018; de Torrenté et al., 2019;
Liu et al. 2019; Kerr et al. 2000). Nevertheless, no study that we are
aware of has investigated the impact of distributional assump-
tions on the conclusions of GSA when the gene-set exerts a cer-
tain molecular function or activity.

The commonly adopted distributional assumptions for gene
expression data are the multivariate normal (MVN) or log-normal
distribution. Despite doubts about this assumption, these distri-
butions are frequently used to generate expression values in sim-
ulation studies when evaluating the performance of a newly
proposed GSA tool, especially those GSAs categorized as FCS
methods. In other words, many GSA tools inherently assume that
the gene expression data are normally or log-normally distrib-
uted, or that the GSA tests are robust to the distributional
assumptions. Since the normality assumption may not be true or
guaranteed (Kerr et al. 2000; Konishi 2004; Zyla et al. 2017), such
simulation-based assessment of GSA tools may be incomprehen-
sive, leading to possibly spurious findings.

Whether or not the assumed distribution is appropriate may
affect the applicability of GSA methods. The performance in
terms of statistical power, for instance, may be affected when the

data deviate from normality. If the power of the GSA tests is re-
duced when the RNA values follow a non-normal distribution,
then it is possible that the gene-set/pathway associated with the
response variable cannot be identified. To what extent the
change in performance corresponds to the deviation requires fur-
ther examination. The GSA methods that are mean-based (de
Leeuw et al. 2016) may be able to guard against this issue if the
size of the gene-set, the number of genes, is small enough relative
to the number of samples for asymptotic normality to apply. For
nonparametric GSA tests, it is not yet known how robust they are
with respect to incorrect distributional assumptions.

Therefore, the two goals of this study are, first, to investigate the
goodness-of-fit of the MVN distribution for the gene expression
data and, second, to evaluate the performance of common FCS GSA
methods in response to the deviation of the normality assumption.
In the first part of this study, we will examine whether the paramet-
ric MVN distribution is a suitable assumption for gene expression
values in the real world. To assess if the multi-dimensional data set
at hand fits an MVN distribution, many tests have been proposed in
the literature and several articles have presented comparisons and
reviews of them (Thode 2002; Mecklin and Mundfrom 2005, 2004;
Korkmaz et al. 2014; Chen and Xia 2019). Based on their recommen-
dations, six tests are considered: the Mardia test (Mardia 1970), the
Henze-Zirkler (HZ) test (Henze and Zirkler 1990), the Royston test
(Royston 1992), the Fattorini (FA) test (Fattorini 1986; Lee et al. 2014),
the TN test (Zhou and Shao 2014), and the Energy test (Székely and
Rizzo 2005). These MVN tests will be applied to three types of RNA
values, including microarray, RNA-sequencing (RNA-seq), and
single-cell RNA-sequencing (scRNA-seq) data.

The second goal of this study is to compare the performance of
several FCS GSA tools, with emphasis on the impact of the distribu-
tional assumption, based on data generated from MVN and non-
normal distributions. The objective of these GSAs is to examine if a
gene-set associates with a response variable, that is, if the gene-set
shows a collective effect on the outcome variable, such as disease
status, disease subtype or some continuous phenotypic value. Here,
we consider specifically the GSA tools in the FCS group. In addition,
we categorize the tools in this group into two different subgroups,
parametric and nonparametric GSAs. The parametric GSA tools
were developed mostly based on known statistical distributions and
models, including the random-effects global test (Goeman et al.
2004), Hotelling’s statistic (Lu et al. 2005; Schafer and Strimmer
2005), and ROAST (Wu et al. 2010) in an MVN model, and the path-
way activity score (P-score) in a logistic regression model (Lin et al.
2018). The nonparametric GSA methods mostly use the ranks of
gene expression levels to reduce the heterogeneity in the absolute
values across different genes. Several popular nonparametric meth-
ods are gene set enrichment analysis (GSEA) (Subramanian et al.
2005), the N-statistic (Baringhaus and Franz 2004; Klebanov et al.
2007; Glazko and Emmert-Streib 2009), and the Kolmogrov–Smirnov
test for the mean vector and the Kolmogrov–Smirnov test for the
covariance matrix (Rahmatallah et al. 2017). These GSA tools for as-
sociation studies will be investigated to evaluate their performance
under different distributional assumptions that deviate from MVN.

Materials and methods
Multivariate normality tests of gene expression
values
Data source and data management
To investigate if MVN fits gene expression data, three types of
RNA values, including microarray, RNA-seq, and scRNA-seq data,
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are considered for examination. Twenty-two microarray data
sets and the RNA-seq data were downloaded from the National
Center for Biotechnology Information (NCBI) and The Cancer
Genome Atlas (TCGA) websites, and the scRNA-seq data (Tucker
et al. 2020) were downloaded from the Broad Institute Single Cell
Portal. Many of the microarray gene expression data sets were
from cancer [breast, colorectal, lung, ovarian, and glioblastoma
(GBM)] patients; four sets were from cancer-free patients with
chronic obstructive pulmonary disease (COPD), two of smokers
and two of nonsmokers. The RNA sequencing data from the NCBI
were collected from breast cancer patients and normal controls;
and the single-cell RNA sequencing data were from human
donors without any clinical evidence of cardiac dysfunction.

Each of the microarray data sets was processed with the Robust
Multi-array method (R function rma in R package affy) and quantile
normalization (R function normalize.quantiles in R package
preprocessCore) for data processing. Next, considering that expres-
sion levels are affected by age, gender, ethnicity, cancer grade and
stage, these downloaded data were stratified according to these fac-
tors, if available, and then the groups containing a larger number of
samples were selected for the following analyses. For instance, in
the first data set (Ni et al. 2010), only breast cancer patients who
were in grades II and III and were also Malaysian Malays were se-
lected. In the second data set (Sabates-Bellver et al. 2007), the 23 co-
lorectal cancer patients with tumors found in the rectum or
sigmoid colon were selected from a study originally containing 32
patients. In the GBM study in the Cancer Genome Atlas Research
Network (2008), only male patients aged beyond 50 and diagnosed
with one of the four subtypes of GBM were selected. Table 1 lists
for the RNA array data the type of cancer or disease, the accession
number in the NCBI data portal or TCGA identification, the source

of the sample (tissue, cell, or peripheral blood), the platform
(Affymetrix GPL96/HG-U133A, Affymetrix GPL570/HG-U133plus2, or
multiple platforms from Affymetrix and Agilent) used for obtaining
the expression levels, the sample type (paired or independent), the
number of samples in each group, and the selection criteria used to
select samples.

The RNA-seq values were obtained from a study of pure high-
grade ductal carcinoma in situ containing 25 patients and 10 nor-
mal controls (Abba et al. 2015). The normalized read counts of the
expression values from 16,532 genes can be downloaded from the
NCBI (accession number GSE69240) website. The expression values
for the following analysis are on a logarithmic scale with base 2.

The scRNA-seq data were collected from seven donors who
did not have overt cardiac disease (Tucker et al. 2020). This study
sequenced 287,269 nuclei from normal heart tissue of the four
chambers (left atrium, left ventricle, right atrium, and right ven-
tricle) and identified 9 major cell types and more than 20 subclus-
ters of cell types within the human heart. The grouping of these
subclusters will be retained in the following analysis to reduce
heterogeneity across clusters.

Selected statistical methods for MVN tests
Six methods in three categories are considered for the MVN test.
The first category includes two tests based on the distance mea-
sure between the p-dimensional data and the p-variate normal
distribution, the Energy test and the HZ test. The distance mea-
sure used in Energy is the Euclidean distance and in HZ it is the
expected distance between two characteristic functions. The sec-
ond category contains three tests which are all multivariate
extensions of the univariate SW test: the Royston test which
combines the SW statistic from each of the p coordinates, and

Table 1 Description of the 22 microarray RNA data sets considered for the MVN tests

IDa Sourceb Platform Pairede No. Selection criterion

Case
Breast GSE15852 T GPL96 Y 24 Grades 2 and 3; Malay
Colorectal GSE8671 T GPL570 Y 23 Rectum and sigmoid colon
Lung_1f GSE7670 T GPL96 Y 21 Adenocarcinoma; female
Lung_2f GSE19804 T GPL570 Y 47 Adenocarcinoma; early stage; female
Lung_3f GSE19188 T GPL570 N 25 Adenocarcinoma; male
Lung_4f TCGA-lusc T GPL96 N 49 Squamous cell; stage I; male; age> 50
Lung_5f TCGA-lusc T GPL96 N 44 Squamous cell; stages II and III; male; age> 50
Ovarian_1c TCGA-ov M GPL96 N 47 Grade 3; bilateral; stages III and IV; white
Ovarian_2c TCGA-ov M GPL96 N 116 Grade 3; bilateral; stages III and IV; white
GBM_cg TCGA-gbm T Multiple N 66 Classical subtype; male; age> 50
GBM_mg TCGA-gbm T Multiple N 78 Mesenchymal subtype; male; age> 50
GBM_ng TCGA-gbm T Multiple N 47 Neural subtype; male; age> 50
GBM_pg TCGA-gbm T Multiple N 58 Proneural subtype; male; age> 50

Control
Breast GSE15852 T GPL96 Y 24 Grades 2 and 3; Malay
Colorectal GSE8671 T GPL570 Y 23 Rectum and sigmoid colon
Lung_1f GSE7670 T GPL96 Y 21 Adenocarcinoma; female
Lung_2f GSE19804 T GPL570 Y 47 Adenocarcinoma; early stage; female
Lung_3f GSE19188 T GPL570 N 41 Adenocarcinoma; male
COPD_1d GSE11906 T GPL570 N 31 Healthy smoker; small airway; male
COPD_2d GSE42057 B GPL570 N 27 Gold stages 3 and 4; male
COPD_3d GSE11906 T GPL570 N 26 Healthy nonsmoker; small airway; male
COPD_4d GSE42057 B GPL570 N 22 Gold stage 0; male

The gene expression data are either from cancer patients (case), from subjects without cancer or from adjacent normal tissues (control). The selection criterion is
the conditions that were used to select samples from the original public data.

a GEO accession number or TCGA identification.
b T for tissue or cell; B for peripheral blood; M for tissue or blood.
c The two groups are poor (Ovarian_1) vs good (Ovarian_2) prognosis group.
d The two groups (COPD_1 and COPD_2) are smokers and the two groups (COPD_3 and COPD_4) are nonsmokers from the COPD study.
e If the data are paired samples, then the case group contains cancer tissue and control contains the adjacent normal tissue.
f Lung_1 is nonsmall cell lung carcinoma (NSCLC) patients with adenocarcinoma, Lung_2 and Lung_3 only specify NSCLC, Lung_4 and Lung_5 are NSCLC

patients with squamous cell carcinoma.
g The four groups are the different subtypes, GBM_c for classical, GBM_m for mesenchymal, GBM_n for neural, and GBM_p for proneural, respectively.
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the FA and TN tests which are based on projection of the multi-
variate data onto a one-dimensional point, where FA and TN uti-
lize different statistics of the projected values. The test in the
third group is the traditional Mardia test based on multivariate
skewness or kurtosis. We consider any violation in either one as a
deviation from MVN and therefore the Mardia test was applied
here to test if either the skewness or kurtosis test reached signifi-
cance at the 5% nominal level. Some background information
about the six MVN tests is provided in Supplementary File S1.

All the tests were carried out in R, with the function mvnorm.et-
est in the R package energy for the one (multivariate) sample
Energy test (Székely and Rizzo 2017), with the function mvn in the
R package MVN for the HZ, Royston, and Mardia tests (Korkmaz
et al. 2014) and with the functions faTest and mvnTest in the R
package mvnormalTest for the Fattorini FA and TN tests (Lee et al.
2014), respectively.

Selected pathways and gene-sets for MVN tests
To test the gene sets for MVN, 10 signaling pathways from the
Kyoto Encyclopedia of Genes and Genomes (KEGG) were selected
deliberately. These signaling pathways were constructed based
on interacting molecules involving specific biological functions,
where the gene nodes in the pathway network (gene-set) would
be expected to exert some correlation. Such pathways targeted
by GSA therefore are the focus of our examination of the normal-
ity test. The 10 signaling pathways defined in KEGG are the p53,
mTOR, Jak-STAT, PI3k-Akt, Wnt, ErbB, MAPK, RAS, TGF-b, and
TNF pathways, which contain 60, 69, 32, 85, 76, 47, 115, 69, 58,
and 82 gene nodes, respectively. These have been reported to as-
sociate with one or more of the cancers considered here. For ex-
ample, the p53 pathway was reported to show association with
breast (Gasco et al. 2002; Bertheau et al. 2008; Walerych et al.
2012), colorectal (Li et al. 2015), lung (Mitsudomi et al. 2000;
Shtivelman et al. 2014), ovarian (Bernardini et al. 2010; Hayano
et al. 2014), and GBM (Cancer Genome Atlas Research Network
2008; Jung et al. 2019) cancers. Association of the other pathways
such as mTOR, Jak-STAT, PI3k-Akt, Wnt, RAS, and TGF-b have
been reported as well (Park and Kim 2007; Cancer Genome Atlas
Research Network 2008; Eroles et al. 2012; Shtivelman et al. 2014;
Slattery et al. 2014; Lin et al. 2018; Jung et al. 2019). For the COPD
studies, the pathways reported to associate with the disease or
smoking status include Jak-STAT (Bahr et al. 2013; Yew-Booth
et al. 2015; Nicholson et al. 2016), PI3k-Akt (Marwick et al. 2010;
Kim et al. 2011; Bahr et al. 2013; Mercado et al. 2015), and mTor
(Bahr et al. 2013; Mercado et al. 2015).

The expression values of genes in the above pathways were
extracted from microarray RNA and RNA-seq for the MVN tests.
For the scRNA-seq data, since most scRNA-seq data are sparse,
we selected the top 100 most variable genes for the MVN tests so
that the inversion of the covariance matrix, calculated in some of
the tests, would not be singular. The MVN tests were carried out
for each of the four chambers and each of the subclusters, since
the single-cells identified in the same chamber or subcluster
were considered function similarly and thus contain less variabil-
ity (Tucker et al. 2020).

Evaluating the impact of the distributional
assumption
Parametric and nonparametric GSA tools
Among the FSC GSA tools we considered here, the first group of
them contains four parametric tests: the global test (Goeman et al.
2004), Hotelling’s statistic (Schafer and Strimmer 2005; Lu et al.
2005), ROAST (Wu et al. 2010), and the pathway activity score

(P-score) in the logistic regression model (Lin et al. 2018). The global
test examines the existence of heterogeneity among the random
gene effects under a parametric generalized linear model. The func-
tion gt in the R package Globaltest performs this test. The Hotelling’s
T2 statistic compares the mean vectors of the expression profiles
from subjects of different disease statuses with a modified estimate
of the covariance matrix to incorporate possible correlation among
genes. This test can be performed in the R package Hotelling with
the function hotelling.test. The ROAST method is also constructed
under the linear model. It combines the gene-level modified t-statis-
tic to formulate a statistic for the gene-set, and determines the P-
value, not via permutation of genes or samples, but by the rotation
of the independent residual space to incorporate the intergenic cor-
relations (Langsrud 2005). The function roast in the R package limma
performs this test. The pathway activity score, P-score, is a statistic
based on ranks of gene expression values and magnitudes of corre-
lations (Lin et al. 2018). The score is computed for each sample and
the enrichment analysis for association with the response variable
is then tested in a logistic regression model under the case-control
study design.

The second group contains nonparametric FCS GSA tests
which utilize mostly the ranks of the expression values or some
metric of the distance between genes. The first one we considered
is the popular GSEA modified for the self-contained null hypothe-
sis for a predetermined set of genes (Gentleman et al. 2008). It is
nonparametric in the sense that no distributional assumption is
made for the expression value and the test statistic is based on
the ranks of the degree of association between the response and
the individual gene. It assumes independence among gene ex-
pression profiles and utilizes rankings and nonparametric dis-
tance metrics to derive P-values. This test can be carried out with
the function gseattperm in the R package Category. The second
test, usually called the N-statistic, compares the Euclidean dis-
tance between multivariate observations from two response
groups (Baringhaus and Franz 2004; Klebanov et al. 2007; Glazko
and Emmert-Streib 2009). It follows the same rationale as in the
energy test in previous sections for MVN tests, where a group of
observations is compared against observations generated from a
MVN distribution. Here for GSA, the focus is on the comparison
between two groups of multivariate observations without distri-
butional assumptions for either group. This test can be con-
ducted with the function eqdist.etest in the R package energy
(Székely and Rizzo 2017). The other two GSA tools considered
here first rank the multivariate samples based on the minimum
spanning tree and then use the multivariate Kolmogorov–
Smirnov test under the self-contained null hypothesis to test for
the difference in mean, or in variance (Rahmatallah et al. 2017).
The R package adopted here is GSAR and the functions are KStest
and RKStest, respectively. All the software and functions used in
this study are listed in Table 2.

Simulation setting I with a 1-component distribution per
group (settings A and B)
To evaluate the performance of these GSA tools with respect to
different distributions of the gene expression values, the follow-
ing scenarios were considered. The first two are single-compo-
nent models. Simulation setting A was designed under the p-
dimensional MVN assumption (P¼ 30), where both response
groups, termed as case and control with 50 subjects in each group,
were generated from MVN distributions with different mean vec-
tors (the difference is denoted as

~
D) and the same compound

symmetry covariance matrix (with q¼ 0.1).
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Setting B aims for a larger heterogeneity than A and the data
were instead generated from multivariate t distributions (MVT)
with 3 degrees of freedom, the same mean vectors as in A and a
compound symmetry covariance matrix with q¼ 0.5.

Simulation setting II with a 2-component mixture
distribution per group (settings C and D)
In this setting, we consider distributions containing more varia-
tion than the above scenario by assuming a mixture of two distri-
butions. In setting C, the expression values were randomly
generated from a mixture of two MVN distributions, each with
50% weight. Specifically, in the control group, the mean vectors of
the two component MVNs are the zero mean vector

~
0 and the

vector of all-ones
~
1, respectively; while in the case group, the two

mean vectors are
~
0þ ~D and

~
1þ ~D, respectively.
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In setting D, the variability in each component is made even
larger by assuming a MVT distribution with 3 degrees of freedom.

Simulation setting III in which each case group contains
subtypes (settings E, F, G, and H)
In contrast to the previous scenarios where both case and control
groups are from the same distribution but with different means,
here we consider the scenario where the disease (case) group con-
tains more than one component distribution. These situations
can arise due to disease subtypes such as cancer grade, staging,
and tumor tissue type (Kim et al. 2010). Examples include lung
cancer with two major subtypes, small cell lung cancer (SCLC)
and nonsmall cell lung cancer (NSCLC), and leukemia with four
major subtypes, acute lymphoblastic leukemia, acute myeloid
leukemia, chronic myeloid leukemia, and chronic lymphocytic

leukemia. The therapeutic choice may differ according to differ-
ent subtypes where such classification is usually performed clini-
cally with immunohistochemistry (IHC). Therefore, in settings E
and F, the distribution for the case group is a 2-component mix-
ture of normal distributions (setting E) and a 2-component mix-
ture of t distributions (setting F), respectively; whereas in settings
G and H, it is a 3-component mixture distribution. Table 3 lists
all the distributions considered in these simulation studies.

The use of mixture distributions for tumor subtypes incorpo-
rates the scenario of skewed distributions which are apparently
non-normally distributed (Kim et al. 2010). To demonstrate the
degree of deviation from normality, the Kullback-Leibler (KL)
divergence is adopted to measure the distance between the
distribution of the simulated data and Np, a MVN distribution
with a zero mean vector and an identity covariance matrix, in
each setting. The values are listed in the right-most column in
Table 3. Larger values of KL divergence imply a greater difference
between the group with the simulated distribution and the group
with a MVN distribution.

Results
Normality tests of gene expression values
Since MVN will not hold true for the distribution of any pathway
if any subset of the pathway deviates from the normality as-
sumption, we selected a subset of either 10 (if the number of
samples exceeds 30) or 5 (if the number is below 30) genes from
each pathway (for the array RNA and RNA-seq data) or from each
chamber or subcluster (for the scRNA-seq data) and carried out
the above six MVN tests. This procedure was repeated 1000 times
and the rejection rate, the proportion Q ¼ fpi � 0:05g=1000 of
replications in which the P-value pi ði ¼ 1; . . . ; 1000Þ was less than
the nominal 0.05, was recorded. If the RNA values are in fact nor-
mally distributed, then the rejection rates Q’s would be around
0.05, since the P-values under the null hypothesis follow a uni-
form distribution.

For each of the six MVN tests, the majority of the Q’s (across
data sets and pathways/subclusters) are much greater than 5%
as shown in the boxplots in Figure 1A when analyzing the micro-
array RNA values. This implies strong evidence of a non-MVN
distribution. Details of these proportions are provided in the on-
line supplementary materials (Supplementary Tables S1–S6).
Another presentation in Figure 1B displays the average of the Q’s
across the ten signaling pathways for each data set. The heatmap
again demonstrates noticeable evidence against the normality
assumption, as well as similarity in the rates of rejecting the
MVN null hypothesis among the six tests. The corresponding av-
erage values are listed in the supplementary materials
(Supplementary Table S7). For MVN tests with RNA-seq data in
the 10 pathways, the top leading five and bottom five average Q
are selected and the P-values generating the Q’s are presented in
negative log-scale in a quantile–quantile plot in Figure 1C. The
apparent deviation from the straight line in the plot strongly sup-
ports the existence of a non-MVN distribution for the RNA-seq
values. For the scRNA-seq values of the human heart left ventri-
cle, the same pattern is observed in Figure 1D for the subclusters.
It is apparent that even the bottom five average Q’s (the five
smallest rejection rates) are derived from very small P-values
(blue symbols in Figure 1D), again implying significant and
strong evidence of non-normality for the subclusters. The plots
of the other three chambers demonstrate the same pattern and
are displayed in the online supplementary material
(Supplementary Figure S1).

Table 2 Software (R package; function) used for assessing the
performance of the FCS GSA tools

R package Function

Parametric GSAs
Global test Globaltest gt
Hotelling’s T2 test Hotelling hotelling.test
ROAST limma roast
P-score base glm

Nonparametric GSAs
GSEA Category gseattperm
N-statistic energy eqdist.etest
Kolmofrov–Smirnov test of mean GSAR KStest
Kolmogrov–Smirnov test of variance GSAR RKStest
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In addition, these six tests are fairly consistent with each
other since their corresponding rejection rates (Q’s) are highly
correlated. As indicated in the scatter plot in Figure 2A for the
microarray RNA values, the Q’s show strong positive correla-
tion, ranging between 0.85 and 0.90 as listed in the correlation
plot in Figure 2B. When comparing the other MVN tests against
the Energy test, the x-axis in Figure 2A, the scatter plot reveals
that the Royston test tends to reject more often than the
Energy test (indicated by points above the diagonal line); while
both the HZ and Mardia tests are more conservative than the
Energy test (points below the diagonal line). As for the FA and
TN tests, their performance is relatively closer to that of the
Energy test (points are close to the line). The pattern remains
the same when investigating the RNA-seq data. In Figure 2C,
the points contain the rejection rates from the tests on 10 path-
ways with data from cancer-free subjects and cancer patients,
respectively. Though there are only 20 points in this subfigure,
these rejection rates (Q’s) are still much larger than 5% and
show the same positive correlation as in Figure 2A. For scRNA-
seq, the results are demonstrated in Figure 2D. Since the P-val-
ues are very small, the corresponding rejection rates are all
very close to 1, even those of the Mardia test are still much
larger than 5%.

Evaluating the impact of the distributional
assumption
It has been demonstrated in previous sections that most gene ex-
pression values in gene-sets/pathways are not normally distrib-
uted, at least not in the RNA values from microarray, RNA-seq,
and scRNA-seq applications we have tested. The next task was to
examine if the non-normality affects the results from current
gene set analysis methods. The following simulation studies are
designed to mimic the case where the expression values are from
a single-component distribution or from a mixture of more than
one component distribution, for each of the two response groups
termed as the case and control group. The distributions are all
multi-dimensional containing weak and moderate correlation be-
tween gene expressions. The FCS GSAs are then performed and
compared.

In each of the three simulation settings, the difference in the
mean of the two groups is denoted as

~
D ¼ ðD;D; . . . ;D; Þ, where D is

set at 0 to evaluate the false positive rate (type I error rate) and
set at 0.1, 0.3, 0.5, 0.7, and 0.9 to evaluate its power performance.
A total of 1000 replications were carried out under each setting,

where each replication contained 50 control subjects and 50
disease (case) subjects. Three selective results from setting A, D,
and H are shown in Figure 3, A–C, respectively. The results of
other settings are shown in the Supplementary Figure S2 and
Tables S8–S15.

Generally, all tests maintain a reasonable type I error rate at
the nominal level 0.05 (when D¼ 0), and their power curves rise
as expected when the mean difference D increases. When com-
paring across the three subfigures, it is noticeable that the rate
of increase of the power curves in setting A (Figure 3A) is fast-
est, followed by that in setting D (Figure 3B), and then setting
H (Figure 3C). For instance, when D¼ 0.3, five out of the eight
powers in Figure 3A are larger than 0.8; while all powers at
D¼ 0.3 in Figure 3B are below 0.6 and below 0.4 in Figure 3C.
This is not surprising because the simulated values in setting A
are all from a MVN distribution, and the distance between the
empirical distribution and MVN is the smallest, as measured
by the KL divergence (Table 3). In contrast, the empirical distri-
bution of the simulated values in the other two settings D and
H is not that close to MVN.

The results from other settings reveal similar findings. For in-
stance, the power performance under a single-component MVT
distribution or a mixture of more than 1 MVT component, is al-
ways worse than that with MVN as the component distribution
(Supplementary Figure S2). In addition, the pattern across set-
tings A, C, and G, or across B, D, and F, remains the same as that
in Figure 3.

When comparing these GSA tools in each subfigure in
Figure 3 and in Supplementary Figure S2, we note that the global
test and ROAST in the category of parametric GSAs and the GSEA
and N-statistic in the nonparametric category perform better
than the others. These four tools steadily outperform the rest,
with the N-statistic standing out when the component distribu-
tions are MVT rather than MVN. In other words, the N-statistic is
less sensitive to the normality assumption than the other GSA
tools.

Discussion
The findings in the first part of this study indicated strong evi-
dence for rejecting the MVN distributional assumption for all
three types of RNA values. The findings in the simulation studies
in the second part further concluded that deviation from MVN
can cause statistical power loss. This implies that using MVN

Table 3 Distributions used to generate expression data in the GSA analysis

Distribution for the control group Distribution for the case group KL divergencea

Settings I: 1-component vs 1-component
A MVN(

~
0;R1) MVN(

~
D;R1) 3.38

B MVT(
~
0;R2) MVT(

~
D;R2) 18.19

Settings II: 2-component vs 2-component
C 0.5MVN(

~
0;R1)þ 0.5MVN(

~
1;R2) 0.5MVN(

~
0þ

~
D;R1)þ 0.5MVN(

~
1þ

~
D;R2) 14.30

D 0.5MVT(
~
0;R1)þ 0.5MVT(

~
1;R2) 0.5MVT(

~
0þ

~
D;R1)þ 0.5MVT(

~
1þ

~
D;R2) 23.13

Setting III: 1-component vs 2-component/3-component
E MVN(

~
0;R1) 0.5MVN(

~
0;R1)þ 0.5MVN(

~
D;R1) 1.22

F MVT(
~
0;R2) 0.5MVT(

~
0;R2)þ 0.5MVT(

~
D;R2) 15.24

G MVN(
~
0;R1) 0.4MVN(

~
0;R1)þ 0.3MVN(0:5�

~
D;R1) þ 0.3MVN(

~
D;R1) 0.97

H MVT(
~
0;R2) 0.4MVT(

~
0;R2)þ 0.3MVT(0:5�

~
D;R2) þ 0.3MVT(

~
D;R2) 15.17

MVN stands for the MVN distribution and MVT stands for multivariate t distribution. The two covariance matrices adopted both have compound symmetry
correlation structure where the correlation is 0.1 in R1 and 0.5 in R2, respectively. The KL divergence measures the distance between the distribution based on
simulated data and the MVN Npwith zero mean vector and an identity covariance matrix. All vectors (

~
0,

~
D, and

~
1) are 30-dimensional and matrices (R1 and R2) are

30 by 30.
a The sum of the KL divergence between the case and Np, and the KL divergence between the control and Np . KL divergence was computed with the function

KL.dist in the R package FNN.
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simulated data may be a poor choice for benchmarking FCS tools.
Among the GSA FCS tools examined, the nonparametric N-statis-
tic performed comparatively well, at least in the limited scenarios
investigated here. In other words, when RNA values come from
subjects of different disease subtypes, the N-statistic is recom-
mended for GSA.

However, there are limitations to this study. First, the simula-
tions in the second part included either a single-component

multivariate t-distribution or a mixture of distributions to denote
the non-normally distributed populations. These choices may
not represent well the true distributions of the biological data.
Because the true distributions are usually unknown, the pattern
of their non-normality can go beyond the cases considered here.
In other words, unless all forms of non-normality can be defined
and have undergone the same investigation as in this study, the
results here cannot guarantee that the N-statistic will perform

Figure 1 Results for the RNA empirical data under each of the six MVN tests. (A) Boxplots of the 220 rejection rates (Q’s) per each MVN test for the
microarray RNA data; 220 is the product of 22 (data sets) and 10 (pathways). (B) Heatmap of the average Q across pathways in (A). Each column in the
heatmap contains 22 values. (C) The quantile–quantile plot of the P-values of the MVN tests for the RNA-seq data. The y-axis represents the
transformed P-values derived from the test (observed) and the x-axis is the transformed theoretical quantile of P-values when the null hypothesis is true
(expected). Red symbols are the P-values resulting in the top five leading rejection rates Q; while the blue symbols are P-values composing the bottom
five Q. (D) The quantile–quantile plot of the P-values of the MVN tests for the scRNA-seq data from human heart left ventricle. Red symbols are the
P-values composing the top five leading rejection rates Q; while the blue symbols are P-values composing the bottom five Q.
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the best in those cases. A new GSA method that is robust to dis-
tributional assumptions remains in need of development. Until
then, one solution in practice would be to try different GSAs and
perform validation studies if there is consensus.

The second limitation to this study is the lack of measuring
the degree of departure from normality, and hence this study did
not identify a relationship between the degree of deviation and
the loss of power of the GSAs. Traditional measurements include

skewness, kurtosis, KL divergence, and Royston’s indices
(Royston 1991), where each accounts for a type of non-normality.
Future studies may focus on each of these and establish the trend
of power loss in response to different degrees of departure. In this
study, the mixture of distributions was adopted to represent the
existence of sub-populations and it may not be proper to mea-
sure the skewness and kurtosis for these multi-mode distribu-
tions. The KL divergence between these mixture distributions

Figure 2 Rejection rates Q under different MVN tests when applied to different RNA empirical data. (A) The scatter plot of the rejection rates Q under
one of the five MVN tests against the Q under the energy test when applied to the microarray RNA values. (B) The correlation of the rejection rates Q
between any pair from the six MVN tests in (A). (C) The scatter plot of the rejection rates Q under one of the five MVN tests against the Q under the
energy test when applied to the RNA-seq values. (D) The scatter plot of the rejection rates Q under one of the five MVN tests against the Q under the
energy test when applied to the scRNA-seq data.
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and MVN, however, did not show a clear pattern. A more careful
design of the simulated data would be needed in order to clarify
the relationship between the relaxation of the distributional
assumption and the performance of the FCS GSAs.

There are other issues in the development of GSAs requiring
attention. First, since current statistical models may not

describe properly the distribution of gene expression data un-
der study (de Torrenté et al. 2019), a remedy for the simulation
design may be to simulate from available databases where the
sample size is big enough to cover the heterogeneity across
individuals to serve as a pseudo-population. Similar ideas have
been adopted by others (Lin et al. 2018). This solution may not

Figure 3 Power curves (when D> 0) of the eight GSA tools under selected simulation settings A, D, and H. When D¼ 0, the y-axis denotes the type I
error rates. KS_mean and KS_var stand for the Kolmogrov–Smirnov test for the mean vector and for the covariance matrix, respectively. (A) Setting
A, 1-component MVN vs 1-component MVN. (B) Setting D, 2-component mixture MVT vs 2-component mixture MVT. (C) Setting H, 1-component
MVT vs 3-component mixture MVT.
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be readily put into practice now, but it is not entirely infeasible.

As long as data accumulation continues at a high speed and ac-

cess remains open to users, such a choice should be available

in the near future. Second, the GSA tools we consider here are

limited to the FCS category. The GSAs in the over representa-

tion analysis category do not rely on the distributional assump-

tion of the RNA values but rather on whether the genes are DE.

Therefore, these GSAs are less affected by the MVN assumption

and hence not discussed here. The third issue is, currently

many new GSA methods are being developed based on given

pathway topology (Draghici et al. 2007; Shojaie and Michailidis

2009; Chang et al. 2020). Most of these tools do not incorporate

probabilistic randomness and statistical models, thus it is not

easy to investigate their performance using statistical simula-

tion studies to test their robustness against distributional

assumptions. Effort would be required by the statistical commu-

nity to formulate procedures for such evaluation. Finally, cur-

rent GSA methods treat the gene-set or pathway as a

deterministic group of genes. No uncertainty is considered, nor

quantified. However, when the content of a pathway is retrieved

from different pathway databases, it is quite possible that the

derived pathways are different. Future development of GSA

tools should incorporate this difference, either by taking the in-

tersection or union of these component nodes, or by including a

mechanism such as latent variables for this difference. More

studies are clearly warranted.

Data availability
All the human microarray RNA and RNA-seq gene expression

data included in this study can be freely downloaded from the

NCBI or TCGA website. GEO accession number or TCGA identifi-

cation are listed in Table 1. The data management procedures

and R code are documented in Supplementary File S2. The

scRNA-seq expression values of the human heart samples can be

downloaded from the Broad Institute Single Cell Portal (https://

singlecell.broadinstitute.org/single_cell/study/SCP498/). The R

code for the four MVN tests (Energy, Henze-Zirkler, Royston, and

Mardia) can be downloaded from https://github.com/r05849032/

Four_MVN_tests. For the parametric and nonparametric FCS GSA

tools examined in this study, the software and functions are

listed in Table 2.
Supplementary materials are available and include tables for

MVN tests (Supplementary Tables S1–S6), average proportions

across ten pathways for each data set and test (Supplementary

Table S7), and for GSA evaluation (Supplementary Tables S8–S15).

Supplementary File S1 contains background information on the six

MVN tests. Supplementary File S2 contains the R code for data

management and normalization. The R code for the four MVN tests

can be downloaded from https://github.com/r05849032/Four_MVN_

tests.
Supplementary material is available at G3 online.
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