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Abstract: Macrophages are a functionally heterogeneous group of cells with specialized

functions depending not only on their subgroup but also on the function of the organ or tissue

in which the cells are located. The concept of macrophage phenotypic heterogeneity has been

investigated since the 1980s, and more recent studies have identified a diverse spectrum of

phenotypic subpopulations. Several types of macrophages play a central role in the response

to infectious agents and, along with other components of the immune system, determine the

clinical outcome of major infectious diseases. Here, we review the functions of various

macrophage phenotypic subpopulations, the concept of macrophage polarization, and the

influence of these cells on the evolution of infections. In addition, we emphasize their role in

the immune response in vivo and in situ, as well as the molecular effectors and signaling

mechanisms used by these cells. Furthermore, we highlight the mechanisms of immune

evasion triggered by infectious agents to counter the actions of macrophages and their

consequences. Our aim here is to provide an overview of the role of macrophages in the

pathogenesis of critical transmissible diseases and discuss how elucidation of this relation-

ship could enhance our understanding of the host–pathogen association in organ-specific

immune responses.

Keywords: macrophage, macrophage phenotype, macrophage activation, infections,
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Introduction
The primary function of the immune system has traditionally been defined as

protection against microorganisms, although it plays an equally crucial role in

protecting the host against invasion by foreign agents and eliminating affected cells

that might compromise organic homeostasis.1–5 The immune system functions

through mechanisms involving both humoral and cellular immunity, which generally

act in the early and late inborn phases of the response to antigens, respectively.2–5 In

this context, the concept of organ-specific tissue immunity, which is related to the

functional specificity of each organ mostly arose from the research of Engwerda and

Kaye.1 Particularly, in their study in 2000, the authors discussed the immunological

mechanisms triggered in response to hepatic infection by parasites of the genus

Leishmania.1 This work helped focus attention on the concept of tissue immunity

and prompted investigations into its mechanisms in various organs because of the

close relationship between the induction routes of the cellular lesions involved in

distinct organs in infectious, inflammatory, metabolic, and neoplastic diseases.1
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According to the concept of tissue immunity, responses

can be categorized into three major groups: immunity of

epithelial barriers, complex organ immunity, and organ

immunity with immunological privilege.6 In this context,

the cells of the immune system acquire functional specia-

lizations that are related to the characteristics of the organs

where these cells are.7–12 Consequently, investigating local

immune responses is crucial to understanding the host–

pathogen relationship in infectious diseases.7–12 Among

the various cells of the immune system, macrophages

constitute a functionally heterogeneous group that act in

various stages of the immune response. In addition, they

are also involved in the maintenance of homeostasis

because they release growth factors and enzymes for tissue

renewal and remodeling. Similar to lymphocytes, macro-

phages display considerable functional heterogeneity and

are classified according to both their ability to release

cytokines and chemokines and their expression of specific

receptors. This heterogeneity probably reflects the plasti-

city and versatility of macrophages in their response to

signals from the microenvironment.13,14

The process of macrophage formation is initiated in the

bone marrow, where the differentiation of hematopoietic

stem cells generates precursor cells. Subsequently, pre-

monocytic lines in the blood produce monocytes, which

enter various tissues from the bloodstream to form resident

macrophages that perform multiple functions.13–15

Both under normal or pathological conditions, macro-

phages perform diverse functions in an organism depen-

dent on their location.13 In the liver, macrophages named

Kupffer cells are responsible for removing various sub-

stances, toxins, and aggressive pathogens.10,16–18 The lung

contains alveolar macrophages, which eliminate microor-

ganisms, allergens, and microparticles.19,20 In the brain,

macrophages known as microglia provide the main cellu-

lar defense of the central nervous system and modulate

proliferation, responses, morphological transformation,

motility, migration, intracellular communication, and

phagocytosis.13,21–25

Macrophages in the lymph nodes are classified as spinal or

subcapsular sinusoidal, which capture antigens and present

them to B cells.23 In the intestine, macrophages recognize and

remove enteric pathogens and maintain the balance necessary

for the operation of the microbiota.23,26–28 The spleen contains

macrophage lines derived to perform diverse functions.

Splenic macrophages are responsible for phagocytizing senes-

cent or altered erythrocytes, capturing antigens, and proces-

sing and presenting them to T lymphocytes.23,29,30 Lastly, in

the skin, macrophages might be present as Langerhans cells or

histiocytes, which primarily function in phagocytosis as well

as antigen capture, processing, and presentation.13,21–23,31–33

Macrophage phenotypes
Emerging new concepts have recently highlighted the need

for a novel approach to our understanding of macrophage

response.34–36 Similar to T lymphocytes, which feature

numerous cellular subtypes, macrophages also differentiate

into several phenotypes.37,38 Cells belonging to distinct

phenotypes are distinguished by expression of groups of

markers that define each phenotype. Thorough elucidation

of these groups of markers, or panels, has revealed that

these phenotypes are distinguished by expression differ-

ences in chemokines, chemokine receptors, enzymes, cost-

imulatory molecules, Toll receptors, cytokines, and

cytokine receptors.39–43

M1 macrophages express inducible nitric oxide synthase

(iNOS), the primary marker that confirms the response of

these cells in a specific disease (Table 1).44–46 However, a

surface marker that defines the identity of M1 macrophages

has not yet been identified.

Among the phenotypes of M2 macrophages, M2a,

M2b, and M2c macrophages are characterized by the pre-

sence of arginase (Arg).47–49 These subpopulations express

a cell-surface scavenger receptor that recognizes haptoglo-

bin–hemoglobin complexes used to identify M2 macro-

phages and is labeled with CD163. Moreover, a

previously unrecognized subpopulation of M2 macro-

phages, M2d, has been described, but the molecules

responsible for the differentiation of M0 macrophages

into M2d macrophages remain unknown. However, this

population participates in the angiogenesis response, pro-

ducing interleukin (IL)-10 and vascular endothelial growth

factor (Table 1).50–52

Macrophages are capable of differentiating into six

additional subpopulations: regulatory (Mreg), hematoph-

age-associated (Mha), oxidative (Mox), M3, M4, and M17

macrophages (Table 1).53–56

Mreg macrophages respond to the stimulation of Treg

cells and are responsible for inducing the repair response and

inhibiting triggering of mechanisms that produce pro-inflam-

matory cytokines in tissue lesions.57–59 Mox macrophages

differ from the other cell types in expressing oxidized 1-

palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine

and producing HO-1 and sulfiredoxin-1.60–62 Mox macro-

phages are also associated with triggering of oxidative

responses (Table 1).60–62
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The recently discovered M3 macrophages are known

as commuting macrophages. The first study discussing the

emergence of this previously unknown lineage showed

that their appearance depended on the switching response

between M1 and M2 macrophage pathways (Table 1).63

M4 macrophages, similar to M3 macrophages, repre-

sent a group of newly identified cells that have attracted

much attention in research because of the response

mechanisms they can develop.48,64 M4 macrophages dif-

ferentiate in the presence of colony-stimulating factor

(CSF) and (CXCL4). The markers of these cells are

CD206, CD68, metalloproteinase 7 (MMP7), MMP12,

and calcium-binding protein A8 (S100A8); the cells pro-

duce IL-6, TNF-α, and CCL18 and CCL20.65,66 M4

macrophages highly express the low-density lipoprotein

(LDL) receptor, and in chronic lesions, these cells form a

large contingent of foam cells that in the inflammatory

process (Table 1).67–69

Lastly, the concept of cell emergence in the case of

M17 macrophages is new. One of the earliest studies

supporting this hypothesis showed that cell formation can

be induced by corticosteroids, granulocyte-macrophage

(GM)-CSF, or IL-10, and a key feature is the cells that

respond to IL-17 become resistant to apoptosis (Table 1).70

Markers of M1, M2, and M4
macrophages
With advances in technology, discovery of the transcrip-

tome has allowed for identification of several genes related

to the phenotypic modulation of macrophages.71,72

This transcriptomic characterization of the phenotypes

M1, M2, and M4 is a topic that needs to be addressed.73,74

For instance, the integrated network established by a com-

bination of factors typically characterizes a complex phe-

nomenon where real-time polymerase chain reaction

(PCR) validation, for example, shows that the expression

of CD38, Gpr18, and Fpr2 is exclusive to the M1

phenotype.75 The importance of this relationship is the

fact that these newly identified markers are essential to

cell activation and the oxidative stress mechanism.76

Without disregarding findings previously confirmed by

other techniques, the transcriptome study reaffirmed the

expression of classical markers that affect not only cell

activation but also differentiation and development of the

pro-inflammatory response. Therefore, IFN-γ, TNF-α, LPS,

IFN-β, iNOS, IL-1β, IL-6, IL-12, B7, B7.1, MCP3, IP-10 or

CXCL10, CD16, CD32, CD62, CTLA8, and α-chain stillT
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represent a set of fundamental markers that characterize

activation of the classical pathway (M1).77–79 In situations

where the stimulus is mediated by LPS + IFN-γ, there is an

increase in expression of pSTAT1, pSTAT6, Socs1, NF-kB

Nfkbiz, IRF5, IRF1, TNF, II6, II27, IL23a, II12a, CCL5,

CXCL9, CXCL10, CXCL11, NOS2, GBPI, CCR7, and

CD40 on M1 macrophages (Table 1).80

In humans, a very peculiar phenomenon occurs by

polarization of the response between M1 and M2 macro-

phages, attributable to the M1 phenotype expression of

Wnt family member 5A (WNTA5A) and glycerol-3-phos-

phate dehydrogenase 2 (GPD2) and modulation of onco-

genesis and mitochondrial stress. In addition, another

important discovery made using transcriptome analysis

and in vitro experimental models is that CD120b, Toll-

like receptor 2 (TLR2), SLAM family member 7

(SLAMF7), and chemotactic factors, such as CXCL8,

CCL5, CCL2, and IL-6, regulate the M1 phenotype

matrix.81 Considerable data support that polarization via

the M1 phenotype classically conjugates the result, such as

stimulation mainly by IFN-γ, LPS, and TNF-α.82

However, an interesting approach has shown that the M1

phenotype is dependent on transient receptor potential

cation channel subfamily C member 3 (TRPC3) to activate

calcium/calmodulin-dependent protein kinase II alpha

(CAMK2) and STAT1, and activation of intracellular sig-

naling mechanisms that influence the production of apop-

totic markers.83

As for the M2 phenotype, regulation of the alternative

pathway results in interaction of different stimuli that mod-

ulate gene expression in different cellular environments. For

example, in mice, the M (IL-4) regulates expression of

pStat6, pStat1, ifr4, Socs2, ccl17, Ccl22, Ccl24, and Arg1.

In humans, modulation of IRF4, SOCS1, GATA3, CCL13,

CCL17, CCL17, CCL18,MRC1, STAB1,MARCO, CD163,

FN, TGFB1, MMP1, MMP12, TG, F13A1, TGM2,

ADORA3, TGFBR2, IL17RB, ALOX15, and CD200R

occurs (Table 1).80,84

Expression of Arg1 is classical evidence of the presence

of the repair phenotype. In addition, cytokines such as IL-4

and IL-13 are required to establish cell differentiation. The

transcriptome can aggregate a standard of analysis for theM2

phenotype characterized mainly by the expression of M130,

CD163, CD206, MRC1, CCR7, МСР-3, FceRII, CD23,

GPR86, GPR105, TLR-2, P2Y8, P2Y11, P2Y12, dectin-1,

DC-SIGN, CD209, DCIR (CLECSF6), CLACSF13, FIZZ1,

ST2 (SR-A,М60), CD184, TRAIL, STAT6, IL-27Ra, Chil3,

Retnla, Ppar-γ, ARG1, TGF-β, IL-4, IL-5, IL-10, and IL-13

(Table 1).85,86

It is noteworthy that transcriptome analysis has enabled

elucidation of mechanisms underlying the modulation of

IL-4 intracellular signaling by the induction of zinc finger

TFs, Egr2, and c-Myc expression. As a final outcome,

ingenuity pathway analysis shows that expression of

these markers is directly involved in cell cycle progression

in tumorigenesis.34

How the M2 phenotype converts to M2a, M2b, or M2c

depends highly on the stimuli provided.87,88 The M2a

phenotype is generally observed after exposure to IL-4/

IL-13, which induces this phenotype during the process of

immunoregulation, tissue repair, and tumor progression.34

Transcriptome analysis reveals modulation of M2a, which

shows that the response triggered by this cell is quite

ambiguous and mainly involves polarization of the

response between M1 and M2 macrophages. This is

because the M2a phenotype can activate genes that regu-

late pro- and anti-inflammatory responses. Confirmation of

such a situation is centered on the exacerbated expression

of cytochrome c oxidase subunit 5A (COX5a) and

WNT5b.89 In contrast, previous reports have documented

that the M2a phenotype cannot process an adequate

response to produce pro-inflammatory cytokines and med-

iate an efficient microbicidal effect.

The response mediated by the M2c phenotype is basi-

cally induced by the stimulus provided by IL-10/transform-

ing growth factor (TGF)-β, where post-differentiation

transcriptome analysis indicates that this phenotype

strongly regulates the expression of genes, such as

CD163, MMP8, TIMP1, VCAM, SERPINA1, MARCO,

PLOD2, PCOCLE2, and F5. Furthermore, the results of

responses triggered by the production of these markers are

directly associated with angiogenesis, remodeling of the

extracellular matrix, and phagocytosis (Table 1).90

Regarding the M4 phenotype, the modulatory effect

correlates strongly with the CXCL-4-mediated response

that directly influences cell differentiation.48,91,92 This

was confirmed mainly by approaches investigating the

development of atherosclerosis where the appearance of

foamy macrophages with overexpressed genes, such as

GM-CSF, CCL18, CD86, TNFSF10, ALOX5, IL1RN,and

AIF1, induced production of pro-inflammatory mediators.

In addition, development of the immune response in the

processing and presentation of antigens by this cell trig-

gers a regulatory phenomenon leading to overexpression

of CD86, HLA-DRB1, HLA-DRB3, HLA-DRB4, and
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HLA-DQA1.93 Interestingly, in the activation of an intra-

cellular cascade that aims to regulate metabolism by accu-

mulation of lipids, the cell overexpresses APOC2, APOE,

and SORL1.93 The purpose of the M4 phenotype study

expanded to a set of interpretations, including the over-

expression of chemotaxis-inducing genes (CCL3, CCL7,

and CCR1) and cell adhesion where the cell overexpresses

ITGAV, ITGA6, and ITGB8B.93

The importance and relevance of the M4 phenotype in

understanding atherogenesis indicate that M4 macro-

phages strongly express genes responsible for inducing

proteases that degrade the extracellular matrix such as

MMP7, MMP8, and MMP12. The results of the pathophy-

siological analysis of atherosclerosis investigated using

transcriptome analysis shows that these cells express

genes that facilitate the formation of foam cells such as

CD36, MSR1, and ABCG1 by accumulation of LDL,

which when metabolized, causes oxidative reactions that

impair not only phagocytosis but also the destruction of

microorganisms (Table 1).93,94

Transduction signal and polarization
of macrophage M1, M2, and M4
macrophages
Investigation of the spectral role of macrophages began at

the end of the 19th century, more precisely in 1883 with

elaboration of the phagocytosis theory.95 In 1905,

Metchnikoff showed that phagocytic cells are able to

destroy bacteriain infection persistent.96 From that moment,

the concept of macrophage activation began to be con-

structed. In 1964, the idea was further expounded, and

between 1966 and 1971, lymphocytes were identified as

the major antigen-specific cells responsible for macrophage

microbicidal activation.96–98 The discovery of IFN-γ in

1983 was the determinant for the proposal of the classical

pathway of macrophage activation.99 It is important to note

that in 1986, the identification of the two subpopulations of

T lymphocytes (Th1 and Th2) represented further advances

underlying the emergence of the spectral macrophage

concept.100 In 1992, the concept of M2 macrophages

began to be constructed, and in 2000, Mills et al101,102

proposed the classification of M1 and M2 macrophages

based on the response mediated by Th1 and Th2 lympho-

cytes. Between 2002 and 2006, the concepts of activation,

heterogeneity, and plasticity of M1 and M2 macrophages

were amplified given the diversity of a set of experimental

models, which heralded the appearance of M2 subtypes

M2a, M2b, and others.103–106 However, the theoretical

basis of the response behavior of macrophages indicates a

complex relationship, mainly with polarization. In 2010,

Biswas and Mantovani107,108 showed a response paradigm

between M1 and M2 macrophages. Finally, during the last

few years, technological advances have led to deeper dis-

cussions on the polarization of response of M1 and M2

macrophages. In 2014, Murray et al80 attempted to standar-

dize terminology regarding macrophage polarization con-

cepts from the responses obtained in several experimental

models. However, problems still exist at the conceptual

level, particularly regarding the stabilization of macrophage

subpopulations through their participation in pathophysio-

logical, pathological, and immunological mechanisms

(Figure 1).109–111

Following the identification of the M2 phenotype, stu-

dies began to emerge demonstrating that two distinct types

of macrophages were present, which were each associated

with a distinct activation pathway. In the classical path-

way, the main cells are M1 macrophages, also known as

inflammatory macrophages and microbicides. In the alter-

native pathway, also known as the reparative pathway,

cells responsible for the repair response are the M2

macrophages.112–114

Considering the versatility of macrophages, their

response mechanisms in destroying microorganisms appear

to include aspects of the immune response that remain

incompletely elucidated. However, current evidence further

strengthens their relationship with components of the innate

and adaptive immune systems.115,116

In the innate immune response, when macrophages

exposed to certain stimuli, such as LPS-peptide com-

plexes, are recognized by TLRs and CD14, signaling cas-

cades might be initiated that generate reactive oxygen and

nitrogen species and inflammatory cytokines such as IFN-

α and IFN-β.117–119

During the humoral response, phagocytosis of certain

microorganisms might be mediated by recognition of the

Fc portion.120 Specific costimulatory molecules act as a

key step in enhancing phagocytosis, antigen presentation,

and endocytosis. These molecules belong to the family of

receptors known as scavenger and mannose receptors.121

During the innate response, certain components of the

complement system regulate polarization of the macro-

phage response. In the inflammatory pathway, some com-

plements, such as C3a, C5a, C5b, and C9, might induce

production of inflammatory mediators. In the regenerative

pathway, the presence of opsonized apoptotic bodies with
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fragments of complement C1q or C3b might stimulate M2

macrophages to produce Arg and anti-inflammatory

cytokines.122

The classical signal-transduction response scheme

described for both M1 and M2 macrophages follows a

pathway starting from the binding of a protein or some

other component to a receptor, which initiates a signaling

cascade involving signal transduction through phosphory-

lation of transcription factors, migration of the factors to

the nucleus, activation of genes, and production of mole-

cules such as cytokines, enzymes, and costimulatory

molecules.21,123–125

In the classical pathway, we highlight three routes that

are essential to the modulation of the microbicidal activity

of M1 macrophages. The first is the binding of IFN-γ or

TNF-α to their respective receptors (IFN-γR or TNF-αR),

whose main event is the development of intracellular cas-

cade based on the activation of JAK1 and JAK2 and STAT1

or STAT2 responsible for inducing the production of

MHCII, IL-12, and iNOS.126–128 We cannot fail to mention

the importance of GM-CSF in mediating NOS2 production.

MHC class II, IL-12b, which is dependent on the activation

of JAK2 and STAT5 and phosphorylation of IRF5.129,130 In

addition to a set of immunological strategies mediated by

response of M1 macrophages, TLR4 recognizes LPS, one

of the major components produced by gram-negative bac-

teria, which activates NF-κB, AP1, and the production of

TNF-α, IL-1β, IL-6, and IFN-γ (Figure 2).131–133

As an alternative pathway, M2 macrophages respond to

stimulation by IL-4, IL-10, or IL-13 to mediate the develop-

ment of the repair phenotype. By binding to their respective

receptors, these cytokines can trigger activation of repair

signaling cascades that modulate the activation and phos-

phorylation of JAK1-3, STAT3, STAT6, peroxisome prolif-

erator-activated receptor γ (PPARγ) or phosphoinositide 3-K

(PI3K) in order to induce production of Arg1, CD206, chit-

inase-like 3 (Chi313), reticulon-like A (Rtnla), TGF-β,

NOS2, IL-4Rα, and IL-1Rα (Figure 2).134,135

M4 macrophages have attracted attention in the research

community due to their relationship to M0 macrophages.

Specifically, their exposure to CXCL4 was shown to lead to

the production of CD68, IL-6, TNF-α, S100A8, MMP7, and

MMP12.136,137 M4 macrophages are highly enriched in

atherosclerotic lesions, where the cells exhibit increased

expression of LDL receptors.138–140 This phenomenon

causes accumulation of fat inside phagocytes, leading to the

development of atheroma plaques and, consequently, oxida-

tive lesions.138–140 Although more comprehensive studies

Figure 1 Timeline of main events marking development of concept of polarization of macrophages.
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must be conducted to further elucidate the roles of M4

macrophages in the pathogenesis of diseases, the functions

are probably related to an immunosuppressive environment

targeting infectious pathogens (Figure 2).141–143

Antagonistic phenomena and duality
of response between inos and arg1
and its relationship with M1 and M2
phenotype in infectious diseases
Macrophages are one of the primary cell types that exert

microbicidal activity against several groups microorgan-

isms via polarization and duality of the response between

the M1 and M2 phenotypes.144–146 Therefore, an intri-

guing relationship is established in infectious diseases

due to what happens intracellularly.144–146 Classically,

iNOS and Arg1 are characteristic and determinant markers

for modulating the response of either M1 (iNOS) or M2

(Arg1) macrophages.147–149 The resulting effects of these

enzymes demonstrate that both compete for the same sub-

strate (arginine) in order to induce the production of NO

(M1) or proliamines and proline (M2). This antagonistic

relation causes a phenomenon of duality that facilitates the

destruction or survival of microorganisms.149–151 In light

of this phenomenon, we highlight the evolution of the

understanding of this ambiguous relationship mainly in

leprosy, tuberculosis, and leishmaniasis.

In the case of bacteria, this relationship shows that

contradictory events are associated with the response

mechanism triggered by both enzymes. In leprosy, the in

situ expression of iNOS is curiously predominant in the

lepromatous form of the disease, whereas the immune

response is directed more toward an immunosuppressive

profile. Interestingly, in lepromatous leprosy, iNOS corre-

lates positively with the expression of natural resistance-

associated macrophage protein 1 (NRAMP1), IL-22, and

STAT3, indicating that the M1 phenotype is present in the

tissue environment, generating reactive metabolites an

attempt to eliminate the infection. Given that in this clin-

ical form the anti-inflammatory response is more incisive,

the development of the M2 phenotype fundamentally par-

ticipates in inactivating the microbicidal response linked to

Figure 2 Mechanism of response mediated by M1, M2, and M4 macrophages. Macrophage differentiation spectrum includes markers that modulate development of certain

phenotypes. Depending on the stimulus, cytokines, such as TNF-α and IFN-γ, may influence the process of shifting the M0 macrophage to M1. In this scenario, we highlight

the performance of IFN-γ, GM-CSF, and TLR4 that influence development of intracellular cascade, which aims to produce of a series of markers to enhance the pro-

inflammatory response in several aspects of classical pathway. In contrast, the antagonistic relationship between the duality of M1/M2 macrophages shows that IL-4 and IL-13

cytokines are mainly responsible for inducing differentiation of macrophages from M0 to M2. In the alternative pathway, activation of IL-4Rα or IL-10R shows that IL-4, IL-13,

or IL-10 directly modulate development of anti-inflammatory responses and tissue repair. Through pathways of polarization, we emphasized the significance of M4

macrophages in the modulation of oxidative stress response as well as tissue repair. This relationship is particularly important in pathophysiology of atherosclerosis, where

formation of foam cells due to LDL accumulation and low phagocytosis implies a regulatory phenomenon that triggers the production of TNF-α, IL-6, MRP8, MMP7, and

MMP12.
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the M1 phenotype. It is precisely because of this that the

tissue damage is much more obvious, and the associated

response includes the exacerbated expression of Arg1, IL-

4, IL-10, TGF-β, and FGFβ.152–154

With regard to Mycobacterium tuberculosis, the

response mediated by iNOS is more complex. Several

seminal studies have shown that, as in leprosy, in tubercu-

losis iNOS exerts microbicidal activity.155,156 However,

one of the final products generated in the metabolic cas-

cade of iNOS favors the development of an intracellular

signaling mechanism that controls inflammation. In this

context, NO is able to inhibit the expression of NF-κB, one
of the major transcription factors responsible for inducing

the production of pro-inflammatory cytokines such as IFN-

γ and TNF-α.157 Controversial events in the immunopatho-

genesis of M. tuberculosis infection are crucial in the

interpretation of iNOS and Arg1 responses when the tissue

microenvironment in tuberculoid granulomas are analyzed.

The duality of the polarization of the relationship between

M1 and M2 macrophages in both human and monkey

granulomas, the anti-inflammatory phenotype (CD163

+iNOS+Arg1high) is located in more external areas,

whereas in the internal portion, the pro-inflammatory phe-

notype (CD11C+CD68+CD163dimiNOS+eNOS+Arg1low)

is predominant. Therefore, in the same tissue environment,

the presence of the M1 and M2 phenotype is crucial to

maintaining the balance of the immune response and tissue

damage.158

A study focused on the hypoxic granuloma regions in

tuberculosis demonstrated that Arg1 expression seems to

control M. tuberculosis growth when NOS2 is ineffective.

In this case, enzyme expression correlates negatively with

the proliferation of T cells.149

Against leishmaniasis, stimuli presented to the same cells

may or may not trigger the microbicidal response.159,160

Therefore, what is pertinent to the performance of TNF-α
or IL-4 directly influences the formation of the M1/M2

phenotype. In vitro, for example, TNF-α inhibits IL-4-

induced Arg1 expression in bone marrow-derived macro-

phages. The consequences of this inactivation directly affect

the phosphorylation and translocation of STAT6 to mediate

production of Arg1.161 In vivo Leishmania infections mainly

show that in C57BL/6WT, the control of the cellular and

microbicidal stress response is regulated by NOS2 and Arg1

with a predominance of NOS2 and NO. In the case of

C57BL/6WT TNF−/- BALB/c, this change favors pathogen

survival as well as non-phenotype change and a balanced

expression of NOS2 and Arg1.161 In Tie2Cre±Argfl/fl mice,

the amastigote forms of Leishmania major are destroyed in

activated macrophages where the inflammatory response is

accentuated. In light of this, we conclude that the expression

of TNF-α influences change in the cellular phenotype and

potentiates the response of M1 macrophages in situ by Arg1

deletion, histone acetylation, and NOS2 and NO production.

Interestingly, deletion of Arg1 can restore control of parasite

proliferation in animals that evolved resistance.161

Mechanisms of immune evasion
used by intracellular pathogens
against macrophage responses
Macrophages have failed to develop an effective response

against certain intracellular pathogens.162,163 The reason

for this failure has been a long-standing question in this

field. Thus, numerous studies have sought to elucidate the

pathway through which the behavior of an infected cell is

altered. Regardless of whether a cell is infected by viruses,

bacteria, protozoa, or fungi, the pathogen in each case uses

the immune system to modulate the response and, thereby,

survive inside the cell.163–165

Bacteria and protozoa
One of the key issues arising from the discussion of this

subject is understanding the response that PRRs can induce

through the recognition of PAMPs of certain microorgan-

isms. Classically, receptors such as those in the Toll family

agglutinate a variable range from TLR1 to TLR13.166–168

Therefore, in the case of mycobacteria, the importance of

TLR2, TLR4, and TLR9 in the development of the micro-

bicidal response is paramount since the regulation of the

intracellular cascade involves the binding of MyD88 and

Mal, also known as TIRAP, which recruits IRAK1/4,

TRAF6, and TRICA1 to induce the production of mito-

gen-activated protein kinase (MAPK) and NF-κB.169–171

As a final outcome, NF-kB is responsible for inducing the

production of pro-inflammatory cytokines such as TNF-α,
IFN-γ, IL-1β, and IL-6 that participate in the activation of

macrophages and enzymes such as iNOS, which is respon-

sible the generation of ROS and destruction of the

microorganism.126,172,173 However, the immune evasion

strategies adopted by mycobacteria include a series of

events aimed at inactivating this mechanism. With regard

to M. tuberculosis, TLR2 is the main receptor by which

mycobacteria modulate immune escape. Therefore, the

interaction between TLR2, ESAT-6, and CFP-10 drastically

suppresses the immune response of macrophages by
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inhibiting NF-κB activation, iNOS, and NO production.174

Nevertheless, recognition events of PAMPs show that M.

tuberculosis mutants produce sulfoglycolipids that antago-

nize the activation of both TLR2 and NF-κB.175

Interestingly, in this same dynamic, the bacterium can sub-

vert the TLR2-MyD88 pathway and facilitate its transloca-

tion into the cytosol. The consequences of this modulation

include the direct involvement of H37Rv strains and the

escape of the phagosome or phagolysosome.176 It is worth

mentioning that immune evasion via modulation of TLR2

by the recombinant lipoprotein Rv1016c, induces apoptosis

of macrophages by increasing annexin expression.177

Consequently, this relationship becomes beneficial because

in addition to Rv1016c inhibition of MHC-II expression,

TLR2-dependent apoptosis may promote the release of

residual bacilli into apoptotic cells and, thereby, decrease

the recognition of CD4+ T cells, impairing surveillance in

chronic disease conditions (Figure 3).177

Concerning protozoa, one of the main parasites that

compromise macrophage activity is Leishmania.163 L.

major negatively modulates TLR2 receptor activity to

increase the recruitment of SOCS1 and SOCS3, which

inhibit the production of NF-kB, IFN-γ, and TNF-α in

order to establish pathogen survival.178 In Leishmania

donovani, the amastigote forms and TLR2 suppress the

inhibitor of NF-kB kinase (IKK)-NF-kB complex and the

positive regulation of the enzyme deubiquitinating

A20.15,179 As a result, this process facilitates the degrada-

tion of TRAF6 and inhibition of the TNF-α and IL-12

response. As a survival strategy, L. donovani also prevents

apoptosis triggered by oxidative stress, inducing SOCS1

and SOCS3 production.180 Interestingly, that in

Leishmania amazonensis, the intracellular regulatory effect

anchored in the action of protein kinase triggers production

of IFN-β, which in turn, increases expression of superoxide
dismutase 1 (SOD1), inhibiting destruction of the parasite

and facilitating its proliferation (Figure 3).181

Regarding Trypanosomiasis cruzi, TLRs play a crucial

role in resistance to the protozoan infection in macro-

phages, where GPIs and mucins modulate the behavioral

difference among TLR2, TLR4, TLR7, and TLR9. In fact,

this relationship mainly affects the production of Th1

cytokines. Notably, in TLR2-deficient mice, a potent pro-

inflammatory response was observed, mainly induced by

IFN-γ.181,182

One of the central questions surrounding the strategies

of immune evasion by M. tuberculosis, Leishmania, or T.

cruzi is the mechanism underlying phagosome maturation

modulation.183–185 This has direct implications on the bio-

genesis of the phagolysosome. To survive in a hostile

environment, these microorganisms have developed a ser-

ies of mechanisms aimed at neutralizing one of the cell’s

primary lines of defense. It starts at the point of inhibition

of the inflammatory cytokine response (IFN-γ or TNF-α),
where this relationship influences the endosome

immaturity.186–188 Incidentally, Rab family proteins are

actively involved in this process. In this context, Rab5

and 7 are directly related to the early and late fusion of

the endosome and lysosome, respectively. The stage of

immaturity of the phagosome is organized in this duality

of interaction between early and late fusion.189–191

Therefore, microorganisms initially maintain Rab5 expres-

sion in order to facilitate recruitment of coronin 1a protein

and the development of the calcium-calcineurin signaling

pathway whose final outcome is the loss of fusion of the

phagosome with the lysosome (Figure 3).192–194 The

implications of this catastrophic cellular effect include

the inhibition of late markers such as Rab7 and the loss

of various hydrolases such as cathepsin D. Another final

point that dramatically impacts the immune escape of

pathogens is inhibition of PI3K, which deregulates the

gallbladder traffic in the Golgi apparatus (Figure 3).195–197

Virus
Currently, the action of macrophages has not been shown

to be directly related to the antiviral response. This is

attributed to the fact that TLR3, TLR7, TLR8, RIG-I,

and MDA5 are largely produced by the cell. In this con-

text, the modulation of viral replication starts from infor-

mation that is passed to the cytoplasm where RIG-1 and

MDA5 recognize single-stranded RNA viruses to facilitate

the formation of the IKK complex (α, β, and γ).
Consequently, the phosphorylation and migration of NF-

κB and IRF3 and 7 to the nucleus activate genes respon-

sible for inducing the production of IFN-α and β (Figure

4).198–200 However, the strategies used by the virus mod-

ulate the immune evasion mechanism, whereas non-struc-

tural NSs of DENV, WNV, ZIKV, and HCV flaviviruses

inhibit activation of RIG-I and MDA5 as well as a series

of intracellular markers during the inactivation of mole-

cules such as STING, MAVS, and NF-κB. This mechan-

ism directly affects the inhibition of ISGs, Mx, OS, PKR,

and the production of IFN-α and β. In the case of type 1

IFN, intracellular signaling triggered by receptor-cytokine

binding influences concomitant activation and phosphory-

lation of JAK1, JAK2, STAT1, and STAT2, as well as the
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formation of STAT/IRF complexes that primarily activate

genes associated with the production of inflammatory

mediators responsible for inhibiting viral replication

(Figure 4).201–203 Assuming that negative regulation

coupled to non-structural proteins of flavivirus or HCV is

crucial for viral survival, the immune leakage, in this case,

mainly inhibits intracellular signaling pathways (Figure 4).

Autophagy
Just as the cell death process directly impacts the immune

evasion strategies triggered by microorganisms, autophagy

is used to mediate pathogen replication at various stages of

development.204–206 Interestingly, the apoptotic-like

Leishmania uses autophagy to reduce the elimination of

the promastigote forms in macrophages and diminish the

response of T cells. It is worth noting that Annexin V, light

chain 3 (LC3), beclin 1, and mechanistic target of rapa-

mycin (mTOR) participate actively in this mechanism.207

On the other hand, T. cruzi uses autophagy to subvert the

lysosomal exocytic process and invade host cells under

basal conditions. This occurs frequently because of recruit-

ment of the LC3 protein.208 Interestingly, when the process

Figure 3 Immune evasion and strategies adopted by Mycobacterium tuberculosis, Leishmania, and Trypanosomiasis cruzi to evade microbicidal response of macrophages.

Because it is a sequence of events that trigger destruction of microorganisms, immune escape strategies that inhibit microbicidal responses are as varied as possible.

However, we seek to centralize an understanding of the crucial points that facilitate a pathogen’s survival in the environment. For M. tuberculosis, it is noteworthy that TLR2 is
the main receptor by which the immune escape correlates with ESAT-6 and CFP-10 response, whereas inhibitory modulation mainly affects the inflammatory cascade

associated with NF-κB and to iNOS. Since sufoglycolipids inhibit activation of TLR2 and NF-κB, this not only compromises the microbicidal response but also facilitates the

survival and proliferation of the bacillus. Through evolution of mycobacterial destruction mechanisms, adaptation of pathogens to evade the immune system has generated

certain strains such as H37Rv that modulate phagosome maturation and facilitate translocation of bacillus to the cytosol. In addition, a recombinant lipoprotein derived from

M. tuberculosis, such as RV1016c, regulates the mechanism of apoptosis through the annexins. This is crucial to facilitating proliferation of the bacillus in the tissue

environment because RV1016c inhibits MHC II expression, compromising the CD4 T cell response and immune surveillance. Considering that the cytokine response is

fundamental to induce the activation of macrophages, as well as the microbicidal response, M. tuberculosis inhibits the action of IFN-γ by inhibiting autophagy through

responses of IL-6 and IL-27. Expansion of this scenario negatively regulates Atg12-atg5 and positive intracellular cascade involving JAK/PIK3/AKt/mTOR/Mcl1. Implications of

such events are inhibitive of phagolysosome maturation and, consequently, the microbicidal response of the cell, which favors pathogen survival in phagocytes. With regard

to protozoa, we highlight Leishmania, which, in addition to using the cells of the phagocytic system as a reservoir, also uses innumerable strategies of immune evasion to

survive. Therefore, Leishmania major modulates TLR2 responses to induce SOCS1 and 3 to inhibit not only intracellular cascades of NF-κB but also the response of IFN-γ
and TNF-α. For Leishmania donovani, by ubiquitination of TRAF 6 through A20, the response of NK-κB is compromised as well as the production of IL-6 and IL-12.

Interestingly, L. major modulates immunosuppressive responses to facilitate its survival, and L. donovani follows the same path by mainly regulating expression of SOCS1 and 3

to avoid oxidative stress and catastrophic effects that may occur with apoptosis. Despite this dynamic, Leishmania amazonensis can induce macrophages to produce IFN-β to

generate SOD in order to create an environment conducive for the parasite to evade the immune system, survive, and multiply. Considering that vesicular traffic is

fundamental for phagosome maturation, either protozoa or M. tuberculosis manipulates macrophages to maintain Rab5 expression increased to establish early phagosome

fusion with lysosome, as well as formation of the calcium-calcineurin complex to inhibit the production of cathepsin D and Rab7 and to facilitate the survival of the

pathogens. The effect of evasion of Leishmania with T. cruzi is very peculiar in the case of leishmaniasis, autophagy is explored to eliminate promastigotes forms and reduce

responses of T cells. In contrast, T. cruzi uses autophagy as a central point to invade phagocytic cells and multiplies whether at basal levels or not. Interestingly, LC3 protein

serves as the gateway to mediate this process.
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is induced by starvation or rapamycin, autophagolysosome

formation and LC3 expression is increased. This also

results in large-scale formation of the parasitoid vacuole.

As a form of escape, the trypomastigote form resides in

the autophagolysosome and escapes into the cytosol,

increasing the autophagic cell response (Figure 3).209

For M. tuberculosis, the suppression of autophagy to

increase the survival of mycobacteria serves as a potential

regulatory effect. In this context, cytokines such as IL-6

and IL-27 inhibit IFN-γ-induced autophagy. In this pro-

cess, expression of IL-6 or IL-27 considerably reduces the

maturation of the autophagolysosome from the negative

regulation of Atg12-Atg5 and positive effects of complex

JAK/PI3K/Akt/mTOR and Mcl-1 (Figure 3).210,211

Concerning the modulation of the autophagic cascade

for flavivirus, autophagy seems to be a crucial factor in

mediating the biogenesis of viral replication.212–214 This

relationship overlaps in a dynamic where the internaliza-

tion of viruses at endocytosis facilitates the change in pH

and, consequently, the release of viral RNA (vRNA) into

the cytoplasm. The events of autophagy manipulation are

mainly modulated by non-structural proteins, such as

Figure 4 Antiviral response and immune escape mechanism triggered by hepatitis C virus (HCV) and flaviviruses DENV, ZIKV, and WNV. Among PRRs, RLRs are extremely

important in development of antiviral responses mainly associated with actions of IFN-α and β. Among the receptors, we highlight RIG-I and MDA5 that recognize PAMPs

either HCV or flaviviruses to activate MAVS and STING, which in turn, provoke the formation of TBK1/IKKε and NEMO/IKK-α/β complex. This mechanism has the final

product for both phosphorylation of IRF7 and IRF3 and the release of KF-κB p50/p65 subunit that migrates to the nucleus to activate genes responsible for production of

inflammatory cytokines and IFN-type 1. In the case of IFN-α and β, IFNR activation recruits JAK1 and TYR2, which when phosphorylated, trigger formation of an

intracellular cascade that culminates in formation of the STAT1/STAT2/IRF9 complex, which migrates to the nucleus, activating genes associated with the antiviral response

such as Mx, OAS, PKR, and ISGs. To evade the immune response, HCVor flaviviruses induce the production of non-structural proteins that inhibit response of several markers

at points considered essential for the development of the intracellular cascade, facilitating the viral replication process. A priori WNV can establish primordial control of

antiviral responses at the level of inhibition of RIG-I and MDA5. In another follow-up, ZIKV, DENV, WNW, or HCV through NS1, NS2A, NS2B, NS3, NS4A, NS4B, or NS5

inhibit TBK1/IKKε complex formation, IRF3 and 7 phosphorylation, and NF-κB activation. In the response by IFN-type 1, NSEN of DENV and WNV inhibited activation of

JAK1/TYR2. HCV NS5A inhibits activation of STAT1 and 2. Among various immune escape mechanisms, autophagy is critical for flavivirus to mediate biogenesis of viral

replication, mainly because of changes in pH and endocytosis. In this sequence, it is worth noting that NS2B and NS4A/B proteins can manipulate autophagy to alter

membrane curvature in the Golgi apparatus to facilitate viral replication. However, in another follow-up, NS2B/3 cleaves FAM134B into endoplasmic reticulum (ER) to

suppress autophagolysosome formation and reticulophage, a form of selective autophagy, to facilitate viral replication. As a result, NS4A induces cells to produce PIK3, which

impair the conversion of LC3I to LC3II and inhibit autophagy.

de Sousa et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
Infection and Drug Resistance 2019:122600

http://www.dovepress.com
http://www.dovepress.com


NS2B, NS4A, and NS4B.215–217 Interestingly, at the

beginning of the infection, both NS4A and NS4B manip-

ulate the cell to mediate membrane curvature and induce

autophagy. This process mobilizes the membranes and

lipids to establish a proviral event that facilitates viral

replication. This directly impacts regulation of the Golgi

apparatus because NS2B/3 induces the production of pro-

teases that trigger the cleavage of FAM134B, one of the

main receptors involved in endoplasmic reticulum (ER)-

phagy.218 Finally, it is worth mentioning that in this

dynamic, NS4A can deregulate the PI3K pathway, which,

in turn, impairs the conversion of the LC3-I protein to

LC3-II (Figure 4).215,219

Tissue response of macrophages to
infectious agents
Macrophages are a population of cells that play critical roles

in maintaining homeostasis and in the pathogenesis of

inflammatory, infectious, and neoplastic diseases.220

Macrophages are found in both blood and tissues, and despite

their common origin in the bone marrow, tissue macrophages

appear to exhibit an embryogenic development that is inde-

pendent of that of blood macrophages or even of macro-

phages that migrate from the blood into tissues.221–223

Macrophages perform a wide spectrum of functions in

various tissues, including the removal of dead cells, as well

as tissue remodeling and repair, which are associated with an

elaborate response to foreign agents and infectious or non-

infectious aggressors.224–226 Given this, macrophages are

crucial for the development of the organ-specific immune

response, which acts on innate and adaptive immunity, fre-

quently serving as a bridge between these two types of

responses.2,227,228

During an immune response, macrophages can function

to maintain tissue homeostasis as well as contribute to the

development of tissue lesions that are ultimately the result

of a lack of control of the tissue immune response against

aggressors. These aggressors concurrently trigger mechan-

isms to escape the action of macrophages, thus leading to a

lack of control of the cellular response associated with

tissue injury.229–234 This phenomenon is observed both in

non-infectious and infectious diseases caused by viruses,

bacteria, fungi, protozoa, and helminths.

Macrophages can acquire microbicidal properties

after stimulation by microbial products, acting in both

innate and adaptive immunity mechanisms. One of the

main strategies used by microorganisms to escape this

macrophage activity involves altering the response pro-

file of macrophages.185,235–252 The activation of a

response profile mediated by M1 macrophages is com-

monly associated with a protective tissue environment

and has been described for infections by pathogens such

as Helicobacter pylori, M. tuberculosis, Mycobacterium

leprae, Salmonella typhi, and Chlamydia.253–258 M1

macrophages elicit an effective immune response against

S. typhi and H. pylori, and in the response against H.

pylori, the induction of iNOS associated with the M1

profile is closely related to the occurrence of gastric

cancer.259–264 Early and acute stages of M. tuberculosis

infections are mediated by M1 macrophages. In the later

stages and chronic disease, the infection is associated

with responses mediated by M2 macrophages, whose

weak microbicidal activity and ability to eliminate bac-

teria are linked to the occurrence of the lesions observed

during disease evolution.265–269 In leprosy, macrophages

are the primary cells that exert microbicidal activity.

Thus, the role of macrophages in the response to M.

leprae has been widely described and is correlated with

the expression of certain cytokines that are classical

representatives of the cellular immune response, such

as TNF-α and IFN-γ.270–272

In leprosy, when TNF-α and IFN-γ bind to their spe-

cific receptors, the behavior of M0 macrophages is altered.

Furthermore, after undergoing phenotypic modification,

the M0 macrophages become inflammatory, producing

inflammatory cytokines and enzymes such as iNOS,

which produces NO and, consequently, reactive oxygen

radicals, leading to the destruction of the bacteria.273–275

In contrast, M2 and M4 macrophages are observed mainly

in lepromatous lesions, and both cell types present expres-

sion profiles associated with immunosuppressive cyto-

kines. Therefore, these cells are likely to be related to

more diffuse and severe aspects of the disease. These

features are also observed in tegumentary leishmaniasis,

where M2 macrophages are related mainly to diffuse and

anergic aspects of the disease.276–278

In viral diseases, the macrophage response might be sub-

verted to a certain extent by the numerous escape mechan-

isms that viral agents use to resist the host immune

response.279–289 Nevertheless, viruses generally trigger a

response mediated byM1macrophages that might contribute

to the severity of the disease. In hepatitis C, chronic infection

can lead to cell damage and cirrhosis, and the virus can

induce an immune response, targeting the viral protein

NS3, mediated by IL-12 and TNF-α produced by M1
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macrophages. This process creates a pro-inflammatory envir-

onment that contributes to the induction of cell injury. A

similar process occurs in the liver of patients infected with

dengue virus and yellow fever, where cytokines, such as

TNF-α and TGF-β released by Kupffer cells, contribute to

the development of a pro-inflammatory and proapoptotic

environment in tissue hepatic necrosis, which leads to mas-

sive apoptosis of hepatocytes because of the proapoptotic

action of TGF-β.290,291 Viral influenza infections have been
linked to lung injury induced by M1 macrophage-associated

cytokines, including TNF-α, IFN-γ, and IL-6. Furthermore,

these lung lesions might be attenuated in coinfection by

Staphylococcus aureus, which is normally present in the

airway mucosal microbiota, because of the bacterium’s abil-

ity to stimulate the expression of M2 macrophages.292–294

Conversely, in the pathogenesis of coronavirus and cytome-

galovirus infections, the lesions that develop are related to

the induction of an inflammatory environment mediated by

M2 macrophages, which indicates that viral agents can still

benefit from the induction of specific tissue environments

related to the Th2 response and, consequently, tissue repair

and induction of tissue fibrosis.287,295–299

In mice experimentally infected with Schistosoma

japonica, liver fibrosis was associated with the presence

of M2 macrophages, which exhibited increased regulation

of Notch1/Jagged1 signals, and the blockade of this

expression reversed the M2 phenotype and, subsequently,

the associated fibrosis.300 In another study, induction of the

M2 phenotype in Schistosoma mansoni infections elicited

a low-grade chronic inflammatory response that was asso-

ciated with insulin resistance in obese patients.301

Leishmania infection development depends on both the

immune response pattern and the Leishmania species.

Thus, as described for leprosy, the clinical evolution of

leishmaniasis depends on the interaction of the infectious

agent and M1 or M2 macrophages, with the M2 subpopu-

lation related to the process of disease progression.302,303

Lastly, in rats experimentally infected with Toxoplasma

gondii, peritoneal macrophages in the pre-gestational

phase were primarily composed of M1 macrophages,

whereas in the intra-gestational phase, the M2 phenotype

dominated. This is related to the immune response patterns

mediated by Th2 lymphocytes, which are predominant

during gestation.304

Conclusion and perspective
The immune mechanisms inherent to the macrophage

response in various organs and tissues are distinct to the

pathogen–host interaction. Furthermore, these mechanisms

are strongly influenced by both the infectious agents that

induce a specific phenotype and the tissue characteristics

of the organs where the cells are located. This phenom-

enon clearly demonstrates the diverse nature and impor-

tance of the response in the evolution of specific tissue

lesions. Elucidation of the involvement of each phenotypic

macrophage subpopulations in infections in various organs

and tissues would undoubtedly enhance our understanding

of the complex mechanisms of interactions between patho-

gens and the immune system and their consequence in the

genesis of tissue lesions in infectious diseases.
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